1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
|
// Copyright 2009 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package flate
import (
"math"
"sort"
)
type huffmanEncoder struct {
codeBits []uint8
code []uint16
}
type literalNode struct {
literal uint16
freq int32
}
type chain struct {
// The sum of the leaves in this tree
freq int32
// The number of literals to the left of this item at this level
leafCount int32
// The right child of this chain in the previous level.
up *chain
}
type levelInfo struct {
// Our level. for better printing
level int32
// The most recent chain generated for this level
lastChain *chain
// The frequency of the next character to add to this level
nextCharFreq int32
// The frequency of the next pair (from level below) to add to this level.
// Only valid if the "needed" value of the next lower level is 0.
nextPairFreq int32
// The number of chains remaining to generate for this level before moving
// up to the next level
needed int32
// The levelInfo for level+1
up *levelInfo
// The levelInfo for level-1
down *levelInfo
}
func maxNode() literalNode { return literalNode{math.MaxUint16, math.MaxInt32} }
func newHuffmanEncoder(size int) *huffmanEncoder {
return &huffmanEncoder{make([]uint8, size), make([]uint16, size)}
}
// Generates a HuffmanCode corresponding to the fixed literal table
func generateFixedLiteralEncoding() *huffmanEncoder {
h := newHuffmanEncoder(maxLit)
codeBits := h.codeBits
code := h.code
var ch uint16
for ch = 0; ch < maxLit; ch++ {
var bits uint16
var size uint8
switch {
case ch < 144:
// size 8, 000110000 .. 10111111
bits = ch + 48
size = 8
break
case ch < 256:
// size 9, 110010000 .. 111111111
bits = ch + 400 - 144
size = 9
break
case ch < 280:
// size 7, 0000000 .. 0010111
bits = ch - 256
size = 7
break
default:
// size 8, 11000000 .. 11000111
bits = ch + 192 - 280
size = 8
}
codeBits[ch] = size
code[ch] = reverseBits(bits, size)
}
return h
}
func generateFixedOffsetEncoding() *huffmanEncoder {
h := newHuffmanEncoder(30)
codeBits := h.codeBits
code := h.code
for ch := uint16(0); ch < 30; ch++ {
codeBits[ch] = 5
code[ch] = reverseBits(ch, 5)
}
return h
}
var fixedLiteralEncoding *huffmanEncoder = generateFixedLiteralEncoding()
var fixedOffsetEncoding *huffmanEncoder = generateFixedOffsetEncoding()
func (h *huffmanEncoder) bitLength(freq []int32) int64 {
var total int64
for i, f := range freq {
if f != 0 {
total += int64(f) * int64(h.codeBits[i])
}
}
return total
}
// Generate elements in the chain using an iterative algorithm.
func (h *huffmanEncoder) generateChains(top *levelInfo, list []literalNode) {
n := len(list)
list = list[0 : n+1]
list[n] = maxNode()
l := top
for {
if l.nextPairFreq == math.MaxInt32 && l.nextCharFreq == math.MaxInt32 {
// We've run out of both leafs and pairs.
// End all calculations for this level.
// To m sure we never come back to this level or any lower level,
// set nextPairFreq impossibly large.
l.lastChain = nil
l.needed = 0
l = l.up
l.nextPairFreq = math.MaxInt32
continue
}
prevFreq := l.lastChain.freq
if l.nextCharFreq < l.nextPairFreq {
// The next item on this row is a leaf node.
n := l.lastChain.leafCount + 1
l.lastChain = &chain{l.nextCharFreq, n, l.lastChain.up}
l.nextCharFreq = list[n].freq
} else {
// The next item on this row is a pair from the previous row.
// nextPairFreq isn't valid until we generate two
// more values in the level below
l.lastChain = &chain{l.nextPairFreq, l.lastChain.leafCount, l.down.lastChain}
l.down.needed = 2
}
if l.needed--; l.needed == 0 {
// We've done everything we need to do for this level.
// Continue calculating one level up. Fill in nextPairFreq
// of that level with the sum of the two nodes we've just calculated on
// this level.
up := l.up
if up == nil {
// All done!
return
}
up.nextPairFreq = prevFreq + l.lastChain.freq
l = up
} else {
// If we stole from below, move down temporarily to replenish it.
for l.down.needed > 0 {
l = l.down
}
}
}
}
// Return the number of literals assigned to each bit size in the Huffman encoding
//
// This method is only called when list.length >= 3
// The cases of 0, 1, and 2 literals are handled by special case code.
//
// list An array of the literals with non-zero frequencies
// and their associated frequencies. The array is in order of increasing
// frequency, and has as its last element a special element with frequency
// MaxInt32
// maxBits The maximum number of bits that should be used to encode any literal.
// return An integer array in which array[i] indicates the number of literals
// that should be encoded in i bits.
func (h *huffmanEncoder) bitCounts(list []literalNode, maxBits int32) []int32 {
n := int32(len(list))
list = list[0 : n+1]
list[n] = maxNode()
// The tree can't have greater depth than n - 1, no matter what. This
// saves a little bit of work in some small cases
maxBits = minInt32(maxBits, n-1)
// Create information about each of the levels.
// A bogus "Level 0" whose sole purpose is so that
// level1.prev.needed==0. This makes level1.nextPairFreq
// be a legitimate value that never gets chosen.
top := &levelInfo{needed: 0}
chain2 := &chain{list[1].freq, 2, new(chain)}
for level := int32(1); level <= maxBits; level++ {
// For every level, the first two items are the first two characters.
// We initialize the levels as if we had already figured this out.
top = &levelInfo{
level: level,
lastChain: chain2,
nextCharFreq: list[2].freq,
nextPairFreq: list[0].freq + list[1].freq,
down: top,
}
top.down.up = top
if level == 1 {
top.nextPairFreq = math.MaxInt32
}
}
// We need a total of 2*n - 2 items at top level and have already generated 2.
top.needed = 2*n - 4
l := top
for {
if l.nextPairFreq == math.MaxInt32 && l.nextCharFreq == math.MaxInt32 {
// We've run out of both leafs and pairs.
// End all calculations for this level.
// To m sure we never come back to this level or any lower level,
// set nextPairFreq impossibly large.
l.lastChain = nil
l.needed = 0
l = l.up
l.nextPairFreq = math.MaxInt32
continue
}
prevFreq := l.lastChain.freq
if l.nextCharFreq < l.nextPairFreq {
// The next item on this row is a leaf node.
n := l.lastChain.leafCount + 1
l.lastChain = &chain{l.nextCharFreq, n, l.lastChain.up}
l.nextCharFreq = list[n].freq
} else {
// The next item on this row is a pair from the previous row.
// nextPairFreq isn't valid until we generate two
// more values in the level below
l.lastChain = &chain{l.nextPairFreq, l.lastChain.leafCount, l.down.lastChain}
l.down.needed = 2
}
if l.needed--; l.needed == 0 {
// We've done everything we need to do for this level.
// Continue calculating one level up. Fill in nextPairFreq
// of that level with the sum of the two nodes we've just calculated on
// this level.
up := l.up
if up == nil {
// All done!
break
}
up.nextPairFreq = prevFreq + l.lastChain.freq
l = up
} else {
// If we stole from below, move down temporarily to replenish it.
for l.down.needed > 0 {
l = l.down
}
}
}
// Somethings is wrong if at the end, the top level is null or hasn't used
// all of the leaves.
if top.lastChain.leafCount != n {
panic("top.lastChain.leafCount != n")
}
bitCount := make([]int32, maxBits+1)
bits := 1
for chain := top.lastChain; chain.up != nil; chain = chain.up {
// chain.leafCount gives the number of literals requiring at least "bits"
// bits to encode.
bitCount[bits] = chain.leafCount - chain.up.leafCount
bits++
}
return bitCount
}
// Look at the leaves and assign them a bit count and an encoding as specified
// in RFC 1951 3.2.2
func (h *huffmanEncoder) assignEncodingAndSize(bitCount []int32, list []literalNode) {
code := uint16(0)
for n, bits := range bitCount {
code <<= 1
if n == 0 || bits == 0 {
continue
}
// The literals list[len(list)-bits] .. list[len(list)-bits]
// are encoded using "bits" bits, and get the values
// code, code + 1, .... The code values are
// assigned in literal order (not frequency order).
chunk := list[len(list)-int(bits):]
sortByLiteral(chunk)
for _, node := range chunk {
h.codeBits[node.literal] = uint8(n)
h.code[node.literal] = reverseBits(code, uint8(n))
code++
}
list = list[0 : len(list)-int(bits)]
}
}
// Update this Huffman Code object to be the minimum code for the specified frequency count.
//
// freq An array of frequencies, in which frequency[i] gives the frequency of literal i.
// maxBits The maximum number of bits to use for any literal.
func (h *huffmanEncoder) generate(freq []int32, maxBits int32) {
list := make([]literalNode, len(freq)+1)
// Number of non-zero literals
count := 0
// Set list to be the set of all non-zero literals and their frequencies
for i, f := range freq {
if f != 0 {
list[count] = literalNode{uint16(i), f}
count++
} else {
h.codeBits[i] = 0
}
}
// If freq[] is shorter than codeBits[], fill rest of codeBits[] with zeros
h.codeBits = h.codeBits[0:len(freq)]
list = list[0:count]
if count <= 2 {
// Handle the small cases here, because they are awkward for the general case code. With
// two or fewer literals, everything has bit length 1.
for i, node := range list {
// "list" is in order of increasing literal value.
h.codeBits[node.literal] = 1
h.code[node.literal] = uint16(i)
}
return
}
sortByFreq(list)
// Get the number of literals for each bit count
bitCount := h.bitCounts(list, maxBits)
// And do the assignment
h.assignEncodingAndSize(bitCount, list)
}
type literalNodeSorter struct {
a []literalNode
less func(i, j int) bool
}
func (s literalNodeSorter) Len() int { return len(s.a) }
func (s literalNodeSorter) Less(i, j int) bool {
return s.less(i, j)
}
func (s literalNodeSorter) Swap(i, j int) { s.a[i], s.a[j] = s.a[j], s.a[i] }
func sortByFreq(a []literalNode) {
s := &literalNodeSorter{a, func(i, j int) bool { return a[i].freq < a[j].freq }}
sort.Sort(s)
}
func sortByLiteral(a []literalNode) {
s := &literalNodeSorter{a, func(i, j int) bool { return a[i].literal < a[j].literal }}
sort.Sort(s)
}
|