summaryrefslogtreecommitdiff
path: root/libgo/go/math/pow.go
blob: 06b107401b99c56075a56e2be58647092907c06d (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
// Copyright 2009 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.

package math

func isOddInt(x float64) bool {
	xi, xf := Modf(x)
	return xf == 0 && int64(xi)&1 == 1
}

// Special cases taken from FreeBSD's /usr/src/lib/msun/src/e_pow.c
// updated by IEEE Std. 754-2008 "Section 9.2.1 Special values".

// Pow returns x**y, the base-x exponential of y.
//
// Special cases are (in order):
//	Pow(x, ±0) = 1 for any x
//	Pow(1, y) = 1 for any y
//	Pow(x, 1) = x for any x
//	Pow(NaN, y) = NaN
//	Pow(x, NaN) = NaN
//	Pow(±0, y) = ±Inf for y an odd integer < 0
//	Pow(±0, -Inf) = +Inf
//	Pow(±0, +Inf) = +0
//	Pow(±0, y) = +Inf for finite y < 0 and not an odd integer
//	Pow(±0, y) = ±0 for y an odd integer > 0
//	Pow(±0, y) = +0 for finite y > 0 and not an odd integer
//	Pow(-1, ±Inf) = 1
//	Pow(x, +Inf) = +Inf for |x| > 1
//	Pow(x, -Inf) = +0 for |x| > 1
//	Pow(x, +Inf) = +0 for |x| < 1
//	Pow(x, -Inf) = +Inf for |x| < 1
//	Pow(+Inf, y) = +Inf for y > 0
//	Pow(+Inf, y) = +0 for y < 0
//	Pow(-Inf, y) = Pow(-0, -y)
//	Pow(x, y) = NaN for finite x < 0 and finite non-integer y
func Pow(x, y float64) float64 {
	// TODO(rsc): Remove manual inlining of IsNaN, IsInf
	// when compiler does it for us
	switch {
	case y == 0 || x == 1:
		return 1
	case y == 1:
		return x
	case y == 0.5:
		return Sqrt(x)
	case y == -0.5:
		return 1 / Sqrt(x)
	case x != x || y != y: // IsNaN(x) || IsNaN(y):
		return NaN()
	case x == 0:
		switch {
		case y < 0:
			if isOddInt(y) {
				return Copysign(Inf(1), x)
			}
			return Inf(1)
		case y > 0:
			if isOddInt(y) {
				return x
			}
			return 0
		}
	case y > MaxFloat64 || y < -MaxFloat64: // IsInf(y, 0):
		switch {
		case x == -1:
			return 1
		case (Fabs(x) < 1) == IsInf(y, 1):
			return 0
		default:
			return Inf(1)
		}
	case x > MaxFloat64 || x < -MaxFloat64: // IsInf(x, 0):
		if IsInf(x, -1) {
			return Pow(1/x, -y) // Pow(-0, -y)
		}
		switch {
		case y < 0:
			return 0
		case y > 0:
			return Inf(1)
		}
	}

	absy := y
	flip := false
	if absy < 0 {
		absy = -absy
		flip = true
	}
	yi, yf := Modf(absy)
	if yf != 0 && x < 0 {
		return NaN()
	}
	if yi >= 1<<63 {
		return Exp(y * Log(x))
	}

	// ans = a1 * 2**ae (= 1 for now).
	a1 := 1.0
	ae := 0

	// ans *= x**yf
	if yf != 0 {
		if yf > 0.5 {
			yf--
			yi++
		}
		a1 = Exp(yf * Log(x))
	}

	// ans *= x**yi
	// by multiplying in successive squarings
	// of x according to bits of yi.
	// accumulate powers of two into exp.
	x1, xe := Frexp(x)
	for i := int64(yi); i != 0; i >>= 1 {
		if i&1 == 1 {
			a1 *= x1
			ae += xe
		}
		x1 *= x1
		xe <<= 1
		if x1 < .5 {
			x1 += x1
			xe--
		}
	}

	// ans = a1*2**ae
	// if flip { ans = 1 / ans }
	// but in the opposite order
	if flip {
		a1 = 1 / a1
		ae = -ae
	}
	return Ldexp(a1, ae)
}