summaryrefslogtreecommitdiff
path: root/libgo/go/gob/encode.go
blob: d286a7e00b879b9666881cf0cab0f54e9cb9424d (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
// Copyright 2009 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.

package gob

import (
	"bytes"
	"io"
	"math"
	"os"
	"reflect"
	"unsafe"
)

const uint64Size = unsafe.Sizeof(uint64(0))

// The global execution state of an instance of the encoder.
// Field numbers are delta encoded and always increase. The field
// number is initialized to -1 so 0 comes out as delta(1). A delta of
// 0 terminates the structure.
type encoderState struct {
	enc      *Encoder
	b        *bytes.Buffer
	sendZero bool                 // encoding an array element or map key/value pair; send zero values
	fieldnum int                  // the last field number written.
	buf      [1 + uint64Size]byte // buffer used by the encoder; here to avoid allocation.
}

func newEncoderState(enc *Encoder, b *bytes.Buffer) *encoderState {
	return &encoderState{enc: enc, b: b}
}

// Unsigned integers have a two-state encoding.  If the number is less
// than 128 (0 through 0x7F), its value is written directly.
// Otherwise the value is written in big-endian byte order preceded
// by the byte length, negated.

// encodeUint writes an encoded unsigned integer to state.b.
func (state *encoderState) encodeUint(x uint64) {
	if x <= 0x7F {
		err := state.b.WriteByte(uint8(x))
		if err != nil {
			error(err)
		}
		return
	}
	var n, m int
	m = uint64Size
	for n = 1; x > 0; n++ {
		state.buf[m] = uint8(x & 0xFF)
		x >>= 8
		m--
	}
	state.buf[m] = uint8(-(n - 1))
	n, err := state.b.Write(state.buf[m : uint64Size+1])
	if err != nil {
		error(err)
	}
}

// encodeInt writes an encoded signed integer to state.w.
// The low bit of the encoding says whether to bit complement the (other bits of the)
// uint to recover the int.
func (state *encoderState) encodeInt(i int64) {
	var x uint64
	if i < 0 {
		x = uint64(^i<<1) | 1
	} else {
		x = uint64(i << 1)
	}
	state.encodeUint(uint64(x))
}

type encOp func(i *encInstr, state *encoderState, p unsafe.Pointer)

// The 'instructions' of the encoding machine
type encInstr struct {
	op     encOp
	field  int     // field number
	indir  int     // how many pointer indirections to reach the value in the struct
	offset uintptr // offset in the structure of the field to encode
}

// Emit a field number and update the state to record its value for delta encoding.
// If the instruction pointer is nil, do nothing
func (state *encoderState) update(instr *encInstr) {
	if instr != nil {
		state.encodeUint(uint64(instr.field - state.fieldnum))
		state.fieldnum = instr.field
	}
}

// Each encoder is responsible for handling any indirections associated
// with the data structure.  If any pointer so reached is nil, no bytes are written.
// If the data item is zero, no bytes are written.
// Otherwise, the output (for a scalar) is the field number, as an encoded integer,
// followed by the field data in its appropriate format.

func encIndirect(p unsafe.Pointer, indir int) unsafe.Pointer {
	for ; indir > 0; indir-- {
		p = *(*unsafe.Pointer)(p)
		if p == nil {
			return unsafe.Pointer(nil)
		}
	}
	return p
}

func encBool(i *encInstr, state *encoderState, p unsafe.Pointer) {
	b := *(*bool)(p)
	if b || state.sendZero {
		state.update(i)
		if b {
			state.encodeUint(1)
		} else {
			state.encodeUint(0)
		}
	}
}

func encInt(i *encInstr, state *encoderState, p unsafe.Pointer) {
	v := int64(*(*int)(p))
	if v != 0 || state.sendZero {
		state.update(i)
		state.encodeInt(v)
	}
}

func encUint(i *encInstr, state *encoderState, p unsafe.Pointer) {
	v := uint64(*(*uint)(p))
	if v != 0 || state.sendZero {
		state.update(i)
		state.encodeUint(v)
	}
}

func encInt8(i *encInstr, state *encoderState, p unsafe.Pointer) {
	v := int64(*(*int8)(p))
	if v != 0 || state.sendZero {
		state.update(i)
		state.encodeInt(v)
	}
}

func encUint8(i *encInstr, state *encoderState, p unsafe.Pointer) {
	v := uint64(*(*uint8)(p))
	if v != 0 || state.sendZero {
		state.update(i)
		state.encodeUint(v)
	}
}

func encInt16(i *encInstr, state *encoderState, p unsafe.Pointer) {
	v := int64(*(*int16)(p))
	if v != 0 || state.sendZero {
		state.update(i)
		state.encodeInt(v)
	}
}

func encUint16(i *encInstr, state *encoderState, p unsafe.Pointer) {
	v := uint64(*(*uint16)(p))
	if v != 0 || state.sendZero {
		state.update(i)
		state.encodeUint(v)
	}
}

func encInt32(i *encInstr, state *encoderState, p unsafe.Pointer) {
	v := int64(*(*int32)(p))
	if v != 0 || state.sendZero {
		state.update(i)
		state.encodeInt(v)
	}
}

func encUint32(i *encInstr, state *encoderState, p unsafe.Pointer) {
	v := uint64(*(*uint32)(p))
	if v != 0 || state.sendZero {
		state.update(i)
		state.encodeUint(v)
	}
}

func encInt64(i *encInstr, state *encoderState, p unsafe.Pointer) {
	v := *(*int64)(p)
	if v != 0 || state.sendZero {
		state.update(i)
		state.encodeInt(v)
	}
}

func encUint64(i *encInstr, state *encoderState, p unsafe.Pointer) {
	v := *(*uint64)(p)
	if v != 0 || state.sendZero {
		state.update(i)
		state.encodeUint(v)
	}
}

func encUintptr(i *encInstr, state *encoderState, p unsafe.Pointer) {
	v := uint64(*(*uintptr)(p))
	if v != 0 || state.sendZero {
		state.update(i)
		state.encodeUint(v)
	}
}

// Floating-point numbers are transmitted as uint64s holding the bits
// of the underlying representation.  They are sent byte-reversed, with
// the exponent end coming out first, so integer floating point numbers
// (for example) transmit more compactly.  This routine does the
// swizzling.
func floatBits(f float64) uint64 {
	u := math.Float64bits(f)
	var v uint64
	for i := 0; i < 8; i++ {
		v <<= 8
		v |= u & 0xFF
		u >>= 8
	}
	return v
}

func encFloat32(i *encInstr, state *encoderState, p unsafe.Pointer) {
	f := *(*float32)(p)
	if f != 0 || state.sendZero {
		v := floatBits(float64(f))
		state.update(i)
		state.encodeUint(v)
	}
}

func encFloat64(i *encInstr, state *encoderState, p unsafe.Pointer) {
	f := *(*float64)(p)
	if f != 0 || state.sendZero {
		state.update(i)
		v := floatBits(f)
		state.encodeUint(v)
	}
}

// Complex numbers are just a pair of floating-point numbers, real part first.
func encComplex64(i *encInstr, state *encoderState, p unsafe.Pointer) {
	c := *(*complex64)(p)
	if c != 0+0i || state.sendZero {
		rpart := floatBits(float64(real(c)))
		ipart := floatBits(float64(imag(c)))
		state.update(i)
		state.encodeUint(rpart)
		state.encodeUint(ipart)
	}
}

func encComplex128(i *encInstr, state *encoderState, p unsafe.Pointer) {
	c := *(*complex128)(p)
	if c != 0+0i || state.sendZero {
		rpart := floatBits(real(c))
		ipart := floatBits(imag(c))
		state.update(i)
		state.encodeUint(rpart)
		state.encodeUint(ipart)
	}
}

func encNoOp(i *encInstr, state *encoderState, p unsafe.Pointer) {
}

// Byte arrays are encoded as an unsigned count followed by the raw bytes.
func encUint8Array(i *encInstr, state *encoderState, p unsafe.Pointer) {
	b := *(*[]byte)(p)
	if len(b) > 0 || state.sendZero {
		state.update(i)
		state.encodeUint(uint64(len(b)))
		state.b.Write(b)
	}
}

// Strings are encoded as an unsigned count followed by the raw bytes.
func encString(i *encInstr, state *encoderState, p unsafe.Pointer) {
	s := *(*string)(p)
	if len(s) > 0 || state.sendZero {
		state.update(i)
		state.encodeUint(uint64(len(s)))
		io.WriteString(state.b, s)
	}
}

// The end of a struct is marked by a delta field number of 0.
func encStructTerminator(i *encInstr, state *encoderState, p unsafe.Pointer) {
	state.encodeUint(0)
}

// Execution engine

// The encoder engine is an array of instructions indexed by field number of the encoding
// data, typically a struct.  It is executed top to bottom, walking the struct.
type encEngine struct {
	instr []encInstr
}

const singletonField = 0

func (enc *Encoder) encodeSingle(b *bytes.Buffer, engine *encEngine, basep uintptr) {
	state := newEncoderState(enc, b)
	state.fieldnum = singletonField
	// There is no surrounding struct to frame the transmission, so we must
	// generate data even if the item is zero.  To do this, set sendZero.
	state.sendZero = true
	instr := &engine.instr[singletonField]
	p := unsafe.Pointer(basep) // offset will be zero
	if instr.indir > 0 {
		if p = encIndirect(p, instr.indir); p == nil {
			return
		}
	}
	instr.op(instr, state, p)
}

func (enc *Encoder) encodeStruct(b *bytes.Buffer, engine *encEngine, basep uintptr) {
	state := newEncoderState(enc, b)
	state.fieldnum = -1
	for i := 0; i < len(engine.instr); i++ {
		instr := &engine.instr[i]
		p := unsafe.Pointer(basep + instr.offset)
		if instr.indir > 0 {
			if p = encIndirect(p, instr.indir); p == nil {
				continue
			}
		}
		instr.op(instr, state, p)
	}
}

func (enc *Encoder) encodeArray(b *bytes.Buffer, p uintptr, op encOp, elemWid uintptr, elemIndir int, length int) {
	state := newEncoderState(enc, b)
	state.fieldnum = -1
	state.sendZero = true
	state.encodeUint(uint64(length))
	for i := 0; i < length; i++ {
		elemp := p
		up := unsafe.Pointer(elemp)
		if elemIndir > 0 {
			if up = encIndirect(up, elemIndir); up == nil {
				errorf("gob: encodeArray: nil element")
			}
			elemp = uintptr(up)
		}
		op(nil, state, unsafe.Pointer(elemp))
		p += uintptr(elemWid)
	}
}

func encodeReflectValue(state *encoderState, v reflect.Value, op encOp, indir int) {
	for i := 0; i < indir && v != nil; i++ {
		v = reflect.Indirect(v)
	}
	if v == nil {
		errorf("gob: encodeReflectValue: nil element")
	}
	op(nil, state, unsafe.Pointer(v.Addr()))
}

func (enc *Encoder) encodeMap(b *bytes.Buffer, mv *reflect.MapValue, keyOp, elemOp encOp, keyIndir, elemIndir int) {
	state := newEncoderState(enc, b)
	state.fieldnum = -1
	state.sendZero = true
	keys := mv.Keys()
	state.encodeUint(uint64(len(keys)))
	for _, key := range keys {
		encodeReflectValue(state, key, keyOp, keyIndir)
		encodeReflectValue(state, mv.Elem(key), elemOp, elemIndir)
	}
}

// To send an interface, we send a string identifying the concrete type, followed
// by the type identifier (which might require defining that type right now), followed
// by the concrete value.  A nil value gets sent as the empty string for the name,
// followed by no value.
func (enc *Encoder) encodeInterface(b *bytes.Buffer, iv *reflect.InterfaceValue) {
	state := newEncoderState(enc, b)
	state.fieldnum = -1
	state.sendZero = true
	if iv.IsNil() {
		state.encodeUint(0)
		return
	}

	typ, _ := indirect(iv.Elem().Type())
	name, ok := concreteTypeToName[typ]
	if !ok {
		errorf("gob: type not registered for interface: %s", typ)
	}
	// Send the name.
	state.encodeUint(uint64(len(name)))
	_, err := io.WriteString(state.b, name)
	if err != nil {
		error(err)
	}
	// Send (and maybe first define) the type id.
	enc.sendTypeDescriptor(typ)
	// Encode the value into a new buffer.
	data := new(bytes.Buffer)
	err = enc.encode(data, iv.Elem())
	if err != nil {
		error(err)
	}
	state.encodeUint(uint64(data.Len()))
	_, err = state.b.Write(data.Bytes())
	if err != nil {
		error(err)
	}
}

var encOpMap = []encOp{
	reflect.Bool:       encBool,
	reflect.Int:        encInt,
	reflect.Int8:       encInt8,
	reflect.Int16:      encInt16,
	reflect.Int32:      encInt32,
	reflect.Int64:      encInt64,
	reflect.Uint:       encUint,
	reflect.Uint8:      encUint8,
	reflect.Uint16:     encUint16,
	reflect.Uint32:     encUint32,
	reflect.Uint64:     encUint64,
	reflect.Uintptr:    encUintptr,
	reflect.Float32:    encFloat32,
	reflect.Float64:    encFloat64,
	reflect.Complex64:  encComplex64,
	reflect.Complex128: encComplex128,
	reflect.String:     encString,
}

// Return the encoding op for the base type under rt and
// the indirection count to reach it.
func (enc *Encoder) encOpFor(rt reflect.Type) (encOp, int) {
	typ, indir := indirect(rt)
	var op encOp
	k := typ.Kind()
	if int(k) < len(encOpMap) {
		op = encOpMap[k]
	}
	if op == nil {
		// Special cases
		switch t := typ.(type) {
		case *reflect.SliceType:
			if t.Elem().Kind() == reflect.Uint8 {
				op = encUint8Array
				break
			}
			// Slices have a header; we decode it to find the underlying array.
			elemOp, indir := enc.encOpFor(t.Elem())
			op = func(i *encInstr, state *encoderState, p unsafe.Pointer) {
				slice := (*reflect.SliceHeader)(p)
				if !state.sendZero && slice.Len == 0 {
					return
				}
				state.update(i)
				state.enc.encodeArray(state.b, slice.Data, elemOp, t.Elem().Size(), indir, int(slice.Len))
			}
		case *reflect.ArrayType:
			// True arrays have size in the type.
			elemOp, indir := enc.encOpFor(t.Elem())
			op = func(i *encInstr, state *encoderState, p unsafe.Pointer) {
				state.update(i)
				state.enc.encodeArray(state.b, uintptr(p), elemOp, t.Elem().Size(), indir, t.Len())
			}
		case *reflect.MapType:
			keyOp, keyIndir := enc.encOpFor(t.Key())
			elemOp, elemIndir := enc.encOpFor(t.Elem())
			op = func(i *encInstr, state *encoderState, p unsafe.Pointer) {
				// Maps cannot be accessed by moving addresses around the way
				// that slices etc. can.  We must recover a full reflection value for
				// the iteration.
				v := reflect.NewValue(unsafe.Unreflect(t, unsafe.Pointer((p))))
				mv := reflect.Indirect(v).(*reflect.MapValue)
				if !state.sendZero && mv.Len() == 0 {
					return
				}
				state.update(i)
				state.enc.encodeMap(state.b, mv, keyOp, elemOp, keyIndir, elemIndir)
			}
		case *reflect.StructType:
			// Generate a closure that calls out to the engine for the nested type.
			enc.getEncEngine(typ)
			info := mustGetTypeInfo(typ)
			op = func(i *encInstr, state *encoderState, p unsafe.Pointer) {
				state.update(i)
				// indirect through info to delay evaluation for recursive structs
				state.enc.encodeStruct(state.b, info.encoder, uintptr(p))
			}
		case *reflect.InterfaceType:
			op = func(i *encInstr, state *encoderState, p unsafe.Pointer) {
				// Interfaces transmit the name and contents of the concrete
				// value they contain.
				v := reflect.NewValue(unsafe.Unreflect(t, unsafe.Pointer((p))))
				iv := reflect.Indirect(v).(*reflect.InterfaceValue)
				if !state.sendZero && (iv == nil || iv.IsNil()) {
					return
				}
				state.update(i)
				state.enc.encodeInterface(state.b, iv)
			}
		}
	}
	if op == nil {
		errorf("gob enc: can't happen: encode type %s", rt.String())
	}
	return op, indir
}

// The local Type was compiled from the actual value, so we know it's compatible.
func (enc *Encoder) compileEnc(rt reflect.Type) *encEngine {
	srt, isStruct := rt.(*reflect.StructType)
	engine := new(encEngine)
	if isStruct {
		engine.instr = make([]encInstr, srt.NumField()+1) // +1 for terminator
		for fieldnum := 0; fieldnum < srt.NumField(); fieldnum++ {
			f := srt.Field(fieldnum)
			op, indir := enc.encOpFor(f.Type)
			if !isExported(f.Name) {
				op = encNoOp
			}
			engine.instr[fieldnum] = encInstr{op, fieldnum, indir, uintptr(f.Offset)}
		}
		engine.instr[srt.NumField()] = encInstr{encStructTerminator, 0, 0, 0}
	} else {
		engine.instr = make([]encInstr, 1)
		op, indir := enc.encOpFor(rt)
		engine.instr[0] = encInstr{op, singletonField, indir, 0} // offset is zero
	}
	return engine
}

// typeLock must be held (or we're in initialization and guaranteed single-threaded).
// The reflection type must have all its indirections processed out.
func (enc *Encoder) getEncEngine(rt reflect.Type) *encEngine {
	info, err1 := getTypeInfo(rt)
	if err1 != nil {
		error(err1)
	}
	if info.encoder == nil {
		// mark this engine as underway before compiling to handle recursive types.
		info.encoder = new(encEngine)
		info.encoder = enc.compileEnc(rt)
	}
	return info.encoder
}

// Put this in a function so we can hold the lock only while compiling, not when encoding.
func (enc *Encoder) lockAndGetEncEngine(rt reflect.Type) *encEngine {
	typeLock.Lock()
	defer typeLock.Unlock()
	return enc.getEncEngine(rt)
}

func (enc *Encoder) encode(b *bytes.Buffer, value reflect.Value) (err os.Error) {
	defer catchError(&err)
	// Dereference down to the underlying object.
	rt, indir := indirect(value.Type())
	for i := 0; i < indir; i++ {
		value = reflect.Indirect(value)
	}
	engine := enc.lockAndGetEncEngine(rt)
	if value.Type().Kind() == reflect.Struct {
		enc.encodeStruct(b, engine, value.Addr())
	} else {
		enc.encodeSingle(b, engine, value.Addr())
	}
	return nil
}