1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
|
/* Implementation of the BESSEL_JN and BESSEL_YN transformational
function using a recurrence algorithm.
Copyright 2010 Free Software Foundation, Inc.
Contributed by Tobias Burnus <burnus@net-b.de>
This file is part of the GNU Fortran runtime library (libgfortran).
Libgfortran is free software; you can redistribute it and/or
modify it under the terms of the GNU General Public
License as published by the Free Software Foundation; either
version 3 of the License, or (at your option) any later version.
Libgfortran is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
Under Section 7 of GPL version 3, you are granted additional
permissions described in the GCC Runtime Library Exception, version
3.1, as published by the Free Software Foundation.
You should have received a copy of the GNU General Public License and
a copy of the GCC Runtime Library Exception along with this program;
see the files COPYING3 and COPYING.RUNTIME respectively. If not, see
<http://www.gnu.org/licenses/>. */
#include "libgfortran.h"
#include <stdlib.h>
#include <assert.h>
#if defined(GFC_REAL_16_IS_FLOAT128)
#define MATHFUNC(funcname) funcname ## q
#else
#define MATHFUNC(funcname) funcname ## l
#endif
#if defined(GFC_REAL_16_IS_FLOAT128)
#define BUILTINMATHFUNC(funcname) funcname ## q
#else
#define BUILTINMATHFUNC(funcname) funcname ## l
#endif
#if defined (HAVE_GFC_REAL_16)
#if (defined(GFC_REAL_16_IS_FLOAT128) || defined(HAVE_JNL))
extern void bessel_jn_r16 (gfc_array_r16 * const restrict ret, int n1,
int n2, GFC_REAL_16 x);
export_proto(bessel_jn_r16);
void
bessel_jn_r16 (gfc_array_r16 * const restrict ret, int n1, int n2, GFC_REAL_16 x)
{
int i;
index_type stride;
GFC_REAL_16 last1, last2, x2rev;
stride = GFC_DESCRIPTOR_STRIDE(ret,0);
if (ret->data == NULL)
{
size_t size = n2 < n1 ? 0 : n2-n1+1;
GFC_DIMENSION_SET(ret->dim[0], 0, size-1, 1);
ret->data = internal_malloc_size (sizeof (GFC_REAL_16) * size);
ret->offset = 0;
}
if (unlikely (n2 < n1))
return;
if (unlikely (compile_options.bounds_check)
&& GFC_DESCRIPTOR_EXTENT(ret,0) != (n2-n1+1))
runtime_error("Incorrect extent in return value of BESSEL_JN "
"(%ld vs. %ld)", (long int) n2-n1,
(long int) GFC_DESCRIPTOR_EXTENT(ret,0));
stride = GFC_DESCRIPTOR_STRIDE(ret,0);
if (unlikely (x == 0))
{
ret->data[0] = 1;
for (i = 1; i <= n2-n1; i++)
ret->data[i*stride] = 0;
return;
}
ret->data = ret->data;
last1 = MATHFUNC(jn) (n2, x);
ret->data[(n2-n1)*stride] = last1;
if (n1 == n2)
return;
last2 = MATHFUNC(jn) (n2 - 1, x);
ret->data[(n2-n1-1)*stride] = last2;
if (n1 + 1 == n2)
return;
x2rev = GFC_REAL_16_LITERAL(2.)/x;
for (i = n2-n1-2; i >= 0; i--)
{
ret->data[i*stride] = x2rev * (i+1+n1) * last2 - last1;
last1 = last2;
last2 = ret->data[i*stride];
}
}
#endif
#if (defined(GFC_REAL_16_IS_FLOAT128) || defined(HAVE_YNL))
extern void bessel_yn_r16 (gfc_array_r16 * const restrict ret,
int n1, int n2, GFC_REAL_16 x);
export_proto(bessel_yn_r16);
void
bessel_yn_r16 (gfc_array_r16 * const restrict ret, int n1, int n2,
GFC_REAL_16 x)
{
int i;
index_type stride;
GFC_REAL_16 last1, last2, x2rev;
stride = GFC_DESCRIPTOR_STRIDE(ret,0);
if (ret->data == NULL)
{
size_t size = n2 < n1 ? 0 : n2-n1+1;
GFC_DIMENSION_SET(ret->dim[0], 0, size-1, 1);
ret->data = internal_malloc_size (sizeof (GFC_REAL_16) * size);
ret->offset = 0;
}
if (unlikely (n2 < n1))
return;
if (unlikely (compile_options.bounds_check)
&& GFC_DESCRIPTOR_EXTENT(ret,0) != (n2-n1+1))
runtime_error("Incorrect extent in return value of BESSEL_JN "
"(%ld vs. %ld)", (long int) n2-n1,
(long int) GFC_DESCRIPTOR_EXTENT(ret,0));
stride = GFC_DESCRIPTOR_STRIDE(ret,0);
if (unlikely (x == 0))
{
for (i = 0; i <= n2-n1; i++)
#if defined(GFC_REAL_16_INFINITY)
ret->data[i*stride] = -GFC_REAL_16_INFINITY;
#else
ret->data[i*stride] = -GFC_REAL_16_HUGE;
#endif
return;
}
ret->data = ret->data;
last1 = MATHFUNC(yn) (n1, x);
ret->data[0] = last1;
if (n1 == n2)
return;
last2 = MATHFUNC(yn) (n1 + 1, x);
ret->data[1*stride] = last2;
if (n1 + 1 == n2)
return;
x2rev = GFC_REAL_16_LITERAL(2.)/x;
for (i = 2; i <= n1+n2; i++)
{
#if defined(GFC_REAL_16_INFINITY)
if (unlikely (last2 == -GFC_REAL_16_INFINITY))
{
ret->data[i*stride] = -GFC_REAL_16_INFINITY;
}
else
#endif
{
ret->data[i*stride] = x2rev * (i-1+n1) * last2 - last1;
last1 = last2;
last2 = ret->data[i*stride];
}
}
}
#endif
#endif
|