summaryrefslogtreecommitdiff
path: root/libgo/go/strconv/atof.go
blob: 72f162c51344c5d4ce0a2413ad16f89ce2b4c978 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
// Copyright 2009 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.

// decimal to binary floating point conversion.
// Algorithm:
//   1) Store input in multiprecision decimal.
//   2) Multiply/divide decimal by powers of two until in range [0.5, 1)
//   3) Multiply by 2^precision and round to get mantissa.

// The strconv package implements conversions to and from
// string representations of basic data types.
package strconv

import (
	"math"
	"os"
)

var optimize = true // can change for testing

func equalIgnoreCase(s1, s2 string) bool {
	if len(s1) != len(s2) {
		return false
	}
	for i := 0; i < len(s1); i++ {
		c1 := s1[i]
		if 'A' <= c1 && c1 <= 'Z' {
			c1 += 'a' - 'A'
		}
		c2 := s2[i]
		if 'A' <= c2 && c2 <= 'Z' {
			c2 += 'a' - 'A'
		}
		if c1 != c2 {
			return false
		}
	}
	return true
}

func special(s string) (f float64, ok bool) {
	switch {
	case equalIgnoreCase(s, "nan"):
		return math.NaN(), true
	case equalIgnoreCase(s, "-inf"):
		return math.Inf(-1), true
	case equalIgnoreCase(s, "+inf"):
		return math.Inf(1), true
	case equalIgnoreCase(s, "inf"):
		return math.Inf(1), true
	}
	return
}

// TODO(rsc): Better truncation handling.
func stringToDecimal(s string) (neg bool, d *decimal, trunc bool, ok bool) {
	i := 0

	// optional sign
	if i >= len(s) {
		return
	}
	switch {
	case s[i] == '+':
		i++
	case s[i] == '-':
		neg = true
		i++
	}

	// digits
	b := new(decimal)
	sawdot := false
	sawdigits := false
	for ; i < len(s); i++ {
		switch {
		case s[i] == '.':
			if sawdot {
				return
			}
			sawdot = true
			b.dp = b.nd
			continue

		case '0' <= s[i] && s[i] <= '9':
			sawdigits = true
			if s[i] == '0' && b.nd == 0 { // ignore leading zeros
				b.dp--
				continue
			}
			b.d[b.nd] = s[i]
			b.nd++
			continue
		}
		break
	}
	if !sawdigits {
		return
	}
	if !sawdot {
		b.dp = b.nd
	}

	// optional exponent moves decimal point.
	// if we read a very large, very long number,
	// just be sure to move the decimal point by
	// a lot (say, 100000).  it doesn't matter if it's
	// not the exact number.
	if i < len(s) && (s[i] == 'e' || s[i] == 'E') {
		i++
		if i >= len(s) {
			return
		}
		esign := 1
		if s[i] == '+' {
			i++
		} else if s[i] == '-' {
			i++
			esign = -1
		}
		if i >= len(s) || s[i] < '0' || s[i] > '9' {
			return
		}
		e := 0
		for ; i < len(s) && '0' <= s[i] && s[i] <= '9'; i++ {
			if e < 10000 {
				e = e*10 + int(s[i]) - '0'
			}
		}
		b.dp += e * esign
	}

	if i != len(s) {
		return
	}

	d = b
	ok = true
	return
}

// decimal power of ten to binary power of two.
var powtab = []int{1, 3, 6, 9, 13, 16, 19, 23, 26}

func decimalToFloatBits(neg bool, d *decimal, trunc bool, flt *floatInfo) (b uint64, overflow bool) {
	var exp int
	var mant uint64

	// Zero is always a special case.
	if d.nd == 0 {
		mant = 0
		exp = flt.bias
		goto out
	}

	// Obvious overflow/underflow.
	// These bounds are for 64-bit floats.
	// Will have to change if we want to support 80-bit floats in the future.
	if d.dp > 310 {
		goto overflow
	}
	if d.dp < -330 {
		// zero
		mant = 0
		exp = flt.bias
		goto out
	}

	// Scale by powers of two until in range [0.5, 1.0)
	exp = 0
	for d.dp > 0 {
		var n int
		if d.dp >= len(powtab) {
			n = 27
		} else {
			n = powtab[d.dp]
		}
		d.Shift(-n)
		exp += n
	}
	for d.dp < 0 || d.dp == 0 && d.d[0] < '5' {
		var n int
		if -d.dp >= len(powtab) {
			n = 27
		} else {
			n = powtab[-d.dp]
		}
		d.Shift(n)
		exp -= n
	}

	// Our range is [0.5,1) but floating point range is [1,2).
	exp--

	// Minimum representable exponent is flt.bias+1.
	// If the exponent is smaller, move it up and
	// adjust d accordingly.
	if exp < flt.bias+1 {
		n := flt.bias + 1 - exp
		d.Shift(-n)
		exp += n
	}

	if exp-flt.bias >= 1<<flt.expbits-1 {
		goto overflow
	}

	// Extract 1+flt.mantbits bits.
	mant = d.Shift(int(1 + flt.mantbits)).RoundedInteger()

	// Rounding might have added a bit; shift down.
	if mant == 2<<flt.mantbits {
		mant >>= 1
		exp++
		if exp-flt.bias >= 1<<flt.expbits-1 {
			goto overflow
		}
	}

	// Denormalized?
	if mant&(1<<flt.mantbits) == 0 {
		exp = flt.bias
	}
	goto out

overflow:
	// ±Inf
	mant = 0
	exp = 1<<flt.expbits - 1 + flt.bias
	overflow = true

out:
	// Assemble bits.
	bits := mant & (uint64(1)<<flt.mantbits - 1)
	bits |= uint64((exp-flt.bias)&(1<<flt.expbits-1)) << flt.mantbits
	if neg {
		bits |= 1 << flt.mantbits << flt.expbits
	}
	return bits, overflow
}

// Compute exact floating-point integer from d's digits.
// Caller is responsible for avoiding overflow.
func decimalAtof64Int(neg bool, d *decimal) float64 {
	f := 0.0
	for i := 0; i < d.nd; i++ {
		f = f*10 + float64(d.d[i]-'0')
	}
	if neg {
		f *= -1 // BUG work around 6g f = -f.
	}
	return f
}

func decimalAtof32Int(neg bool, d *decimal) float32 {
	f := float32(0)
	for i := 0; i < d.nd; i++ {
		f = f*10 + float32(d.d[i]-'0')
	}
	if neg {
		f *= -1 // BUG work around 6g f = -f.
	}
	return f
}

// Exact powers of 10.
var float64pow10 = []float64{
	1e0, 1e1, 1e2, 1e3, 1e4, 1e5, 1e6, 1e7, 1e8, 1e9,
	1e10, 1e11, 1e12, 1e13, 1e14, 1e15, 1e16, 1e17, 1e18, 1e19,
	1e20, 1e21, 1e22,
}
var float32pow10 = []float32{1e0, 1e1, 1e2, 1e3, 1e4, 1e5, 1e6, 1e7, 1e8, 1e9, 1e10}

// If possible to convert decimal d to 64-bit float f exactly,
// entirely in floating-point math, do so, avoiding the expense of decimalToFloatBits.
// Three common cases:
//	value is exact integer
//	value is exact integer * exact power of ten
//	value is exact integer / exact power of ten
// These all produce potentially inexact but correctly rounded answers.
func decimalAtof64(neg bool, d *decimal, trunc bool) (f float64, ok bool) {
	// Exact integers are <= 10^15.
	// Exact powers of ten are <= 10^22.
	if d.nd > 15 {
		return
	}
	switch {
	case d.dp == d.nd: // int
		f := decimalAtof64Int(neg, d)
		return f, true

	case d.dp > d.nd && d.dp <= 15+22: // int * 10^k
		f := decimalAtof64Int(neg, d)
		k := d.dp - d.nd
		// If exponent is big but number of digits is not,
		// can move a few zeros into the integer part.
		if k > 22 {
			f *= float64pow10[k-22]
			k = 22
		}
		return f * float64pow10[k], true

	case d.dp < d.nd && d.nd-d.dp <= 22: // int / 10^k
		f := decimalAtof64Int(neg, d)
		return f / float64pow10[d.nd-d.dp], true
	}
	return
}

// If possible to convert decimal d to 32-bit float f exactly,
// entirely in floating-point math, do so, avoiding the machinery above.
func decimalAtof32(neg bool, d *decimal, trunc bool) (f float32, ok bool) {
	// Exact integers are <= 10^7.
	// Exact powers of ten are <= 10^10.
	if d.nd > 7 {
		return
	}
	switch {
	case d.dp == d.nd: // int
		f := decimalAtof32Int(neg, d)
		return f, true

	case d.dp > d.nd && d.dp <= 7+10: // int * 10^k
		f := decimalAtof32Int(neg, d)
		k := d.dp - d.nd
		// If exponent is big but number of digits is not,
		// can move a few zeros into the integer part.
		if k > 10 {
			f *= float32pow10[k-10]
			k = 10
		}
		return f * float32pow10[k], true

	case d.dp < d.nd && d.nd-d.dp <= 10: // int / 10^k
		f := decimalAtof32Int(neg, d)
		return f / float32pow10[d.nd-d.dp], true
	}
	return
}

// Atof32 converts the string s to a 32-bit floating-point number.
//
// If s is well-formed and near a valid floating point number,
// Atof32 returns the nearest floating point number rounded
// using IEEE754 unbiased rounding.
//
// The errors that Atof32 returns have concrete type *NumError
// and include err.Num = s.
//
// If s is not syntactically well-formed, Atof32 returns err.Error = os.EINVAL.
//
// If s is syntactically well-formed but is more than 1/2 ULP
// away from the largest floating point number of the given size,
// Atof32 returns f = ±Inf, err.Error = os.ERANGE.
func Atof32(s string) (f float32, err os.Error) {
	if val, ok := special(s); ok {
		return float32(val), nil
	}

	neg, d, trunc, ok := stringToDecimal(s)
	if !ok {
		return 0, &NumError{s, os.EINVAL}
	}
	if optimize {
		if f, ok := decimalAtof32(neg, d, trunc); ok {
			return f, nil
		}
	}
	b, ovf := decimalToFloatBits(neg, d, trunc, &float32info)
	f = math.Float32frombits(uint32(b))
	if ovf {
		err = &NumError{s, os.ERANGE}
	}
	return f, err
}

// Atof64 converts the string s to a 64-bit floating-point number.
// Except for the type of its result, its definition is the same as that
// of Atof32.
func Atof64(s string) (f float64, err os.Error) {
	if val, ok := special(s); ok {
		return val, nil
	}

	neg, d, trunc, ok := stringToDecimal(s)
	if !ok {
		return 0, &NumError{s, os.EINVAL}
	}
	if optimize {
		if f, ok := decimalAtof64(neg, d, trunc); ok {
			return f, nil
		}
	}
	b, ovf := decimalToFloatBits(neg, d, trunc, &float64info)
	f = math.Float64frombits(b)
	if ovf {
		err = &NumError{s, os.ERANGE}
	}
	return f, err
}

// AtofN converts the string s to a 64-bit floating-point number,
// but it rounds the result assuming that it will be stored in a value
// of n bits (32 or 64).
func AtofN(s string, n int) (f float64, err os.Error) {
	if n == 32 {
		f1, err1 := Atof32(s)
		return float64(f1), err1
	}
	f1, err1 := Atof64(s)
	return f1, err1
}