1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
|
// Copyright 2009 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
// This is a Go translation of idct.c from
//
// http://standards.iso.org/ittf/PubliclyAvailableStandards/ISO_IEC_13818-4_2004_Conformance_Testing/Video/verifier/mpeg2decode_960109.tar.gz
//
// which carries the following notice:
/* Copyright (C) 1996, MPEG Software Simulation Group. All Rights Reserved. */
/*
* Disclaimer of Warranty
*
* These software programs are available to the user without any license fee or
* royalty on an "as is" basis. The MPEG Software Simulation Group disclaims
* any and all warranties, whether express, implied, or statuary, including any
* implied warranties or merchantability or of fitness for a particular
* purpose. In no event shall the copyright-holder be liable for any
* incidental, punitive, or consequential damages of any kind whatsoever
* arising from the use of these programs.
*
* This disclaimer of warranty extends to the user of these programs and user's
* customers, employees, agents, transferees, successors, and assigns.
*
* The MPEG Software Simulation Group does not represent or warrant that the
* programs furnished hereunder are free of infringement of any third-party
* patents.
*
* Commercial implementations of MPEG-1 and MPEG-2 video, including shareware,
* are subject to royalty fees to patent holders. Many of these patents are
* general enough such that they are unavoidable regardless of implementation
* design.
*
*/
package jpeg
const (
w1 = 2841 // 2048*sqrt(2)*cos(1*pi/16)
w2 = 2676 // 2048*sqrt(2)*cos(2*pi/16)
w3 = 2408 // 2048*sqrt(2)*cos(3*pi/16)
w5 = 1609 // 2048*sqrt(2)*cos(5*pi/16)
w6 = 1108 // 2048*sqrt(2)*cos(6*pi/16)
w7 = 565 // 2048*sqrt(2)*cos(7*pi/16)
w1pw7 = w1 + w7
w1mw7 = w1 - w7
w2pw6 = w2 + w6
w2mw6 = w2 - w6
w3pw5 = w3 + w5
w3mw5 = w3 - w5
r2 = 181 // 256/sqrt(2)
)
// 2-D Inverse Discrete Cosine Transformation, followed by a +128 level shift.
//
// The input coefficients should already have been multiplied by the appropriate quantization table.
// We use fixed-point computation, with the number of bits for the fractional component varying over the
// intermediate stages. The final values are expected to range within [0, 255], after a +128 level shift.
//
// For more on the actual algorithm, see Z. Wang, "Fast algorithms for the discrete W transform and
// for the discrete Fourier transform", IEEE Trans. on ASSP, Vol. ASSP- 32, pp. 803-816, Aug. 1984.
func idct(b *[blockSize]int) {
// Horizontal 1-D IDCT.
for y := 0; y < 8; y++ {
// If all the AC components are zero, then the IDCT is trivial.
if b[y*8+1] == 0 && b[y*8+2] == 0 && b[y*8+3] == 0 &&
b[y*8+4] == 0 && b[y*8+5] == 0 && b[y*8+6] == 0 && b[y*8+7] == 0 {
dc := b[y*8+0] << 3
b[y*8+0] = dc
b[y*8+1] = dc
b[y*8+2] = dc
b[y*8+3] = dc
b[y*8+4] = dc
b[y*8+5] = dc
b[y*8+6] = dc
b[y*8+7] = dc
continue
}
// Prescale.
x0 := (b[y*8+0] << 11) + 128
x1 := b[y*8+4] << 11
x2 := b[y*8+6]
x3 := b[y*8+2]
x4 := b[y*8+1]
x5 := b[y*8+7]
x6 := b[y*8+5]
x7 := b[y*8+3]
// Stage 1.
x8 := w7 * (x4 + x5)
x4 = x8 + w1mw7*x4
x5 = x8 - w1pw7*x5
x8 = w3 * (x6 + x7)
x6 = x8 - w3mw5*x6
x7 = x8 - w3pw5*x7
// Stage 2.
x8 = x0 + x1
x0 -= x1
x1 = w6 * (x3 + x2)
x2 = x1 - w2pw6*x2
x3 = x1 + w2mw6*x3
x1 = x4 + x6
x4 -= x6
x6 = x5 + x7
x5 -= x7
// Stage 3.
x7 = x8 + x3
x8 -= x3
x3 = x0 + x2
x0 -= x2
x2 = (r2*(x4+x5) + 128) >> 8
x4 = (r2*(x4-x5) + 128) >> 8
// Stage 4.
b[8*y+0] = (x7 + x1) >> 8
b[8*y+1] = (x3 + x2) >> 8
b[8*y+2] = (x0 + x4) >> 8
b[8*y+3] = (x8 + x6) >> 8
b[8*y+4] = (x8 - x6) >> 8
b[8*y+5] = (x0 - x4) >> 8
b[8*y+6] = (x3 - x2) >> 8
b[8*y+7] = (x7 - x1) >> 8
}
// Vertical 1-D IDCT.
for x := 0; x < 8; x++ {
// Similar to the horizontal 1-D IDCT case, if all the AC components are zero, then the IDCT is trivial.
// However, after performing the horizontal 1-D IDCT, there are typically non-zero AC components, so
// we do not bother to check for the all-zero case.
// Prescale.
y0 := (b[8*0+x] << 8) + 8192
y1 := b[8*4+x] << 8
y2 := b[8*6+x]
y3 := b[8*2+x]
y4 := b[8*1+x]
y5 := b[8*7+x]
y6 := b[8*5+x]
y7 := b[8*3+x]
// Stage 1.
y8 := w7*(y4+y5) + 4
y4 = (y8 + w1mw7*y4) >> 3
y5 = (y8 - w1pw7*y5) >> 3
y8 = w3*(y6+y7) + 4
y6 = (y8 - w3mw5*y6) >> 3
y7 = (y8 - w3pw5*y7) >> 3
// Stage 2.
y8 = y0 + y1
y0 -= y1
y1 = w6*(y3+y2) + 4
y2 = (y1 - w2pw6*y2) >> 3
y3 = (y1 + w2mw6*y3) >> 3
y1 = y4 + y6
y4 -= y6
y6 = y5 + y7
y5 -= y7
// Stage 3.
y7 = y8 + y3
y8 -= y3
y3 = y0 + y2
y0 -= y2
y2 = (r2*(y4+y5) + 128) >> 8
y4 = (r2*(y4-y5) + 128) >> 8
// Stage 4.
b[8*0+x] = (y7 + y1) >> 14
b[8*1+x] = (y3 + y2) >> 14
b[8*2+x] = (y0 + y4) >> 14
b[8*3+x] = (y8 + y6) >> 14
b[8*4+x] = (y8 - y6) >> 14
b[8*5+x] = (y0 - y4) >> 14
b[8*6+x] = (y3 - y2) >> 14
b[8*7+x] = (y7 - y1) >> 14
}
// Level shift.
for i := range *b {
b[i] += 128
}
}
|