1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
|
// Copyright 2010 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package math
/*
Floating-point logarithm of the Gamma function.
*/
// The original C code and the long comment below are
// from FreeBSD's /usr/src/lib/msun/src/e_lgamma_r.c and
// came with this notice. The go code is a simplified
// version of the original C.
//
// ====================================================
// Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
//
// Developed at SunPro, a Sun Microsystems, Inc. business.
// Permission to use, copy, modify, and distribute this
// software is freely granted, provided that this notice
// is preserved.
// ====================================================
//
// __ieee754_lgamma_r(x, signgamp)
// Reentrant version of the logarithm of the Gamma function
// with user provided pointer for the sign of Gamma(x).
//
// Method:
// 1. Argument Reduction for 0 < x <= 8
// Since gamma(1+s)=s*gamma(s), for x in [0,8], we may
// reduce x to a number in [1.5,2.5] by
// lgamma(1+s) = log(s) + lgamma(s)
// for example,
// lgamma(7.3) = log(6.3) + lgamma(6.3)
// = log(6.3*5.3) + lgamma(5.3)
// = log(6.3*5.3*4.3*3.3*2.3) + lgamma(2.3)
// 2. Polynomial approximation of lgamma around its
// minimum (ymin=1.461632144968362245) to maintain monotonicity.
// On [ymin-0.23, ymin+0.27] (i.e., [1.23164,1.73163]), use
// Let z = x-ymin;
// lgamma(x) = -1.214862905358496078218 + z**2*poly(z)
// poly(z) is a 14 degree polynomial.
// 2. Rational approximation in the primary interval [2,3]
// We use the following approximation:
// s = x-2.0;
// lgamma(x) = 0.5*s + s*P(s)/Q(s)
// with accuracy
// |P/Q - (lgamma(x)-0.5s)| < 2**-61.71
// Our algorithms are based on the following observation
//
// zeta(2)-1 2 zeta(3)-1 3
// lgamma(2+s) = s*(1-Euler) + --------- * s - --------- * s + ...
// 2 3
//
// where Euler = 0.5772156649... is the Euler constant, which
// is very close to 0.5.
//
// 3. For x>=8, we have
// lgamma(x)~(x-0.5)log(x)-x+0.5*log(2pi)+1/(12x)-1/(360x**3)+....
// (better formula:
// lgamma(x)~(x-0.5)*(log(x)-1)-.5*(log(2pi)-1) + ...)
// Let z = 1/x, then we approximation
// f(z) = lgamma(x) - (x-0.5)(log(x)-1)
// by
// 3 5 11
// w = w0 + w1*z + w2*z + w3*z + ... + w6*z
// where
// |w - f(z)| < 2**-58.74
//
// 4. For negative x, since (G is gamma function)
// -x*G(-x)*G(x) = pi/sin(pi*x),
// we have
// G(x) = pi/(sin(pi*x)*(-x)*G(-x))
// since G(-x) is positive, sign(G(x)) = sign(sin(pi*x)) for x<0
// Hence, for x<0, signgam = sign(sin(pi*x)) and
// lgamma(x) = log(|Gamma(x)|)
// = log(pi/(|x*sin(pi*x)|)) - lgamma(-x);
// Note: one should avoid computing pi*(-x) directly in the
// computation of sin(pi*(-x)).
//
// 5. Special Cases
// lgamma(2+s) ~ s*(1-Euler) for tiny s
// lgamma(1)=lgamma(2)=0
// lgamma(x) ~ -log(x) for tiny x
// lgamma(0) = lgamma(inf) = inf
// lgamma(-integer) = +-inf
//
//
// Lgamma returns the natural logarithm and sign (-1 or +1) of Gamma(x).
//
// Special cases are:
// Lgamma(+Inf) = +Inf
// Lgamma(0) = +Inf
// Lgamma(-integer) = +Inf
// Lgamma(-Inf) = -Inf
// Lgamma(NaN) = NaN
func Lgamma(x float64) (lgamma float64, sign int) {
const (
Ymin = 1.461632144968362245
Two52 = 1 << 52 // 0x4330000000000000 ~4.5036e+15
Two53 = 1 << 53 // 0x4340000000000000 ~9.0072e+15
Two58 = 1 << 58 // 0x4390000000000000 ~2.8823e+17
Tiny = 1.0 / (1 << 70) // 0x3b90000000000000 ~8.47033e-22
A0 = 7.72156649015328655494e-02 // 0x3FB3C467E37DB0C8
A1 = 3.22467033424113591611e-01 // 0x3FD4A34CC4A60FAD
A2 = 6.73523010531292681824e-02 // 0x3FB13E001A5562A7
A3 = 2.05808084325167332806e-02 // 0x3F951322AC92547B
A4 = 7.38555086081402883957e-03 // 0x3F7E404FB68FEFE8
A5 = 2.89051383673415629091e-03 // 0x3F67ADD8CCB7926B
A6 = 1.19270763183362067845e-03 // 0x3F538A94116F3F5D
A7 = 5.10069792153511336608e-04 // 0x3F40B6C689B99C00
A8 = 2.20862790713908385557e-04 // 0x3F2CF2ECED10E54D
A9 = 1.08011567247583939954e-04 // 0x3F1C5088987DFB07
A10 = 2.52144565451257326939e-05 // 0x3EFA7074428CFA52
A11 = 4.48640949618915160150e-05 // 0x3F07858E90A45837
Tc = 1.46163214496836224576e+00 // 0x3FF762D86356BE3F
Tf = -1.21486290535849611461e-01 // 0xBFBF19B9BCC38A42
// Tt = -(tail of Tf)
Tt = -3.63867699703950536541e-18 // 0xBC50C7CAA48A971F
T0 = 4.83836122723810047042e-01 // 0x3FDEF72BC8EE38A2
T1 = -1.47587722994593911752e-01 // 0xBFC2E4278DC6C509
T2 = 6.46249402391333854778e-02 // 0x3FB08B4294D5419B
T3 = -3.27885410759859649565e-02 // 0xBFA0C9A8DF35B713
T4 = 1.79706750811820387126e-02 // 0x3F9266E7970AF9EC
T5 = -1.03142241298341437450e-02 // 0xBF851F9FBA91EC6A
T6 = 6.10053870246291332635e-03 // 0x3F78FCE0E370E344
T7 = -3.68452016781138256760e-03 // 0xBF6E2EFFB3E914D7
T8 = 2.25964780900612472250e-03 // 0x3F6282D32E15C915
T9 = -1.40346469989232843813e-03 // 0xBF56FE8EBF2D1AF1
T10 = 8.81081882437654011382e-04 // 0x3F4CDF0CEF61A8E9
T11 = -5.38595305356740546715e-04 // 0xBF41A6109C73E0EC
T12 = 3.15632070903625950361e-04 // 0x3F34AF6D6C0EBBF7
T13 = -3.12754168375120860518e-04 // 0xBF347F24ECC38C38
T14 = 3.35529192635519073543e-04 // 0x3F35FD3EE8C2D3F4
U0 = -7.72156649015328655494e-02 // 0xBFB3C467E37DB0C8
U1 = 6.32827064025093366517e-01 // 0x3FE4401E8B005DFF
U2 = 1.45492250137234768737e+00 // 0x3FF7475CD119BD6F
U3 = 9.77717527963372745603e-01 // 0x3FEF497644EA8450
U4 = 2.28963728064692451092e-01 // 0x3FCD4EAEF6010924
U5 = 1.33810918536787660377e-02 // 0x3F8B678BBF2BAB09
V1 = 2.45597793713041134822e+00 // 0x4003A5D7C2BD619C
V2 = 2.12848976379893395361e+00 // 0x40010725A42B18F5
V3 = 7.69285150456672783825e-01 // 0x3FE89DFBE45050AF
V4 = 1.04222645593369134254e-01 // 0x3FBAAE55D6537C88
V5 = 3.21709242282423911810e-03 // 0x3F6A5ABB57D0CF61
S0 = -7.72156649015328655494e-02 // 0xBFB3C467E37DB0C8
S1 = 2.14982415960608852501e-01 // 0x3FCB848B36E20878
S2 = 3.25778796408930981787e-01 // 0x3FD4D98F4F139F59
S3 = 1.46350472652464452805e-01 // 0x3FC2BB9CBEE5F2F7
S4 = 2.66422703033638609560e-02 // 0x3F9B481C7E939961
S5 = 1.84028451407337715652e-03 // 0x3F5E26B67368F239
S6 = 3.19475326584100867617e-05 // 0x3F00BFECDD17E945
R1 = 1.39200533467621045958e+00 // 0x3FF645A762C4AB74
R2 = 7.21935547567138069525e-01 // 0x3FE71A1893D3DCDC
R3 = 1.71933865632803078993e-01 // 0x3FC601EDCCFBDF27
R4 = 1.86459191715652901344e-02 // 0x3F9317EA742ED475
R5 = 7.77942496381893596434e-04 // 0x3F497DDACA41A95B
R6 = 7.32668430744625636189e-06 // 0x3EDEBAF7A5B38140
W0 = 4.18938533204672725052e-01 // 0x3FDACFE390C97D69
W1 = 8.33333333333329678849e-02 // 0x3FB555555555553B
W2 = -2.77777777728775536470e-03 // 0xBF66C16C16B02E5C
W3 = 7.93650558643019558500e-04 // 0x3F4A019F98CF38B6
W4 = -5.95187557450339963135e-04 // 0xBF4380CB8C0FE741
W5 = 8.36339918996282139126e-04 // 0x3F4B67BA4CDAD5D1
W6 = -1.63092934096575273989e-03 // 0xBF5AB89D0B9E43E4
)
// TODO(rsc): Remove manual inlining of IsNaN, IsInf
// when compiler does it for us
// special cases
sign = 1
switch {
case x != x: // IsNaN(x):
lgamma = x
return
case x < -MaxFloat64 || x > MaxFloat64: // IsInf(x, 0):
lgamma = x
return
case x == 0:
lgamma = Inf(1)
return
}
neg := false
if x < 0 {
x = -x
neg = true
}
if x < Tiny { // if |x| < 2**-70, return -log(|x|)
if neg {
sign = -1
}
lgamma = -Log(x)
return
}
var nadj float64
if neg {
if x >= Two52 { // |x| >= 2**52, must be -integer
lgamma = Inf(1)
return
}
t := sinPi(x)
if t == 0 {
lgamma = Inf(1) // -integer
return
}
nadj = Log(Pi / Fabs(t*x))
if t < 0 {
sign = -1
}
}
switch {
case x == 1 || x == 2: // purge off 1 and 2
lgamma = 0
return
case x < 2: // use lgamma(x) = lgamma(x+1) - log(x)
var y float64
var i int
if x <= 0.9 {
lgamma = -Log(x)
switch {
case x >= (Ymin - 1 + 0.27): // 0.7316 <= x <= 0.9
y = 1 - x
i = 0
case x >= (Ymin - 1 - 0.27): // 0.2316 <= x < 0.7316
y = x - (Tc - 1)
i = 1
default: // 0 < x < 0.2316
y = x
i = 2
}
} else {
lgamma = 0
switch {
case x >= (Ymin + 0.27): // 1.7316 <= x < 2
y = 2 - x
i = 0
case x >= (Ymin - 0.27): // 1.2316 <= x < 1.7316
y = x - Tc
i = 1
default: // 0.9 < x < 1.2316
y = x - 1
i = 2
}
}
switch i {
case 0:
z := y * y
p1 := A0 + z*(A2+z*(A4+z*(A6+z*(A8+z*A10))))
p2 := z * (A1 + z*(A3+z*(A5+z*(A7+z*(A9+z*A11)))))
p := y*p1 + p2
lgamma += (p - 0.5*y)
case 1:
z := y * y
w := z * y
p1 := T0 + w*(T3+w*(T6+w*(T9+w*T12))) // parallel comp
p2 := T1 + w*(T4+w*(T7+w*(T10+w*T13)))
p3 := T2 + w*(T5+w*(T8+w*(T11+w*T14)))
p := z*p1 - (Tt - w*(p2+y*p3))
lgamma += (Tf + p)
case 2:
p1 := y * (U0 + y*(U1+y*(U2+y*(U3+y*(U4+y*U5)))))
p2 := 1 + y*(V1+y*(V2+y*(V3+y*(V4+y*V5))))
lgamma += (-0.5*y + p1/p2)
}
case x < 8: // 2 <= x < 8
i := int(x)
y := x - float64(i)
p := y * (S0 + y*(S1+y*(S2+y*(S3+y*(S4+y*(S5+y*S6))))))
q := 1 + y*(R1+y*(R2+y*(R3+y*(R4+y*(R5+y*R6)))))
lgamma = 0.5*y + p/q
z := 1.0 // Lgamma(1+s) = Log(s) + Lgamma(s)
switch i {
case 7:
z *= (y + 6)
fallthrough
case 6:
z *= (y + 5)
fallthrough
case 5:
z *= (y + 4)
fallthrough
case 4:
z *= (y + 3)
fallthrough
case 3:
z *= (y + 2)
lgamma += Log(z)
}
case x < Two58: // 8 <= x < 2**58
t := Log(x)
z := 1 / x
y := z * z
w := W0 + z*(W1+y*(W2+y*(W3+y*(W4+y*(W5+y*W6)))))
lgamma = (x-0.5)*(t-1) + w
default: // 2**58 <= x <= Inf
lgamma = x * (Log(x) - 1)
}
if neg {
lgamma = nadj - lgamma
}
return
}
// sinPi(x) is a helper function for negative x
func sinPi(x float64) float64 {
const (
Two52 = 1 << 52 // 0x4330000000000000 ~4.5036e+15
Two53 = 1 << 53 // 0x4340000000000000 ~9.0072e+15
)
if x < 0.25 {
return -Sin(Pi * x)
}
// argument reduction
z := Floor(x)
var n int
if z != x { // inexact
x = Fmod(x, 2)
n = int(x * 4)
} else {
if x >= Two53 { // x must be even
x = 0
n = 0
} else {
if x < Two52 {
z = x + Two52 // exact
}
n = int(1 & Float64bits(z))
x = float64(n)
n <<= 2
}
}
switch n {
case 0:
x = Sin(Pi * x)
case 1, 2:
x = Cos(Pi * (0.5 - x))
case 3, 4:
x = Sin(Pi * (1 - x))
case 5, 6:
x = -Cos(Pi * (x - 1.5))
default:
x = Sin(Pi * (x - 2))
}
return -x
}
|