summaryrefslogtreecommitdiff
path: root/libgo/go/exp/eval/expr.go
blob: e65f47617bdcd7b2964cc0088bdd2349be5e82e7 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
// Copyright 2009 The Go Authors.  All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.

package eval

import (
	"big"
	"fmt"
	"go/ast"
	"go/token"
	"log"
	"strconv"
	"strings"
	"os"
)

var (
	idealZero = big.NewInt(0)
	idealOne  = big.NewInt(1)
)

// An expr is the result of compiling an expression.  It stores the
// type of the expression and its evaluator function.
type expr struct {
	*exprInfo
	t Type

	// Evaluate this node as the given type.
	eval interface{}

	// Map index expressions permit special forms of assignment,
	// for which we need to know the Map and key.
	evalMapValue func(t *Thread) (Map, interface{})

	// Evaluate to the "address of" this value; that is, the
	// settable Value object.  nil for expressions whose address
	// cannot be taken.
	evalAddr func(t *Thread) Value

	// Execute this expression as a statement.  Only expressions
	// that are valid expression statements should set this.
	exec func(t *Thread)

	// If this expression is a type, this is its compiled type.
	// This is only permitted in the function position of a call
	// expression.  In this case, t should be nil.
	valType Type

	// A short string describing this expression for error
	// messages.
	desc string
}

// exprInfo stores information needed to compile any expression node.
// Each expr also stores its exprInfo so further expressions can be
// compiled from it.
type exprInfo struct {
	*compiler
	pos token.Pos
}

func (a *exprInfo) newExpr(t Type, desc string) *expr {
	return &expr{exprInfo: a, t: t, desc: desc}
}

func (a *exprInfo) diag(format string, args ...interface{}) {
	a.diagAt(a.pos, format, args...)
}

func (a *exprInfo) diagOpType(op token.Token, vt Type) {
	a.diag("illegal operand type for '%v' operator\n\t%v", op, vt)
}

func (a *exprInfo) diagOpTypes(op token.Token, lt Type, rt Type) {
	a.diag("illegal operand types for '%v' operator\n\t%v\n\t%v", op, lt, rt)
}

/*
 * Common expression manipulations
 */

// a.convertTo(t) converts the value of the analyzed expression a,
// which must be a constant, ideal number, to a new analyzed
// expression with a constant value of type t.
//
// TODO(austin) Rename to resolveIdeal or something?
func (a *expr) convertTo(t Type) *expr {
	if !a.t.isIdeal() {
		log.Panicf("attempted to convert from %v, expected ideal", a.t)
	}

	var rat *big.Rat

	// XXX(Spec)  The spec says "It is erroneous".
	//
	// It is an error to assign a value with a non-zero fractional
	// part to an integer, or if the assignment would overflow or
	// underflow, or in general if the value cannot be represented
	// by the type of the variable.
	switch a.t {
	case IdealFloatType:
		rat = a.asIdealFloat()()
		if t.isInteger() && !rat.IsInt() {
			a.diag("constant %v truncated to integer", rat.FloatString(6))
			return nil
		}
	case IdealIntType:
		i := a.asIdealInt()()
		rat = new(big.Rat).SetInt(i)
	default:
		log.Panicf("unexpected ideal type %v", a.t)
	}

	// Check bounds
	if t, ok := t.lit().(BoundedType); ok {
		if rat.Cmp(t.minVal()) < 0 {
			a.diag("constant %v underflows %v", rat.FloatString(6), t)
			return nil
		}
		if rat.Cmp(t.maxVal()) > 0 {
			a.diag("constant %v overflows %v", rat.FloatString(6), t)
			return nil
		}
	}

	// Convert rat to type t.
	res := a.newExpr(t, a.desc)
	switch t := t.lit().(type) {
	case *uintType:
		n, d := rat.Num(), rat.Denom()
		f := new(big.Int).Quo(n, d)
		f = f.Abs(f)
		v := uint64(f.Int64())
		res.eval = func(*Thread) uint64 { return v }
	case *intType:
		n, d := rat.Num(), rat.Denom()
		f := new(big.Int).Quo(n, d)
		v := f.Int64()
		res.eval = func(*Thread) int64 { return v }
	case *idealIntType:
		n, d := rat.Num(), rat.Denom()
		f := new(big.Int).Quo(n, d)
		res.eval = func() *big.Int { return f }
	case *floatType:
		n, d := rat.Num(), rat.Denom()
		v := float64(n.Int64()) / float64(d.Int64())
		res.eval = func(*Thread) float64 { return v }
	case *idealFloatType:
		res.eval = func() *big.Rat { return rat }
	default:
		log.Panicf("cannot convert to type %T", t)
	}

	return res
}

// convertToInt converts this expression to an integer, if possible,
// or produces an error if not.  This accepts ideal ints, uints, and
// ints.  If max is not -1, produces an error if possible if the value
// exceeds max.  If negErr is not "", produces an error if possible if
// the value is negative.
func (a *expr) convertToInt(max int64, negErr string, errOp string) *expr {
	switch a.t.lit().(type) {
	case *idealIntType:
		val := a.asIdealInt()()
		if negErr != "" && val.Sign() < 0 {
			a.diag("negative %s: %s", negErr, val)
			return nil
		}
		bound := max
		if negErr == "slice" {
			bound++
		}
		if max != -1 && val.Cmp(big.NewInt(bound)) >= 0 {
			a.diag("index %s exceeds length %d", val, max)
			return nil
		}
		return a.convertTo(IntType)

	case *uintType:
		// Convert to int
		na := a.newExpr(IntType, a.desc)
		af := a.asUint()
		na.eval = func(t *Thread) int64 { return int64(af(t)) }
		return na

	case *intType:
		// Good as is
		return a
	}

	a.diag("illegal operand type for %s\n\t%v", errOp, a.t)
	return nil
}

// derefArray returns an expression of array type if the given
// expression is a *array type.  Otherwise, returns the given
// expression.
func (a *expr) derefArray() *expr {
	if pt, ok := a.t.lit().(*PtrType); ok {
		if _, ok := pt.Elem.lit().(*ArrayType); ok {
			deref := a.compileStarExpr(a)
			if deref == nil {
				log.Panicf("failed to dereference *array")
			}
			return deref
		}
	}
	return a
}

/*
 * Assignments
 */

// An assignCompiler compiles assignment operations.  Anything other
// than short declarations should use the compileAssign wrapper.
//
// There are three valid types of assignment:
// 1) T = T
//    Assigning a single expression with single-valued type to a
//    single-valued type.
// 2) MT = T, T, ...
//    Assigning multiple expressions with single-valued types to a
//    multi-valued type.
// 3) MT = MT
//    Assigning a single expression with multi-valued type to a
//    multi-valued type.
type assignCompiler struct {
	*compiler
	pos token.Pos
	// The RHS expressions.  This may include nil's for
	// expressions that failed to compile.
	rs []*expr
	// The (possibly unary) MultiType of the RHS.
	rmt *MultiType
	// Whether this is an unpack assignment (case 3).
	isUnpack bool
	// Whether map special assignment forms are allowed.
	allowMap bool
	// Whether this is a "r, ok = a[x]" assignment.
	isMapUnpack bool
	// The operation name to use in error messages, such as
	// "assignment" or "function call".
	errOp string
	// The name to use for positions in error messages, such as
	// "argument".
	errPosName string
}

// Type check the RHS of an assignment, returning a new assignCompiler
// and indicating if the type check succeeded.  This always returns an
// assignCompiler with rmt set, but if type checking fails, slots in
// the MultiType may be nil.  If rs contains nil's, type checking will
// fail and these expressions given a nil type.
func (a *compiler) checkAssign(pos token.Pos, rs []*expr, errOp, errPosName string) (*assignCompiler, bool) {
	c := &assignCompiler{
		compiler:   a,
		pos:        pos,
		rs:         rs,
		errOp:      errOp,
		errPosName: errPosName,
	}

	// Is this an unpack?
	if len(rs) == 1 && rs[0] != nil {
		if rmt, isUnpack := rs[0].t.(*MultiType); isUnpack {
			c.rmt = rmt
			c.isUnpack = true
			return c, true
		}
	}

	// Create MultiType for RHS and check that all RHS expressions
	// are single-valued.
	rts := make([]Type, len(rs))
	ok := true
	for i, r := range rs {
		if r == nil {
			ok = false
			continue
		}

		if _, isMT := r.t.(*MultiType); isMT {
			r.diag("multi-valued expression not allowed in %s", errOp)
			ok = false
			continue
		}

		rts[i] = r.t
	}

	c.rmt = NewMultiType(rts)
	return c, ok
}

func (a *assignCompiler) allowMapForms(nls int) {
	a.allowMap = true

	// Update unpacking info if this is r, ok = a[x]
	if nls == 2 && len(a.rs) == 1 && a.rs[0] != nil && a.rs[0].evalMapValue != nil {
		a.isUnpack = true
		a.rmt = NewMultiType([]Type{a.rs[0].t, BoolType})
		a.isMapUnpack = true
	}
}

// compile type checks and compiles an assignment operation, returning
// a function that expects an l-value and the frame in which to
// evaluate the RHS expressions.  The l-value must have exactly the
// type given by lt.  Returns nil if type checking fails.
func (a *assignCompiler) compile(b *block, lt Type) func(Value, *Thread) {
	lmt, isMT := lt.(*MultiType)
	rmt, isUnpack := a.rmt, a.isUnpack

	// Create unary MultiType for single LHS
	if !isMT {
		lmt = NewMultiType([]Type{lt})
	}

	// Check that the assignment count matches
	lcount := len(lmt.Elems)
	rcount := len(rmt.Elems)
	if lcount != rcount {
		msg := "not enough"
		pos := a.pos
		if rcount > lcount {
			msg = "too many"
			if lcount > 0 {
				pos = a.rs[lcount-1].pos
			}
		}
		a.diagAt(pos, "%s %ss for %s\n\t%s\n\t%s", msg, a.errPosName, a.errOp, lt, rmt)
		return nil
	}

	bad := false

	// If this is an unpack, create a temporary to store the
	// multi-value and replace the RHS with expressions to pull
	// out values from the temporary.  Technically, this is only
	// necessary when we need to perform assignment conversions.
	var effect func(*Thread)
	if isUnpack {
		// This leaks a slot, but is definitely safe.
		temp := b.DefineTemp(a.rmt)
		tempIdx := temp.Index
		if tempIdx < 0 {
			panic(fmt.Sprintln("tempidx", tempIdx))
		}
		if a.isMapUnpack {
			rf := a.rs[0].evalMapValue
			vt := a.rmt.Elems[0]
			effect = func(t *Thread) {
				m, k := rf(t)
				v := m.Elem(t, k)
				found := boolV(true)
				if v == nil {
					found = boolV(false)
					v = vt.Zero()
				}
				t.f.Vars[tempIdx] = multiV([]Value{v, &found})
			}
		} else {
			rf := a.rs[0].asMulti()
			effect = func(t *Thread) { t.f.Vars[tempIdx] = multiV(rf(t)) }
		}
		orig := a.rs[0]
		a.rs = make([]*expr, len(a.rmt.Elems))
		for i, t := range a.rmt.Elems {
			if t.isIdeal() {
				log.Panicf("Right side of unpack contains ideal: %s", rmt)
			}
			a.rs[i] = orig.newExpr(t, orig.desc)
			index := i
			a.rs[i].genValue(func(t *Thread) Value { return t.f.Vars[tempIdx].(multiV)[index] })
		}
	}
	// Now len(a.rs) == len(a.rmt) and we've reduced any unpacking
	// to multi-assignment.

	// TODO(austin) Deal with assignment special cases.

	// Values of any type may always be assigned to variables of
	// compatible static type.
	for i, lt := range lmt.Elems {
		rt := rmt.Elems[i]

		// When [an ideal is] (used in an expression) assigned
		// to a variable or typed constant, the destination
		// must be able to represent the assigned value.
		if rt.isIdeal() {
			a.rs[i] = a.rs[i].convertTo(lmt.Elems[i])
			if a.rs[i] == nil {
				bad = true
				continue
			}
			rt = a.rs[i].t
		}

		// A pointer p to an array can be assigned to a slice
		// variable v with compatible element type if the type
		// of p or v is unnamed.
		if rpt, ok := rt.lit().(*PtrType); ok {
			if at, ok := rpt.Elem.lit().(*ArrayType); ok {
				if lst, ok := lt.lit().(*SliceType); ok {
					if lst.Elem.compat(at.Elem, false) && (rt.lit() == Type(rt) || lt.lit() == Type(lt)) {
						rf := a.rs[i].asPtr()
						a.rs[i] = a.rs[i].newExpr(lt, a.rs[i].desc)
						len := at.Len
						a.rs[i].eval = func(t *Thread) Slice { return Slice{rf(t).(ArrayValue), len, len} }
						rt = a.rs[i].t
					}
				}
			}
		}

		if !lt.compat(rt, false) {
			if len(a.rs) == 1 {
				a.rs[0].diag("illegal operand types for %s\n\t%v\n\t%v", a.errOp, lt, rt)
			} else {
				a.rs[i].diag("illegal operand types in %s %d of %s\n\t%v\n\t%v", a.errPosName, i+1, a.errOp, lt, rt)
			}
			bad = true
		}
	}
	if bad {
		return nil
	}

	// Compile
	if !isMT {
		// Case 1
		return genAssign(lt, a.rs[0])
	}
	// Case 2 or 3
	as := make([]func(lv Value, t *Thread), len(a.rs))
	for i, r := range a.rs {
		as[i] = genAssign(lmt.Elems[i], r)
	}
	return func(lv Value, t *Thread) {
		if effect != nil {
			effect(t)
		}
		lmv := lv.(multiV)
		for i, a := range as {
			a(lmv[i], t)
		}
	}
}

// compileAssign compiles an assignment operation without the full
// generality of an assignCompiler.  See assignCompiler for a
// description of the arguments.
func (a *compiler) compileAssign(pos token.Pos, b *block, lt Type, rs []*expr, errOp, errPosName string) func(Value, *Thread) {
	ac, ok := a.checkAssign(pos, rs, errOp, errPosName)
	if !ok {
		return nil
	}
	return ac.compile(b, lt)
}

/*
 * Expression compiler
 */

// An exprCompiler stores information used throughout the compilation
// of a single expression.  It does not embed funcCompiler because
// expressions can appear at top level.
type exprCompiler struct {
	*compiler
	// The block this expression is being compiled in.
	block *block
	// Whether this expression is used in a constant context.
	constant bool
}

// compile compiles an expression AST.  callCtx should be true if this
// AST is in the function position of a function call node; it allows
// the returned expression to be a type or a built-in function (which
// otherwise result in errors).
func (a *exprCompiler) compile(x ast.Expr, callCtx bool) *expr {
	ei := &exprInfo{a.compiler, x.Pos()}

	switch x := x.(type) {
	// Literals
	case *ast.BasicLit:
		switch x.Kind {
		case token.INT:
			return ei.compileIntLit(string(x.Value))
		case token.FLOAT:
			return ei.compileFloatLit(string(x.Value))
		case token.CHAR:
			return ei.compileCharLit(string(x.Value))
		case token.STRING:
			return ei.compileStringLit(string(x.Value))
		default:
			log.Panicf("unexpected basic literal type %v", x.Kind)
		}

	case *ast.CompositeLit:
		goto notimpl

	case *ast.FuncLit:
		decl := ei.compileFuncType(a.block, x.Type)
		if decl == nil {
			// TODO(austin) Try compiling the body,
			// perhaps with dummy argument definitions
			return nil
		}
		fn := ei.compileFunc(a.block, decl, x.Body)
		if fn == nil {
			return nil
		}
		if a.constant {
			a.diagAt(x.Pos(), "function literal used in constant expression")
			return nil
		}
		return ei.compileFuncLit(decl, fn)

	// Types
	case *ast.ArrayType:
		// TODO(austin) Use a multi-type case
		goto typeexpr

	case *ast.ChanType:
		goto typeexpr

	case *ast.Ellipsis:
		goto typeexpr

	case *ast.FuncType:
		goto typeexpr

	case *ast.InterfaceType:
		goto typeexpr

	case *ast.MapType:
		goto typeexpr

	// Remaining expressions
	case *ast.BadExpr:
		// Error already reported by parser
		a.silentErrors++
		return nil

	case *ast.BinaryExpr:
		l, r := a.compile(x.X, false), a.compile(x.Y, false)
		if l == nil || r == nil {
			return nil
		}
		return ei.compileBinaryExpr(x.Op, l, r)

	case *ast.CallExpr:
		l := a.compile(x.Fun, true)
		args := make([]*expr, len(x.Args))
		bad := false
		for i, arg := range x.Args {
			if i == 0 && l != nil && (l.t == Type(makeType) || l.t == Type(newType)) {
				argei := &exprInfo{a.compiler, arg.Pos()}
				args[i] = argei.exprFromType(a.compileType(a.block, arg))
			} else {
				args[i] = a.compile(arg, false)
			}
			if args[i] == nil {
				bad = true
			}
		}
		if bad || l == nil {
			return nil
		}
		if a.constant {
			a.diagAt(x.Pos(), "function call in constant context")
			return nil
		}

		if l.valType != nil {
			a.diagAt(x.Pos(), "type conversions not implemented")
			return nil
		} else if ft, ok := l.t.(*FuncType); ok && ft.builtin != "" {
			return ei.compileBuiltinCallExpr(a.block, ft, args)
		} else {
			return ei.compileCallExpr(a.block, l, args)
		}

	case *ast.Ident:
		return ei.compileIdent(a.block, a.constant, callCtx, x.Name)

	case *ast.IndexExpr:
		l, r := a.compile(x.X, false), a.compile(x.Index, false)
		if l == nil || r == nil {
			return nil
		}
		return ei.compileIndexExpr(l, r)

	case *ast.SliceExpr:
		var lo, hi *expr
		arr := a.compile(x.X, false)
		if x.Low == nil {
			// beginning was omitted, so we need to provide it
			ei := &exprInfo{a.compiler, x.Pos()}
			lo = ei.compileIntLit("0")
		} else {
			lo = a.compile(x.Low, false)
		}
		if x.High == nil {
			// End was omitted, so we need to compute len(x.X)
			ei := &exprInfo{a.compiler, x.Pos()}
			hi = ei.compileBuiltinCallExpr(a.block, lenType, []*expr{arr})
		} else {
			hi = a.compile(x.High, false)
		}
		if arr == nil || lo == nil || hi == nil {
			return nil
		}
		return ei.compileSliceExpr(arr, lo, hi)

	case *ast.KeyValueExpr:
		goto notimpl

	case *ast.ParenExpr:
		return a.compile(x.X, callCtx)

	case *ast.SelectorExpr:
		v := a.compile(x.X, false)
		if v == nil {
			return nil
		}
		return ei.compileSelectorExpr(v, x.Sel.Name)

	case *ast.StarExpr:
		// We pass down our call context because this could be
		// a pointer type (and thus a type conversion)
		v := a.compile(x.X, callCtx)
		if v == nil {
			return nil
		}
		if v.valType != nil {
			// Turns out this was a pointer type, not a dereference
			return ei.exprFromType(NewPtrType(v.valType))
		}
		return ei.compileStarExpr(v)

	case *ast.StructType:
		goto notimpl

	case *ast.TypeAssertExpr:
		goto notimpl

	case *ast.UnaryExpr:
		v := a.compile(x.X, false)
		if v == nil {
			return nil
		}
		return ei.compileUnaryExpr(x.Op, v)
	}
	log.Panicf("unexpected ast node type %T", x)
	panic("unreachable")

typeexpr:
	if !callCtx {
		a.diagAt(x.Pos(), "type used as expression")
		return nil
	}
	return ei.exprFromType(a.compileType(a.block, x))

notimpl:
	a.diagAt(x.Pos(), "%T expression node not implemented", x)
	return nil
}

func (a *exprInfo) exprFromType(t Type) *expr {
	if t == nil {
		return nil
	}
	expr := a.newExpr(nil, "type")
	expr.valType = t
	return expr
}

func (a *exprInfo) compileIdent(b *block, constant bool, callCtx bool, name string) *expr {
	bl, level, def := b.Lookup(name)
	if def == nil {
		a.diag("%s: undefined", name)
		return nil
	}
	switch def := def.(type) {
	case *Constant:
		expr := a.newExpr(def.Type, "constant")
		if ft, ok := def.Type.(*FuncType); ok && ft.builtin != "" {
			// XXX(Spec) I don't think anything says that
			// built-in functions can't be used as values.
			if !callCtx {
				a.diag("built-in function %s cannot be used as a value", ft.builtin)
				return nil
			}
			// Otherwise, we leave the evaluators empty
			// because this is handled specially
		} else {
			expr.genConstant(def.Value)
		}
		return expr
	case *Variable:
		if constant {
			a.diag("variable %s used in constant expression", name)
			return nil
		}
		if bl.global {
			return a.compileGlobalVariable(def)
		}
		return a.compileVariable(level, def)
	case Type:
		if callCtx {
			return a.exprFromType(def)
		}
		a.diag("type %v used as expression", name)
		return nil
	}
	log.Panicf("name %s has unknown type %T", name, def)
	panic("unreachable")
}

func (a *exprInfo) compileVariable(level int, v *Variable) *expr {
	if v.Type == nil {
		// Placeholder definition from an earlier error
		a.silentErrors++
		return nil
	}
	expr := a.newExpr(v.Type, "variable")
	expr.genIdentOp(level, v.Index)
	return expr
}

func (a *exprInfo) compileGlobalVariable(v *Variable) *expr {
	if v.Type == nil {
		// Placeholder definition from an earlier error
		a.silentErrors++
		return nil
	}
	if v.Init == nil {
		v.Init = v.Type.Zero()
	}
	expr := a.newExpr(v.Type, "variable")
	val := v.Init
	expr.genValue(func(t *Thread) Value { return val })
	return expr
}

func (a *exprInfo) compileIdealInt(i *big.Int, desc string) *expr {
	expr := a.newExpr(IdealIntType, desc)
	expr.eval = func() *big.Int { return i }
	return expr
}

func (a *exprInfo) compileIntLit(lit string) *expr {
	i, _ := new(big.Int).SetString(lit, 0)
	return a.compileIdealInt(i, "integer literal")
}

func (a *exprInfo) compileCharLit(lit string) *expr {
	if lit[0] != '\'' {
		// Caught by parser
		a.silentErrors++
		return nil
	}
	v, _, tail, err := strconv.UnquoteChar(lit[1:], '\'')
	if err != nil || tail != "'" {
		// Caught by parser
		a.silentErrors++
		return nil
	}
	return a.compileIdealInt(big.NewInt(int64(v)), "character literal")
}

func (a *exprInfo) compileFloatLit(lit string) *expr {
	f, ok := new(big.Rat).SetString(lit)
	if !ok {
		log.Panicf("malformed float literal %s at %v passed parser", lit, a.pos)
	}
	expr := a.newExpr(IdealFloatType, "float literal")
	expr.eval = func() *big.Rat { return f }
	return expr
}

func (a *exprInfo) compileString(s string) *expr {
	// Ideal strings don't have a named type but they are
	// compatible with type string.

	// TODO(austin) Use unnamed string type.
	expr := a.newExpr(StringType, "string literal")
	expr.eval = func(*Thread) string { return s }
	return expr
}

func (a *exprInfo) compileStringLit(lit string) *expr {
	s, err := strconv.Unquote(lit)
	if err != nil {
		a.diag("illegal string literal, %v", err)
		return nil
	}
	return a.compileString(s)
}

func (a *exprInfo) compileStringList(list []*expr) *expr {
	ss := make([]string, len(list))
	for i, s := range list {
		ss[i] = s.asString()(nil)
	}
	return a.compileString(strings.Join(ss, ""))
}

func (a *exprInfo) compileFuncLit(decl *FuncDecl, fn func(*Thread) Func) *expr {
	expr := a.newExpr(decl.Type, "function literal")
	expr.eval = fn
	return expr
}

func (a *exprInfo) compileSelectorExpr(v *expr, name string) *expr {
	// mark marks a field that matches the selector name.  It
	// tracks the best depth found so far and whether more than
	// one field has been found at that depth.
	bestDepth := -1
	ambig := false
	amberr := ""
	mark := func(depth int, pathName string) {
		switch {
		case bestDepth == -1 || depth < bestDepth:
			bestDepth = depth
			ambig = false
			amberr = ""

		case depth == bestDepth:
			ambig = true

		default:
			log.Panicf("Marked field at depth %d, but already found one at depth %d", depth, bestDepth)
		}
		amberr += "\n\t" + pathName[1:]
	}

	visited := make(map[Type]bool)

	// find recursively searches for the named field, starting at
	// type t.  If it finds the named field, it returns a function
	// which takes an expr that represents a value of type 't' and
	// returns an expr that retrieves the named field.  We delay
	// expr construction to avoid producing lots of useless expr's
	// as we search.
	//
	// TODO(austin) Now that the expression compiler works on
	// semantic values instead of AST's, there should be a much
	// better way of doing this.
	var find func(Type, int, string) func(*expr) *expr
	find = func(t Type, depth int, pathName string) func(*expr) *expr {
		// Don't bother looking if we've found something shallower
		if bestDepth != -1 && bestDepth < depth {
			return nil
		}

		// Don't check the same type twice and avoid loops
		if visited[t] {
			return nil
		}
		visited[t] = true

		// Implicit dereference
		deref := false
		if ti, ok := t.(*PtrType); ok {
			deref = true
			t = ti.Elem
		}

		// If it's a named type, look for methods
		if ti, ok := t.(*NamedType); ok {
			_, ok := ti.methods[name]
			if ok {
				mark(depth, pathName+"."+name)
				log.Panic("Methods not implemented")
			}
			t = ti.Def
		}

		// If it's a struct type, check fields and embedded types
		var builder func(*expr) *expr
		if t, ok := t.(*StructType); ok {
			for i, f := range t.Elems {
				var sub func(*expr) *expr
				switch {
				case f.Name == name:
					mark(depth, pathName+"."+name)
					sub = func(e *expr) *expr { return e }

				case f.Anonymous:
					sub = find(f.Type, depth+1, pathName+"."+f.Name)
					if sub == nil {
						continue
					}

				default:
					continue
				}

				// We found something.  Create a
				// builder for accessing this field.
				ft := f.Type
				index := i
				builder = func(parent *expr) *expr {
					if deref {
						parent = a.compileStarExpr(parent)
					}
					expr := a.newExpr(ft, "selector expression")
					pf := parent.asStruct()
					evalAddr := func(t *Thread) Value { return pf(t).Field(t, index) }
					expr.genValue(evalAddr)
					return sub(expr)
				}
			}
		}

		return builder
	}

	builder := find(v.t, 0, "")
	if builder == nil {
		a.diag("type %v has no field or method %s", v.t, name)
		return nil
	}
	if ambig {
		a.diag("field %s is ambiguous in type %v%s", name, v.t, amberr)
		return nil
	}

	return builder(v)
}

func (a *exprInfo) compileSliceExpr(arr, lo, hi *expr) *expr {
	// Type check object
	arr = arr.derefArray()

	var at Type
	var maxIndex int64 = -1

	switch lt := arr.t.lit().(type) {
	case *ArrayType:
		at = NewSliceType(lt.Elem)
		maxIndex = lt.Len

	case *SliceType:
		at = lt

	case *stringType:
		at = lt

	default:
		a.diag("cannot slice %v", arr.t)
		return nil
	}

	// Type check index and convert to int
	// XXX(Spec) It's unclear if ideal floats with no
	// fractional part are allowed here.  6g allows it.  I
	// believe that's wrong.
	lo = lo.convertToInt(maxIndex, "slice", "slice")
	hi = hi.convertToInt(maxIndex, "slice", "slice")
	if lo == nil || hi == nil {
		return nil
	}

	expr := a.newExpr(at, "slice expression")

	// Compile
	lof := lo.asInt()
	hif := hi.asInt()
	switch lt := arr.t.lit().(type) {
	case *ArrayType:
		arrf := arr.asArray()
		bound := lt.Len
		expr.eval = func(t *Thread) Slice {
			arr, lo, hi := arrf(t), lof(t), hif(t)
			if lo > hi || hi > bound || lo < 0 {
				t.Abort(SliceError{lo, hi, bound})
			}
			return Slice{arr.Sub(lo, bound-lo), hi - lo, bound - lo}
		}

	case *SliceType:
		arrf := arr.asSlice()
		expr.eval = func(t *Thread) Slice {
			arr, lo, hi := arrf(t), lof(t), hif(t)
			if lo > hi || hi > arr.Cap || lo < 0 {
				t.Abort(SliceError{lo, hi, arr.Cap})
			}
			return Slice{arr.Base.Sub(lo, arr.Cap-lo), hi - lo, arr.Cap - lo}
		}

	case *stringType:
		arrf := arr.asString()
		// TODO(austin) This pulls over the whole string in a
		// remote setting, instead of creating a substring backed
		// by remote memory.
		expr.eval = func(t *Thread) string {
			arr, lo, hi := arrf(t), lof(t), hif(t)
			if lo > hi || hi > int64(len(arr)) || lo < 0 {
				t.Abort(SliceError{lo, hi, int64(len(arr))})
			}
			return arr[lo:hi]
		}

	default:
		log.Panicf("unexpected left operand type %T", arr.t.lit())
	}

	return expr
}

func (a *exprInfo) compileIndexExpr(l, r *expr) *expr {
	// Type check object
	l = l.derefArray()

	var at Type
	intIndex := false
	var maxIndex int64 = -1

	switch lt := l.t.lit().(type) {
	case *ArrayType:
		at = lt.Elem
		intIndex = true
		maxIndex = lt.Len

	case *SliceType:
		at = lt.Elem
		intIndex = true

	case *stringType:
		at = Uint8Type
		intIndex = true

	case *MapType:
		at = lt.Elem
		if r.t.isIdeal() {
			r = r.convertTo(lt.Key)
			if r == nil {
				return nil
			}
		}
		if !lt.Key.compat(r.t, false) {
			a.diag("cannot use %s as index into %s", r.t, lt)
			return nil
		}

	default:
		a.diag("cannot index into %v", l.t)
		return nil
	}

	// Type check index and convert to int if necessary
	if intIndex {
		// XXX(Spec) It's unclear if ideal floats with no
		// fractional part are allowed here.  6g allows it.  I
		// believe that's wrong.
		r = r.convertToInt(maxIndex, "index", "index")
		if r == nil {
			return nil
		}
	}

	expr := a.newExpr(at, "index expression")

	// Compile
	switch lt := l.t.lit().(type) {
	case *ArrayType:
		lf := l.asArray()
		rf := r.asInt()
		bound := lt.Len
		expr.genValue(func(t *Thread) Value {
			l, r := lf(t), rf(t)
			if r < 0 || r >= bound {
				t.Abort(IndexError{r, bound})
			}
			return l.Elem(t, r)
		})

	case *SliceType:
		lf := l.asSlice()
		rf := r.asInt()
		expr.genValue(func(t *Thread) Value {
			l, r := lf(t), rf(t)
			if l.Base == nil {
				t.Abort(NilPointerError{})
			}
			if r < 0 || r >= l.Len {
				t.Abort(IndexError{r, l.Len})
			}
			return l.Base.Elem(t, r)
		})

	case *stringType:
		lf := l.asString()
		rf := r.asInt()
		// TODO(austin) This pulls over the whole string in a
		// remote setting, instead of just the one character.
		expr.eval = func(t *Thread) uint64 {
			l, r := lf(t), rf(t)
			if r < 0 || r >= int64(len(l)) {
				t.Abort(IndexError{r, int64(len(l))})
			}
			return uint64(l[r])
		}

	case *MapType:
		lf := l.asMap()
		rf := r.asInterface()
		expr.genValue(func(t *Thread) Value {
			m := lf(t)
			k := rf(t)
			if m == nil {
				t.Abort(NilPointerError{})
			}
			e := m.Elem(t, k)
			if e == nil {
				t.Abort(KeyError{k})
			}
			return e
		})
		// genValue makes things addressable, but map values
		// aren't addressable.
		expr.evalAddr = nil
		expr.evalMapValue = func(t *Thread) (Map, interface{}) {
			// TODO(austin) Key check?  nil check?
			return lf(t), rf(t)
		}

	default:
		log.Panicf("unexpected left operand type %T", l.t.lit())
	}

	return expr
}

func (a *exprInfo) compileCallExpr(b *block, l *expr, as []*expr) *expr {
	// TODO(austin) Variadic functions.

	// Type check

	// XXX(Spec) Calling a named function type is okay.  I really
	// think there needs to be a general discussion of named
	// types.  A named type creates a new, distinct type, but the
	// type of that type is still whatever it's defined to.  Thus,
	// in "type Foo int", Foo is still an integer type and in
	// "type Foo func()", Foo is a function type.
	lt, ok := l.t.lit().(*FuncType)
	if !ok {
		a.diag("cannot call non-function type %v", l.t)
		return nil
	}

	// The arguments must be single-valued expressions assignment
	// compatible with the parameters of F.
	//
	// XXX(Spec) The spec is wrong.  It can also be a single
	// multi-valued expression.
	nin := len(lt.In)
	assign := a.compileAssign(a.pos, b, NewMultiType(lt.In), as, "function call", "argument")
	if assign == nil {
		return nil
	}

	var t Type
	nout := len(lt.Out)
	switch nout {
	case 0:
		t = EmptyType
	case 1:
		t = lt.Out[0]
	default:
		t = NewMultiType(lt.Out)
	}
	expr := a.newExpr(t, "function call")

	// Gather argument and out types to initialize frame variables
	vts := make([]Type, nin+nout)
	copy(vts, lt.In)
	copy(vts[nin:], lt.Out)

	// Compile
	lf := l.asFunc()
	call := func(t *Thread) []Value {
		fun := lf(t)
		fr := fun.NewFrame()
		for i, t := range vts {
			fr.Vars[i] = t.Zero()
		}
		assign(multiV(fr.Vars[0:nin]), t)
		oldf := t.f
		t.f = fr
		fun.Call(t)
		t.f = oldf
		return fr.Vars[nin : nin+nout]
	}
	expr.genFuncCall(call)

	return expr
}

func (a *exprInfo) compileBuiltinCallExpr(b *block, ft *FuncType, as []*expr) *expr {
	checkCount := func(min, max int) bool {
		if len(as) < min {
			a.diag("not enough arguments to %s", ft.builtin)
			return false
		} else if len(as) > max {
			a.diag("too many arguments to %s", ft.builtin)
			return false
		}
		return true
	}

	switch ft {
	case capType:
		if !checkCount(1, 1) {
			return nil
		}
		arg := as[0].derefArray()
		expr := a.newExpr(IntType, "function call")
		switch t := arg.t.lit().(type) {
		case *ArrayType:
			// TODO(austin) It would be nice if this could
			// be a constant int.
			v := t.Len
			expr.eval = func(t *Thread) int64 { return v }

		case *SliceType:
			vf := arg.asSlice()
			expr.eval = func(t *Thread) int64 { return vf(t).Cap }

		//case *ChanType:

		default:
			a.diag("illegal argument type for cap function\n\t%v", arg.t)
			return nil
		}
		return expr

	case copyType:
		if !checkCount(2, 2) {
			return nil
		}
		src := as[1]
		dst := as[0]
		if src.t != dst.t {
			a.diag("arguments to built-in function 'copy' must have same type\nsrc: %s\ndst: %s\n", src.t, dst.t)
			return nil
		}
		if _, ok := src.t.lit().(*SliceType); !ok {
			a.diag("src argument to 'copy' must be a slice (got: %s)", src.t)
			return nil
		}
		if _, ok := dst.t.lit().(*SliceType); !ok {
			a.diag("dst argument to 'copy' must be a slice (got: %s)", dst.t)
			return nil
		}
		expr := a.newExpr(IntType, "function call")
		srcf := src.asSlice()
		dstf := dst.asSlice()
		expr.eval = func(t *Thread) int64 {
			src, dst := srcf(t), dstf(t)
			nelems := src.Len
			if nelems > dst.Len {
				nelems = dst.Len
			}
			dst.Base.Sub(0, nelems).Assign(t, src.Base.Sub(0, nelems))
			return nelems
		}
		return expr

	case lenType:
		if !checkCount(1, 1) {
			return nil
		}
		arg := as[0].derefArray()
		expr := a.newExpr(IntType, "function call")
		switch t := arg.t.lit().(type) {
		case *stringType:
			vf := arg.asString()
			expr.eval = func(t *Thread) int64 { return int64(len(vf(t))) }

		case *ArrayType:
			// TODO(austin) It would be nice if this could
			// be a constant int.
			v := t.Len
			expr.eval = func(t *Thread) int64 { return v }

		case *SliceType:
			vf := arg.asSlice()
			expr.eval = func(t *Thread) int64 { return vf(t).Len }

		case *MapType:
			vf := arg.asMap()
			expr.eval = func(t *Thread) int64 {
				// XXX(Spec) What's the len of an
				// uninitialized map?
				m := vf(t)
				if m == nil {
					return 0
				}
				return m.Len(t)
			}

		//case *ChanType:

		default:
			a.diag("illegal argument type for len function\n\t%v", arg.t)
			return nil
		}
		return expr

	case makeType:
		if !checkCount(1, 3) {
			return nil
		}
		// XXX(Spec) What are the types of the
		// arguments?  Do they have to be ints?  6g
		// accepts any integral type.
		var lenexpr, capexpr *expr
		var lenf, capf func(*Thread) int64
		if len(as) > 1 {
			lenexpr = as[1].convertToInt(-1, "length", "make function")
			if lenexpr == nil {
				return nil
			}
			lenf = lenexpr.asInt()
		}
		if len(as) > 2 {
			capexpr = as[2].convertToInt(-1, "capacity", "make function")
			if capexpr == nil {
				return nil
			}
			capf = capexpr.asInt()
		}

		switch t := as[0].valType.lit().(type) {
		case *SliceType:
			// A new, initialized slice value for a given
			// element type T is made using the built-in
			// function make, which takes a slice type and
			// parameters specifying the length and
			// optionally the capacity.
			if !checkCount(2, 3) {
				return nil
			}
			et := t.Elem
			expr := a.newExpr(t, "function call")
			expr.eval = func(t *Thread) Slice {
				l := lenf(t)
				// XXX(Spec) What if len or cap is
				// negative?  The runtime panics.
				if l < 0 {
					t.Abort(NegativeLengthError{l})
				}
				c := l
				if capf != nil {
					c = capf(t)
					if c < 0 {
						t.Abort(NegativeCapacityError{c})
					}
					// XXX(Spec) What happens if
					// len > cap?  The runtime
					// sets cap to len.
					if l > c {
						c = l
					}
				}
				base := arrayV(make([]Value, c))
				for i := int64(0); i < c; i++ {
					base[i] = et.Zero()
				}
				return Slice{&base, l, c}
			}
			return expr

		case *MapType:
			// A new, empty map value is made using the
			// built-in function make, which takes the map
			// type and an optional capacity hint as
			// arguments.
			if !checkCount(1, 2) {
				return nil
			}
			expr := a.newExpr(t, "function call")
			expr.eval = func(t *Thread) Map {
				if lenf == nil {
					return make(evalMap)
				}
				l := lenf(t)
				return make(evalMap, l)
			}
			return expr

		//case *ChanType:

		default:
			a.diag("illegal argument type for make function\n\t%v", as[0].valType)
			return nil
		}

	case closeType, closedType:
		a.diag("built-in function %s not implemented", ft.builtin)
		return nil

	case newType:
		if !checkCount(1, 1) {
			return nil
		}

		t := as[0].valType
		expr := a.newExpr(NewPtrType(t), "new")
		expr.eval = func(*Thread) Value { return t.Zero() }
		return expr

	case panicType, printType, printlnType:
		evals := make([]func(*Thread) interface{}, len(as))
		for i, x := range as {
			evals[i] = x.asInterface()
		}
		spaces := ft == printlnType
		newline := ft != printType
		printer := func(t *Thread) {
			for i, eval := range evals {
				if i > 0 && spaces {
					print(" ")
				}
				v := eval(t)
				type stringer interface {
					String() string
				}
				switch v1 := v.(type) {
				case bool:
					print(v1)
				case uint64:
					print(v1)
				case int64:
					print(v1)
				case float64:
					print(v1)
				case string:
					print(v1)
				case stringer:
					print(v1.String())
				default:
					print("???")
				}
			}
			if newline {
				print("\n")
			}
		}
		expr := a.newExpr(EmptyType, "print")
		expr.exec = printer
		if ft == panicType {
			expr.exec = func(t *Thread) {
				printer(t)
				t.Abort(os.NewError("panic"))
			}
		}
		return expr
	}

	log.Panicf("unexpected built-in function '%s'", ft.builtin)
	panic("unreachable")
}

func (a *exprInfo) compileStarExpr(v *expr) *expr {
	switch vt := v.t.lit().(type) {
	case *PtrType:
		expr := a.newExpr(vt.Elem, "indirect expression")
		vf := v.asPtr()
		expr.genValue(func(t *Thread) Value {
			v := vf(t)
			if v == nil {
				t.Abort(NilPointerError{})
			}
			return v
		})
		return expr
	}

	a.diagOpType(token.MUL, v.t)
	return nil
}

var unaryOpDescs = make(map[token.Token]string)

func (a *exprInfo) compileUnaryExpr(op token.Token, v *expr) *expr {
	// Type check
	var t Type
	switch op {
	case token.ADD, token.SUB:
		if !v.t.isInteger() && !v.t.isFloat() {
			a.diagOpType(op, v.t)
			return nil
		}
		t = v.t

	case token.NOT:
		if !v.t.isBoolean() {
			a.diagOpType(op, v.t)
			return nil
		}
		t = BoolType

	case token.XOR:
		if !v.t.isInteger() {
			a.diagOpType(op, v.t)
			return nil
		}
		t = v.t

	case token.AND:
		// The unary prefix address-of operator & generates
		// the address of its operand, which must be a
		// variable, pointer indirection, field selector, or
		// array or slice indexing operation.
		if v.evalAddr == nil {
			a.diag("cannot take the address of %s", v.desc)
			return nil
		}

		// TODO(austin) Implement "It is illegal to take the
		// address of a function result variable" once I have
		// function result variables.

		t = NewPtrType(v.t)

	case token.ARROW:
		log.Panicf("Unary op %v not implemented", op)

	default:
		log.Panicf("unknown unary operator %v", op)
	}

	desc, ok := unaryOpDescs[op]
	if !ok {
		desc = "unary " + op.String() + " expression"
		unaryOpDescs[op] = desc
	}

	// Compile
	expr := a.newExpr(t, desc)
	switch op {
	case token.ADD:
		// Just compile it out
		expr = v
		expr.desc = desc

	case token.SUB:
		expr.genUnaryOpNeg(v)

	case token.NOT:
		expr.genUnaryOpNot(v)

	case token.XOR:
		expr.genUnaryOpXor(v)

	case token.AND:
		vf := v.evalAddr
		expr.eval = func(t *Thread) Value { return vf(t) }

	default:
		log.Panicf("Compilation of unary op %v not implemented", op)
	}

	return expr
}

var binOpDescs = make(map[token.Token]string)

func (a *exprInfo) compileBinaryExpr(op token.Token, l, r *expr) *expr {
	// Save the original types of l.t and r.t for error messages.
	origlt := l.t
	origrt := r.t

	// XXX(Spec) What is the exact definition of a "named type"?

	// XXX(Spec) Arithmetic operators: "Integer types" apparently
	// means all types compatible with basic integer types, though
	// this is never explained.  Likewise for float types, etc.
	// This relates to the missing explanation of named types.

	// XXX(Spec) Operators: "If both operands are ideal numbers,
	// the conversion is to ideal floats if one of the operands is
	// an ideal float (relevant for / and %)."  How is that
	// relevant only for / and %?  If I add an ideal int and an
	// ideal float, I get an ideal float.

	if op != token.SHL && op != token.SHR {
		// Except in shift expressions, if one operand has
		// numeric type and the other operand is an ideal
		// number, the ideal number is converted to match the
		// type of the other operand.
		if (l.t.isInteger() || l.t.isFloat()) && !l.t.isIdeal() && r.t.isIdeal() {
			r = r.convertTo(l.t)
		} else if (r.t.isInteger() || r.t.isFloat()) && !r.t.isIdeal() && l.t.isIdeal() {
			l = l.convertTo(r.t)
		}
		if l == nil || r == nil {
			return nil
		}

		// Except in shift expressions, if both operands are
		// ideal numbers and one is an ideal float, the other
		// is converted to ideal float.
		if l.t.isIdeal() && r.t.isIdeal() {
			if l.t.isInteger() && r.t.isFloat() {
				l = l.convertTo(r.t)
			} else if l.t.isFloat() && r.t.isInteger() {
				r = r.convertTo(l.t)
			}
			if l == nil || r == nil {
				return nil
			}
		}
	}

	// Useful type predicates
	// TODO(austin) CL 33668 mandates identical types except for comparisons.
	compat := func() bool { return l.t.compat(r.t, false) }
	integers := func() bool { return l.t.isInteger() && r.t.isInteger() }
	floats := func() bool { return l.t.isFloat() && r.t.isFloat() }
	strings := func() bool {
		// TODO(austin) Deal with named types
		return l.t == StringType && r.t == StringType
	}
	booleans := func() bool { return l.t.isBoolean() && r.t.isBoolean() }

	// Type check
	var t Type
	switch op {
	case token.ADD:
		if !compat() || (!integers() && !floats() && !strings()) {
			a.diagOpTypes(op, origlt, origrt)
			return nil
		}
		t = l.t

	case token.SUB, token.MUL, token.QUO:
		if !compat() || (!integers() && !floats()) {
			a.diagOpTypes(op, origlt, origrt)
			return nil
		}
		t = l.t

	case token.REM, token.AND, token.OR, token.XOR, token.AND_NOT:
		if !compat() || !integers() {
			a.diagOpTypes(op, origlt, origrt)
			return nil
		}
		t = l.t

	case token.SHL, token.SHR:
		// XXX(Spec) Is it okay for the right operand to be an
		// ideal float with no fractional part?  "The right
		// operand in a shift operation must be always be of
		// unsigned integer type or an ideal number that can
		// be safely converted into an unsigned integer type
		// (§Arithmetic operators)" suggests so and 6g agrees.

		if !l.t.isInteger() || !(r.t.isInteger() || r.t.isIdeal()) {
			a.diagOpTypes(op, origlt, origrt)
			return nil
		}

		// The right operand in a shift operation must be
		// always be of unsigned integer type or an ideal
		// number that can be safely converted into an
		// unsigned integer type.
		if r.t.isIdeal() {
			r2 := r.convertTo(UintType)
			if r2 == nil {
				return nil
			}

			// If the left operand is not ideal, convert
			// the right to not ideal.
			if !l.t.isIdeal() {
				r = r2
			}

			// If both are ideal, but the right side isn't
			// an ideal int, convert it to simplify things.
			if l.t.isIdeal() && !r.t.isInteger() {
				r = r.convertTo(IdealIntType)
				if r == nil {
					log.Panicf("conversion to uintType succeeded, but conversion to idealIntType failed")
				}
			}
		} else if _, ok := r.t.lit().(*uintType); !ok {
			a.diag("right operand of shift must be unsigned")
			return nil
		}

		if l.t.isIdeal() && !r.t.isIdeal() {
			// XXX(Spec) What is the meaning of "ideal >>
			// non-ideal"?  Russ says the ideal should be
			// converted to an int.  6g propagates the
			// type down from assignments as a hint.

			l = l.convertTo(IntType)
			if l == nil {
				return nil
			}
		}

		// At this point, we should have one of three cases:
		// 1) uint SHIFT uint
		// 2) int SHIFT uint
		// 3) ideal int SHIFT ideal int

		t = l.t

	case token.LOR, token.LAND:
		if !booleans() {
			return nil
		}
		// XXX(Spec) There's no mention of *which* boolean
		// type the logical operators return.  From poking at
		// 6g, it appears to be the named boolean type, NOT
		// the type of the left operand, and NOT an unnamed
		// boolean type.

		t = BoolType

	case token.ARROW:
		// The operands in channel sends differ in type: one
		// is always a channel and the other is a variable or
		// value of the channel's element type.
		log.Panic("Binary op <- not implemented")
		t = BoolType

	case token.LSS, token.GTR, token.LEQ, token.GEQ:
		// XXX(Spec) It's really unclear what types which
		// comparison operators apply to.  I feel like the
		// text is trying to paint a Venn diagram for me,
		// which it's really pretty simple: <, <=, >, >= apply
		// only to numeric types and strings.  == and != apply
		// to everything except arrays and structs, and there
		// are some restrictions on when it applies to slices.

		if !compat() || (!integers() && !floats() && !strings()) {
			a.diagOpTypes(op, origlt, origrt)
			return nil
		}
		t = BoolType

	case token.EQL, token.NEQ:
		// XXX(Spec) The rules for type checking comparison
		// operators are spread across three places that all
		// partially overlap with each other: the Comparison
		// Compatibility section, the Operators section, and
		// the Comparison Operators section.  The Operators
		// section should just say that operators require
		// identical types (as it does currently) except that
		// there a few special cases for comparison, which are
		// described in section X.  Currently it includes just
		// one of the four special cases.  The Comparison
		// Compatibility section and the Comparison Operators
		// section should either be merged, or at least the
		// Comparison Compatibility section should be
		// exclusively about type checking and the Comparison
		// Operators section should be exclusively about
		// semantics.

		// XXX(Spec) Comparison operators: "All comparison
		// operators apply to basic types except bools."  This
		// is very difficult to parse.  It's explained much
		// better in the Comparison Compatibility section.

		// XXX(Spec) Comparison compatibility: "Function
		// values are equal if they refer to the same
		// function." is rather vague.  It should probably be
		// similar to the way the rule for map values is
		// written: Function values are equal if they were
		// created by the same execution of a function literal
		// or refer to the same function declaration.  This is
		// *almost* but not quite waht 6g implements.  If a
		// function literals does not capture any variables,
		// then multiple executions of it will result in the
		// same closure.  Russ says he'll change that.

		// TODO(austin) Deal with remaining special cases

		if !compat() {
			a.diagOpTypes(op, origlt, origrt)
			return nil
		}
		// Arrays and structs may not be compared to anything.
		switch l.t.(type) {
		case *ArrayType, *StructType:
			a.diagOpTypes(op, origlt, origrt)
			return nil
		}
		t = BoolType

	default:
		log.Panicf("unknown binary operator %v", op)
	}

	desc, ok := binOpDescs[op]
	if !ok {
		desc = op.String() + " expression"
		binOpDescs[op] = desc
	}

	// Check for ideal divide by zero
	switch op {
	case token.QUO, token.REM:
		if r.t.isIdeal() {
			if (r.t.isInteger() && r.asIdealInt()().Sign() == 0) ||
				(r.t.isFloat() && r.asIdealFloat()().Sign() == 0) {
				a.diag("divide by zero")
				return nil
			}
		}
	}

	// Compile
	expr := a.newExpr(t, desc)
	switch op {
	case token.ADD:
		expr.genBinOpAdd(l, r)

	case token.SUB:
		expr.genBinOpSub(l, r)

	case token.MUL:
		expr.genBinOpMul(l, r)

	case token.QUO:
		expr.genBinOpQuo(l, r)

	case token.REM:
		expr.genBinOpRem(l, r)

	case token.AND:
		expr.genBinOpAnd(l, r)

	case token.OR:
		expr.genBinOpOr(l, r)

	case token.XOR:
		expr.genBinOpXor(l, r)

	case token.AND_NOT:
		expr.genBinOpAndNot(l, r)

	case token.SHL:
		if l.t.isIdeal() {
			lv := l.asIdealInt()()
			rv := r.asIdealInt()()
			const maxShift = 99999
			if rv.Cmp(big.NewInt(maxShift)) > 0 {
				a.diag("left shift by %v; exceeds implementation limit of %v", rv, maxShift)
				expr.t = nil
				return nil
			}
			val := new(big.Int).Lsh(lv, uint(rv.Int64()))
			expr.eval = func() *big.Int { return val }
		} else {
			expr.genBinOpShl(l, r)
		}

	case token.SHR:
		if l.t.isIdeal() {
			lv := l.asIdealInt()()
			rv := r.asIdealInt()()
			val := new(big.Int).Rsh(lv, uint(rv.Int64()))
			expr.eval = func() *big.Int { return val }
		} else {
			expr.genBinOpShr(l, r)
		}

	case token.LSS:
		expr.genBinOpLss(l, r)

	case token.GTR:
		expr.genBinOpGtr(l, r)

	case token.LEQ:
		expr.genBinOpLeq(l, r)

	case token.GEQ:
		expr.genBinOpGeq(l, r)

	case token.EQL:
		expr.genBinOpEql(l, r)

	case token.NEQ:
		expr.genBinOpNeq(l, r)

	case token.LAND:
		expr.genBinOpLogAnd(l, r)

	case token.LOR:
		expr.genBinOpLogOr(l, r)

	default:
		log.Panicf("Compilation of binary op %v not implemented", op)
	}

	return expr
}

// TODO(austin) This is a hack to eliminate a circular dependency
// between type.go and expr.go
func (a *compiler) compileArrayLen(b *block, expr ast.Expr) (int64, bool) {
	lenExpr := a.compileExpr(b, true, expr)
	if lenExpr == nil {
		return 0, false
	}

	// XXX(Spec) Are ideal floats with no fractional part okay?
	if lenExpr.t.isIdeal() {
		lenExpr = lenExpr.convertTo(IntType)
		if lenExpr == nil {
			return 0, false
		}
	}

	if !lenExpr.t.isInteger() {
		a.diagAt(expr.Pos(), "array size must be an integer")
		return 0, false
	}

	switch lenExpr.t.lit().(type) {
	case *intType:
		return lenExpr.asInt()(nil), true
	case *uintType:
		return int64(lenExpr.asUint()(nil)), true
	}
	log.Panicf("unexpected integer type %T", lenExpr.t)
	return 0, false
}

func (a *compiler) compileExpr(b *block, constant bool, expr ast.Expr) *expr {
	ec := &exprCompiler{a, b, constant}
	nerr := a.numError()
	e := ec.compile(expr, false)
	if e == nil && nerr == a.numError() {
		log.Panicf("expression compilation failed without reporting errors")
	}
	return e
}

// extractEffect separates out any effects that the expression may
// have, returning a function that will perform those effects and a
// new exprCompiler that is guaranteed to be side-effect free.  These
// are the moral equivalents of "temp := expr" and "temp" (or "temp :=
// &expr" and "*temp" for addressable exprs).  Because this creates a
// temporary variable, the caller should create a temporary block for
// the compilation of this expression and the evaluation of the
// results.
func (a *expr) extractEffect(b *block, errOp string) (func(*Thread), *expr) {
	// Create "&a" if a is addressable
	rhs := a
	if a.evalAddr != nil {
		rhs = a.compileUnaryExpr(token.AND, rhs)
	}

	// Create temp
	ac, ok := a.checkAssign(a.pos, []*expr{rhs}, errOp, "")
	if !ok {
		return nil, nil
	}
	if len(ac.rmt.Elems) != 1 {
		a.diag("multi-valued expression not allowed in %s", errOp)
		return nil, nil
	}
	tempType := ac.rmt.Elems[0]
	if tempType.isIdeal() {
		// It's too bad we have to duplicate this rule.
		switch {
		case tempType.isInteger():
			tempType = IntType
		case tempType.isFloat():
			tempType = Float64Type
		default:
			log.Panicf("unexpected ideal type %v", tempType)
		}
	}
	temp := b.DefineTemp(tempType)
	tempIdx := temp.Index

	// Create "temp := rhs"
	assign := ac.compile(b, tempType)
	if assign == nil {
		log.Panicf("compileAssign type check failed")
	}

	effect := func(t *Thread) {
		tempVal := tempType.Zero()
		t.f.Vars[tempIdx] = tempVal
		assign(tempVal, t)
	}

	// Generate "temp" or "*temp"
	getTemp := a.compileVariable(0, temp)
	if a.evalAddr == nil {
		return effect, getTemp
	}

	deref := a.compileStarExpr(getTemp)
	if deref == nil {
		return nil, nil
	}
	return effect, deref
}