summaryrefslogtreecommitdiff
path: root/libgo/go/image/png/writer.go
blob: 081d06bf57178c5babbd1f80893bb3368622ce95 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
// Copyright 2009 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.

package png

import (
	"bufio"
	"compress/zlib"
	"hash/crc32"
	"image"
	"io"
	"os"
	"strconv"
)

type encoder struct {
	w      io.Writer
	m      image.Image
	cb     int
	err    os.Error
	header [8]byte
	footer [4]byte
	tmp    [3 * 256]byte
}

// Big-endian.
func writeUint32(b []uint8, u uint32) {
	b[0] = uint8(u >> 24)
	b[1] = uint8(u >> 16)
	b[2] = uint8(u >> 8)
	b[3] = uint8(u >> 0)
}

type opaquer interface {
	Opaque() bool
}

// Returns whether or not the image is fully opaque.
func opaque(m image.Image) bool {
	if o, ok := m.(opaquer); ok {
		return o.Opaque()
	}
	b := m.Bounds()
	for y := b.Min.Y; y < b.Max.Y; y++ {
		for x := b.Min.X; x < b.Max.X; x++ {
			_, _, _, a := m.At(x, y).RGBA()
			if a != 0xffff {
				return false
			}
		}
	}
	return true
}

// The absolute value of a byte interpreted as a signed int8.
func abs8(d uint8) int {
	if d < 128 {
		return int(d)
	}
	return 256 - int(d)
}

func (e *encoder) writeChunk(b []byte, name string) {
	if e.err != nil {
		return
	}
	n := uint32(len(b))
	if int(n) != len(b) {
		e.err = UnsupportedError(name + " chunk is too large: " + strconv.Itoa(len(b)))
		return
	}
	writeUint32(e.header[0:4], n)
	e.header[4] = name[0]
	e.header[5] = name[1]
	e.header[6] = name[2]
	e.header[7] = name[3]
	crc := crc32.NewIEEE()
	crc.Write(e.header[4:8])
	crc.Write(b)
	writeUint32(e.footer[0:4], crc.Sum32())

	_, e.err = e.w.Write(e.header[0:8])
	if e.err != nil {
		return
	}
	_, e.err = e.w.Write(b)
	if e.err != nil {
		return
	}
	_, e.err = e.w.Write(e.footer[0:4])
}

func (e *encoder) writeIHDR() {
	b := e.m.Bounds()
	writeUint32(e.tmp[0:4], uint32(b.Dx()))
	writeUint32(e.tmp[4:8], uint32(b.Dy()))
	// Set bit depth and color type.
	switch e.cb {
	case cbG8:
		e.tmp[8] = 8
		e.tmp[9] = ctGrayscale
	case cbTC8:
		e.tmp[8] = 8
		e.tmp[9] = ctTrueColor
	case cbP8:
		e.tmp[8] = 8
		e.tmp[9] = ctPaletted
	case cbTCA8:
		e.tmp[8] = 8
		e.tmp[9] = ctTrueColorAlpha
	case cbG16:
		e.tmp[8] = 16
		e.tmp[9] = ctGrayscale
	case cbTC16:
		e.tmp[8] = 16
		e.tmp[9] = ctTrueColor
	case cbTCA16:
		e.tmp[8] = 16
		e.tmp[9] = ctTrueColorAlpha
	}
	e.tmp[10] = 0 // default compression method
	e.tmp[11] = 0 // default filter method
	e.tmp[12] = 0 // non-interlaced
	e.writeChunk(e.tmp[0:13], "IHDR")
}

func (e *encoder) writePLTE(p image.PalettedColorModel) {
	if len(p) < 1 || len(p) > 256 {
		e.err = FormatError("bad palette length: " + strconv.Itoa(len(p)))
		return
	}
	for i := 0; i < len(p); i++ {
		r, g, b, a := p[i].RGBA()
		if a != 0xffff {
			e.err = UnsupportedError("non-opaque palette color")
			return
		}
		e.tmp[3*i+0] = uint8(r >> 8)
		e.tmp[3*i+1] = uint8(g >> 8)
		e.tmp[3*i+2] = uint8(b >> 8)
	}
	e.writeChunk(e.tmp[0:3*len(p)], "PLTE")
}

// An encoder is an io.Writer that satisfies writes by writing PNG IDAT chunks,
// including an 8-byte header and 4-byte CRC checksum per Write call. Such calls
// should be relatively infrequent, since writeIDATs uses a bufio.Writer.
//
// This method should only be called from writeIDATs (via writeImage).
// No other code should treat an encoder as an io.Writer.
//
// Note that, because the zlib Reader may involve an io.Pipe, e.Write calls may
// occur on a separate go-routine than the e.writeIDATs call, and care should be
// taken that e's state (such as its tmp buffer) is not modified concurrently.
func (e *encoder) Write(b []byte) (int, os.Error) {
	e.writeChunk(b, "IDAT")
	if e.err != nil {
		return 0, e.err
	}
	return len(b), nil
}

// Chooses the filter to use for encoding the current row, and applies it.
// The return value is the index of the filter and also of the row in cr that has had it applied.
func filter(cr [][]byte, pr []byte, bpp int) int {
	// We try all five filter types, and pick the one that minimizes the sum of absolute differences.
	// This is the same heuristic that libpng uses, although the filters are attempted in order of
	// estimated most likely to be minimal (ftUp, ftPaeth, ftNone, ftSub, ftAverage), rather than
	// in their enumeration order (ftNone, ftSub, ftUp, ftAverage, ftPaeth).
	cdat0 := cr[0][1:]
	cdat1 := cr[1][1:]
	cdat2 := cr[2][1:]
	cdat3 := cr[3][1:]
	cdat4 := cr[4][1:]
	pdat := pr[1:]
	n := len(cdat0)

	// The up filter.
	sum := 0
	for i := 0; i < n; i++ {
		cdat2[i] = cdat0[i] - pdat[i]
		sum += abs8(cdat2[i])
	}
	best := sum
	filter := ftUp

	// The Paeth filter.
	sum = 0
	for i := 0; i < bpp; i++ {
		cdat4[i] = cdat0[i] - paeth(0, pdat[i], 0)
		sum += abs8(cdat4[i])
	}
	for i := bpp; i < n; i++ {
		cdat4[i] = cdat0[i] - paeth(cdat0[i-bpp], pdat[i], pdat[i-bpp])
		sum += abs8(cdat4[i])
		if sum >= best {
			break
		}
	}
	if sum < best {
		best = sum
		filter = ftPaeth
	}

	// The none filter.
	sum = 0
	for i := 0; i < n; i++ {
		sum += abs8(cdat0[i])
		if sum >= best {
			break
		}
	}
	if sum < best {
		best = sum
		filter = ftNone
	}

	// The sub filter.
	sum = 0
	for i := 0; i < bpp; i++ {
		cdat1[i] = cdat0[i]
		sum += abs8(cdat1[i])
	}
	for i := bpp; i < n; i++ {
		cdat1[i] = cdat0[i] - cdat0[i-bpp]
		sum += abs8(cdat1[i])
		if sum >= best {
			break
		}
	}
	if sum < best {
		best = sum
		filter = ftSub
	}

	// The average filter.
	sum = 0
	for i := 0; i < bpp; i++ {
		cdat3[i] = cdat0[i] - pdat[i]/2
		sum += abs8(cdat3[i])
	}
	for i := bpp; i < n; i++ {
		cdat3[i] = cdat0[i] - uint8((int(cdat0[i-bpp])+int(pdat[i]))/2)
		sum += abs8(cdat3[i])
		if sum >= best {
			break
		}
	}
	if sum < best {
		best = sum
		filter = ftAverage
	}

	return filter
}

func writeImage(w io.Writer, m image.Image, cb int) os.Error {
	zw, err := zlib.NewWriter(w)
	if err != nil {
		return err
	}
	defer zw.Close()

	bpp := 0 // Bytes per pixel.
	var paletted *image.Paletted
	switch cb {
	case cbG8:
		bpp = 1
	case cbTC8:
		bpp = 3
	case cbP8:
		bpp = 1
		paletted = m.(*image.Paletted)
	case cbTCA8:
		bpp = 4
	case cbTC16:
		bpp = 6
	case cbTCA16:
		bpp = 8
	case cbG16:
		bpp = 2
	}
	// cr[*] and pr are the bytes for the current and previous row.
	// cr[0] is unfiltered (or equivalently, filtered with the ftNone filter).
	// cr[ft], for non-zero filter types ft, are buffers for transforming cr[0] under the
	// other PNG filter types. These buffers are allocated once and re-used for each row.
	// The +1 is for the per-row filter type, which is at cr[*][0].
	b := m.Bounds()
	var cr [nFilter][]uint8
	for i := 0; i < len(cr); i++ {
		cr[i] = make([]uint8, 1+bpp*b.Dx())
		cr[i][0] = uint8(i)
	}
	pr := make([]uint8, 1+bpp*b.Dx())

	for y := b.Min.Y; y < b.Max.Y; y++ {
		// Convert from colors to bytes.
		switch cb {
		case cbG8:
			for x := b.Min.X; x < b.Max.X; x++ {
				c := image.GrayColorModel.Convert(m.At(x, y)).(image.GrayColor)
				cr[0][x+1] = c.Y
			}
		case cbTC8:
			for x := b.Min.X; x < b.Max.X; x++ {
				// We have previously verified that the alpha value is fully opaque.
				r, g, b, _ := m.At(x, y).RGBA()
				cr[0][3*x+1] = uint8(r >> 8)
				cr[0][3*x+2] = uint8(g >> 8)
				cr[0][3*x+3] = uint8(b >> 8)
			}
		case cbP8:
			rowOffset := y * paletted.Stride
			copy(cr[0][b.Min.X+1:], paletted.Pix[rowOffset+b.Min.X:rowOffset+b.Max.X])
		case cbTCA8:
			// Convert from image.Image (which is alpha-premultiplied) to PNG's non-alpha-premultiplied.
			for x := b.Min.X; x < b.Max.X; x++ {
				c := image.NRGBAColorModel.Convert(m.At(x, y)).(image.NRGBAColor)
				cr[0][4*x+1] = c.R
				cr[0][4*x+2] = c.G
				cr[0][4*x+3] = c.B
				cr[0][4*x+4] = c.A
			}
		case cbG16:
			for x := b.Min.X; x < b.Max.X; x++ {
				c := image.Gray16ColorModel.Convert(m.At(x, y)).(image.Gray16Color)
				cr[0][2*x+1] = uint8(c.Y >> 8)
				cr[0][2*x+2] = uint8(c.Y)
			}
		case cbTC16:
			for x := b.Min.X; x < b.Max.X; x++ {
				// We have previously verified that the alpha value is fully opaque.
				r, g, b, _ := m.At(x, y).RGBA()
				cr[0][6*x+1] = uint8(r >> 8)
				cr[0][6*x+2] = uint8(r)
				cr[0][6*x+3] = uint8(g >> 8)
				cr[0][6*x+4] = uint8(g)
				cr[0][6*x+5] = uint8(b >> 8)
				cr[0][6*x+6] = uint8(b)
			}
		case cbTCA16:
			// Convert from image.Image (which is alpha-premultiplied) to PNG's non-alpha-premultiplied.
			for x := b.Min.X; x < b.Max.X; x++ {
				c := image.NRGBA64ColorModel.Convert(m.At(x, y)).(image.NRGBA64Color)
				cr[0][8*x+1] = uint8(c.R >> 8)
				cr[0][8*x+2] = uint8(c.R)
				cr[0][8*x+3] = uint8(c.G >> 8)
				cr[0][8*x+4] = uint8(c.G)
				cr[0][8*x+5] = uint8(c.B >> 8)
				cr[0][8*x+6] = uint8(c.B)
				cr[0][8*x+7] = uint8(c.A >> 8)
				cr[0][8*x+8] = uint8(c.A)
			}
		}

		// Apply the filter.
		f := filter(cr[0:nFilter], pr, bpp)

		// Write the compressed bytes.
		_, err = zw.Write(cr[f])
		if err != nil {
			return err
		}

		// The current row for y is the previous row for y+1.
		pr, cr[0] = cr[0], pr
	}
	return nil
}

// Write the actual image data to one or more IDAT chunks.
func (e *encoder) writeIDATs() {
	if e.err != nil {
		return
	}
	var bw *bufio.Writer
	bw, e.err = bufio.NewWriterSize(e, 1<<15)
	if e.err != nil {
		return
	}
	e.err = writeImage(bw, e.m, e.cb)
	if e.err != nil {
		return
	}
	e.err = bw.Flush()
}

func (e *encoder) writeIEND() { e.writeChunk(e.tmp[0:0], "IEND") }

// Encode writes the Image m to w in PNG format. Any Image may be encoded, but
// images that are not image.NRGBA might be encoded lossily.
func Encode(w io.Writer, m image.Image) os.Error {
	// Obviously, negative widths and heights are invalid. Furthermore, the PNG
	// spec section 11.2.2 says that zero is invalid. Excessively large images are
	// also rejected.
	mw, mh := int64(m.Bounds().Dx()), int64(m.Bounds().Dy())
	if mw <= 0 || mh <= 0 || mw >= 1<<32 || mh >= 1<<32 {
		return FormatError("invalid image size: " + strconv.Itoa64(mw) + "x" + strconv.Itoa64(mw))
	}

	var e encoder
	e.w = w
	e.m = m
	pal, _ := m.(*image.Paletted)
	if pal != nil {
		e.cb = cbP8
	} else {
		switch m.ColorModel() {
		case image.GrayColorModel:
			e.cb = cbG8
		case image.Gray16ColorModel:
			e.cb = cbG16
		case image.RGBAColorModel, image.NRGBAColorModel, image.AlphaColorModel:
			if opaque(m) {
				e.cb = cbTC8
			} else {
				e.cb = cbTCA8
			}
		default:
			if opaque(m) {
				e.cb = cbTC16
			} else {
				e.cb = cbTCA16
			}
		}
	}

	_, e.err = io.WriteString(w, pngHeader)
	e.writeIHDR()
	if pal != nil {
		e.writePLTE(pal.Palette)
	}
	e.writeIDATs()
	e.writeIEND()
	return e.err
}