1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
|
// Copyright 2009 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
// This package implements RSA encryption as specified in PKCS#1.
package rsa
// TODO(agl): Add support for PSS padding.
import (
"big"
"crypto/subtle"
"hash"
"io"
"os"
)
var bigZero = big.NewInt(0)
var bigOne = big.NewInt(1)
// randomPrime returns a number, p, of the given size, such that p is prime
// with high probability.
func randomPrime(rand io.Reader, bits int) (p *big.Int, err os.Error) {
if bits < 1 {
err = os.EINVAL
}
bytes := make([]byte, (bits+7)/8)
p = new(big.Int)
for {
_, err = io.ReadFull(rand, bytes)
if err != nil {
return
}
// Don't let the value be too small.
bytes[0] |= 0x80
// Make the value odd since an even number this large certainly isn't prime.
bytes[len(bytes)-1] |= 1
p.SetBytes(bytes)
if big.ProbablyPrime(p, 20) {
return
}
}
return
}
// randomNumber returns a uniform random value in [0, max).
func randomNumber(rand io.Reader, max *big.Int) (n *big.Int, err os.Error) {
k := (max.BitLen() + 7) / 8
// r is the number of bits in the used in the most significant byte of
// max.
r := uint(max.BitLen() % 8)
if r == 0 {
r = 8
}
bytes := make([]byte, k)
n = new(big.Int)
for {
_, err = io.ReadFull(rand, bytes)
if err != nil {
return
}
// Clear bits in the first byte to increase the probability
// that the candidate is < max.
bytes[0] &= uint8(int(1<<r) - 1)
n.SetBytes(bytes)
if n.Cmp(max) < 0 {
return
}
}
return
}
// A PublicKey represents the public part of an RSA key.
type PublicKey struct {
N *big.Int // modulus
E int // public exponent
}
// A PrivateKey represents an RSA key
type PrivateKey struct {
PublicKey // public part.
D *big.Int // private exponent
P, Q *big.Int // prime factors of N
}
// Validate performs basic sanity checks on the key.
// It returns nil if the key is valid, or else an os.Error describing a problem.
func (priv PrivateKey) Validate() os.Error {
// Check that p and q are prime. Note that this is just a sanity
// check. Since the random witnesses chosen by ProbablyPrime are
// deterministic, given the candidate number, it's easy for an attack
// to generate composites that pass this test.
if !big.ProbablyPrime(priv.P, 20) {
return os.ErrorString("P is composite")
}
if !big.ProbablyPrime(priv.Q, 20) {
return os.ErrorString("Q is composite")
}
// Check that p*q == n.
modulus := new(big.Int).Mul(priv.P, priv.Q)
if modulus.Cmp(priv.N) != 0 {
return os.ErrorString("invalid modulus")
}
// Check that e and totient(p, q) are coprime.
pminus1 := new(big.Int).Sub(priv.P, bigOne)
qminus1 := new(big.Int).Sub(priv.Q, bigOne)
totient := new(big.Int).Mul(pminus1, qminus1)
e := big.NewInt(int64(priv.E))
gcd := new(big.Int)
x := new(big.Int)
y := new(big.Int)
big.GcdInt(gcd, x, y, totient, e)
if gcd.Cmp(bigOne) != 0 {
return os.ErrorString("invalid public exponent E")
}
// Check that de ≡ 1 (mod totient(p, q))
de := new(big.Int).Mul(priv.D, e)
de.Mod(de, totient)
if de.Cmp(bigOne) != 0 {
return os.ErrorString("invalid private exponent D")
}
return nil
}
// GenerateKeyPair generates an RSA keypair of the given bit size.
func GenerateKey(rand io.Reader, bits int) (priv *PrivateKey, err os.Error) {
priv = new(PrivateKey)
// Smaller public exponents lead to faster public key
// operations. Since the exponent must be coprime to
// (p-1)(q-1), the smallest possible value is 3. Some have
// suggested that a larger exponent (often 2**16+1) be used
// since previous implementation bugs[1] were avoided when this
// was the case. However, there are no current reasons not to use
// small exponents.
// [1] http://marc.info/?l=cryptography&m=115694833312008&w=2
priv.E = 3
pminus1 := new(big.Int)
qminus1 := new(big.Int)
totient := new(big.Int)
for {
p, err := randomPrime(rand, bits/2)
if err != nil {
return nil, err
}
q, err := randomPrime(rand, bits/2)
if err != nil {
return nil, err
}
if p.Cmp(q) == 0 {
continue
}
n := new(big.Int).Mul(p, q)
pminus1.Sub(p, bigOne)
qminus1.Sub(q, bigOne)
totient.Mul(pminus1, qminus1)
g := new(big.Int)
priv.D = new(big.Int)
y := new(big.Int)
e := big.NewInt(int64(priv.E))
big.GcdInt(g, priv.D, y, e, totient)
if g.Cmp(bigOne) == 0 {
priv.D.Add(priv.D, totient)
priv.P = p
priv.Q = q
priv.N = n
break
}
}
return
}
// incCounter increments a four byte, big-endian counter.
func incCounter(c *[4]byte) {
if c[3]++; c[3] != 0 {
return
}
if c[2]++; c[2] != 0 {
return
}
if c[1]++; c[1] != 0 {
return
}
c[0]++
}
// mgf1XOR XORs the bytes in out with a mask generated using the MGF1 function
// specified in PKCS#1 v2.1.
func mgf1XOR(out []byte, hash hash.Hash, seed []byte) {
var counter [4]byte
done := 0
for done < len(out) {
hash.Write(seed)
hash.Write(counter[0:4])
digest := hash.Sum()
hash.Reset()
for i := 0; i < len(digest) && done < len(out); i++ {
out[done] ^= digest[i]
done++
}
incCounter(&counter)
}
}
// MessageTooLongError is returned when attempting to encrypt a message which
// is too large for the size of the public key.
type MessageTooLongError struct{}
func (MessageTooLongError) String() string {
return "message too long for RSA public key size"
}
func encrypt(c *big.Int, pub *PublicKey, m *big.Int) *big.Int {
e := big.NewInt(int64(pub.E))
c.Exp(m, e, pub.N)
return c
}
// EncryptOAEP encrypts the given message with RSA-OAEP.
// The message must be no longer than the length of the public modulus less
// twice the hash length plus 2.
func EncryptOAEP(hash hash.Hash, rand io.Reader, pub *PublicKey, msg []byte, label []byte) (out []byte, err os.Error) {
hash.Reset()
k := (pub.N.BitLen() + 7) / 8
if len(msg) > k-2*hash.Size()-2 {
err = MessageTooLongError{}
return
}
hash.Write(label)
lHash := hash.Sum()
hash.Reset()
em := make([]byte, k)
seed := em[1 : 1+hash.Size()]
db := em[1+hash.Size():]
copy(db[0:hash.Size()], lHash)
db[len(db)-len(msg)-1] = 1
copy(db[len(db)-len(msg):], msg)
_, err = io.ReadFull(rand, seed)
if err != nil {
return
}
mgf1XOR(db, hash, seed)
mgf1XOR(seed, hash, db)
m := new(big.Int)
m.SetBytes(em)
c := encrypt(new(big.Int), pub, m)
out = c.Bytes()
return
}
// A DecryptionError represents a failure to decrypt a message.
// It is deliberately vague to avoid adaptive attacks.
type DecryptionError struct{}
func (DecryptionError) String() string { return "RSA decryption error" }
// A VerificationError represents a failure to verify a signature.
// It is deliberately vague to avoid adaptive attacks.
type VerificationError struct{}
func (VerificationError) String() string { return "RSA verification error" }
// modInverse returns ia, the inverse of a in the multiplicative group of prime
// order n. It requires that a be a member of the group (i.e. less than n).
func modInverse(a, n *big.Int) (ia *big.Int, ok bool) {
g := new(big.Int)
x := new(big.Int)
y := new(big.Int)
big.GcdInt(g, x, y, a, n)
if g.Cmp(bigOne) != 0 {
// In this case, a and n aren't coprime and we cannot calculate
// the inverse. This happens because the values of n are nearly
// prime (being the product of two primes) rather than truly
// prime.
return
}
if x.Cmp(bigOne) < 0 {
// 0 is not the multiplicative inverse of any element so, if x
// < 1, then x is negative.
x.Add(x, n)
}
return x, true
}
// decrypt performs an RSA decryption, resulting in a plaintext integer. If a
// random source is given, RSA blinding is used.
func decrypt(rand io.Reader, priv *PrivateKey, c *big.Int) (m *big.Int, err os.Error) {
// TODO(agl): can we get away with reusing blinds?
if c.Cmp(priv.N) > 0 {
err = DecryptionError{}
return
}
var ir *big.Int
if rand != nil {
// Blinding enabled. Blinding involves multiplying c by r^e.
// Then the decryption operation performs (m^e * r^e)^d mod n
// which equals mr mod n. The factor of r can then be removed
// by multipling by the multiplicative inverse of r.
var r *big.Int
for {
r, err = randomNumber(rand, priv.N)
if err != nil {
return
}
if r.Cmp(bigZero) == 0 {
r = bigOne
}
var ok bool
ir, ok = modInverse(r, priv.N)
if ok {
break
}
}
bigE := big.NewInt(int64(priv.E))
rpowe := new(big.Int).Exp(r, bigE, priv.N)
c.Mul(c, rpowe)
c.Mod(c, priv.N)
}
m = new(big.Int).Exp(c, priv.D, priv.N)
if ir != nil {
// Unblind.
m.Mul(m, ir)
m.Mod(m, priv.N)
}
return
}
// DecryptOAEP decrypts ciphertext using RSA-OAEP.
// If rand != nil, DecryptOAEP uses RSA blinding to avoid timing side-channel attacks.
func DecryptOAEP(hash hash.Hash, rand io.Reader, priv *PrivateKey, ciphertext []byte, label []byte) (msg []byte, err os.Error) {
k := (priv.N.BitLen() + 7) / 8
if len(ciphertext) > k ||
k < hash.Size()*2+2 {
err = DecryptionError{}
return
}
c := new(big.Int).SetBytes(ciphertext)
m, err := decrypt(rand, priv, c)
if err != nil {
return
}
hash.Write(label)
lHash := hash.Sum()
hash.Reset()
// Converting the plaintext number to bytes will strip any
// leading zeros so we may have to left pad. We do this unconditionally
// to avoid leaking timing information. (Although we still probably
// leak the number of leading zeros. It's not clear that we can do
// anything about this.)
em := leftPad(m.Bytes(), k)
firstByteIsZero := subtle.ConstantTimeByteEq(em[0], 0)
seed := em[1 : hash.Size()+1]
db := em[hash.Size()+1:]
mgf1XOR(seed, hash, db)
mgf1XOR(db, hash, seed)
lHash2 := db[0:hash.Size()]
// We have to validate the plaintext in constant time in order to avoid
// attacks like: J. Manger. A Chosen Ciphertext Attack on RSA Optimal
// Asymmetric Encryption Padding (OAEP) as Standardized in PKCS #1
// v2.0. In J. Kilian, editor, Advances in Cryptology.
lHash2Good := subtle.ConstantTimeCompare(lHash, lHash2)
// The remainder of the plaintext must be zero or more 0x00, followed
// by 0x01, followed by the message.
// lookingForIndex: 1 iff we are still looking for the 0x01
// index: the offset of the first 0x01 byte
// invalid: 1 iff we saw a non-zero byte before the 0x01.
var lookingForIndex, index, invalid int
lookingForIndex = 1
rest := db[hash.Size():]
for i := 0; i < len(rest); i++ {
equals0 := subtle.ConstantTimeByteEq(rest[i], 0)
equals1 := subtle.ConstantTimeByteEq(rest[i], 1)
index = subtle.ConstantTimeSelect(lookingForIndex&equals1, i, index)
lookingForIndex = subtle.ConstantTimeSelect(equals1, 0, lookingForIndex)
invalid = subtle.ConstantTimeSelect(lookingForIndex&^equals0, 1, invalid)
}
if firstByteIsZero&lHash2Good&^invalid&^lookingForIndex != 1 {
err = DecryptionError{}
return
}
msg = rest[index+1:]
return
}
// leftPad returns a new slice of length size. The contents of input are right
// aligned in the new slice.
func leftPad(input []byte, size int) (out []byte) {
n := len(input)
if n > size {
n = size
}
out = make([]byte, size)
copy(out[len(out)-n:], input)
return
}
|