summaryrefslogtreecommitdiff
path: root/libgo/go/template/template.go
blob: a67dbf8ad2442b4b94f49e09db807396f99fd407 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
// Copyright 2009 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.

/*
	Data-driven templates for generating textual output such as
	HTML.

	Templates are executed by applying them to a data structure.
	Annotations in the template refer to elements of the data
	structure (typically a field of a struct or a key in a map)
	to control execution and derive values to be displayed.
	The template walks the structure as it executes and the
	"cursor" @ represents the value at the current location
	in the structure.

	Data items may be values or pointers; the interface hides the
	indirection.

	In the following, 'field' is one of several things, according to the data.

		- The name of a field of a struct (result = data.field),
		- The value stored in a map under that key (result = data[field]), or
		- The result of invoking a niladic single-valued method with that name
		  (result = data.field())

	Major constructs ({} are metacharacters; [] marks optional elements):

		{# comment }

	A one-line comment.

		{.section field} XXX [ {.or} YYY ] {.end}

	Set @ to the value of the field.  It may be an explicit @
	to stay at the same point in the data. If the field is nil
	or empty, execute YYY; otherwise execute XXX.

		{.repeated section field} XXX [ {.alternates with} ZZZ ] [ {.or} YYY ] {.end}

	Like .section, but field must be an array or slice.  XXX
	is executed for each element.  If the array is nil or empty,
	YYY is executed instead.  If the {.alternates with} marker
	is present, ZZZ is executed between iterations of XXX.

		{field}
		{field1 field2 ...}
		{field|formatter}
		{field1 field2...|formatter}

	Insert the value of the fields into the output. Each field is
	first looked for in the cursor, as in .section and .repeated.
	If it is not found, the search continues in outer sections
	until the top level is reached.

	If a formatter is specified, it must be named in the formatter
	map passed to the template set up routines or in the default
	set ("html","str","") and is used to process the data for
	output.  The formatter function has signature
		func(wr io.Writer, formatter string, data ...interface{})
	where wr is the destination for output, data holds the field
	values at the instantiation, and formatter is its name at
	the invocation site.  The default formatter just concatenates
	the string representations of the fields.
*/
package template

import (
	"container/vector"
	"fmt"
	"io"
	"io/ioutil"
	"os"
	"reflect"
	"strings"
	"unicode"
	"utf8"
)

// Errors returned during parsing and execution.  Users may extract the information and reformat
// if they desire.
type Error struct {
	Line int
	Msg  string
}

func (e *Error) String() string { return fmt.Sprintf("line %d: %s", e.Line, e.Msg) }

// Most of the literals are aces.
var lbrace = []byte{'{'}
var rbrace = []byte{'}'}
var space = []byte{' '}
var tab = []byte{'\t'}

// The various types of "tokens", which are plain text or (usually) brace-delimited descriptors
const (
	tokAlternates = iota
	tokComment
	tokEnd
	tokLiteral
	tokOr
	tokRepeated
	tokSection
	tokText
	tokVariable
)

// FormatterMap is the type describing the mapping from formatter
// names to the functions that implement them.
type FormatterMap map[string]func(io.Writer, string, ...interface{})

// Built-in formatters.
var builtins = FormatterMap{
	"html": HTMLFormatter,
	"str":  StringFormatter,
	"":     StringFormatter,
}

// The parsed state of a template is a vector of xxxElement structs.
// Sections have line numbers so errors can be reported better during execution.

// Plain text.
type textElement struct {
	text []byte
}

// A literal such as .meta-left or .meta-right
type literalElement struct {
	text []byte
}

// A variable invocation to be evaluated
type variableElement struct {
	linenum   int
	word      []string // The fields in the invocation.
	formatter string   // TODO(r): implement pipelines
}

// A .section block, possibly with a .or
type sectionElement struct {
	linenum int    // of .section itself
	field   string // cursor field for this block
	start   int    // first element
	or      int    // first element of .or block
	end     int    // one beyond last element
}

// A .repeated block, possibly with a .or and a .alternates
type repeatedElement struct {
	sectionElement     // It has the same structure...
	altstart       int // ... except for alternates
	altend         int
}

// Template is the type that represents a template definition.
// It is unchanged after parsing.
type Template struct {
	fmap FormatterMap // formatters for variables
	// Used during parsing:
	ldelim, rdelim []byte // delimiters; default {}
	buf            []byte // input text to process
	p              int    // position in buf
	linenum        int    // position in input
	// Parsed results:
	elems *vector.Vector
}

// Internal state for executing a Template.  As we evaluate the struct,
// the data item descends into the fields associated with sections, etc.
// Parent is used to walk upwards to find variables higher in the tree.
type state struct {
	parent *state        // parent in hierarchy
	data   reflect.Value // the driver data for this section etc.
	wr     io.Writer     // where to send output
}

func (parent *state) clone(data reflect.Value) *state {
	return &state{parent, data, parent.wr}
}

// New creates a new template with the specified formatter map (which
// may be nil) to define auxiliary functions for formatting variables.
func New(fmap FormatterMap) *Template {
	t := new(Template)
	t.fmap = fmap
	t.ldelim = lbrace
	t.rdelim = rbrace
	t.elems = new(vector.Vector)
	return t
}

// Report error and stop executing.  The line number must be provided explicitly.
func (t *Template) execError(st *state, line int, err string, args ...interface{}) {
	panic(&Error{line, fmt.Sprintf(err, args...)})
}

// Report error, panic to terminate parsing.
// The line number comes from the template state.
func (t *Template) parseError(err string, args ...interface{}) {
	panic(&Error{t.linenum, fmt.Sprintf(err, args...)})
}

// Is this an exported - upper case - name?
func isExported(name string) bool {
	rune, _ := utf8.DecodeRuneInString(name)
	return unicode.IsUpper(rune)
}

// -- Lexical analysis

// Is c a white space character?
func white(c uint8) bool { return c == ' ' || c == '\t' || c == '\r' || c == '\n' }

// Safely, does s[n:n+len(t)] == t?
func equal(s []byte, n int, t []byte) bool {
	b := s[n:]
	if len(t) > len(b) { // not enough space left for a match.
		return false
	}
	for i, c := range t {
		if c != b[i] {
			return false
		}
	}
	return true
}

// nextItem returns the next item from the input buffer.  If the returned
// item is empty, we are at EOF.  The item will be either a
// delimited string or a non-empty string between delimited
// strings. Tokens stop at (but include, if plain text) a newline.
// Action tokens on a line by themselves drop any space on
// either side, up to and including the newline.
func (t *Template) nextItem() []byte {
	startOfLine := t.p == 0 || t.buf[t.p-1] == '\n'
	start := t.p
	var i int
	newline := func() {
		t.linenum++
		i++
	}
	// Leading white space up to but not including newline
	for i = start; i < len(t.buf); i++ {
		if t.buf[i] == '\n' || !white(t.buf[i]) {
			break
		}
	}
	leadingSpace := i > start
	// What's left is nothing, newline, delimited string, or plain text
Switch:
	switch {
	case i == len(t.buf):
		// EOF; nothing to do
	case t.buf[i] == '\n':
		newline()
	case equal(t.buf, i, t.ldelim):
		left := i         // Start of left delimiter.
		right := -1       // Will be (immediately after) right delimiter.
		haveText := false // Delimiters contain text.
		i += len(t.ldelim)
		// Find the end of the action.
		for ; i < len(t.buf); i++ {
			if t.buf[i] == '\n' {
				break
			}
			if equal(t.buf, i, t.rdelim) {
				i += len(t.rdelim)
				right = i
				break
			}
			haveText = true
		}
		if right < 0 {
			t.parseError("unmatched opening delimiter")
			return nil
		}
		// Is this a special action (starts with '.' or '#') and the only thing on the line?
		if startOfLine && haveText {
			firstChar := t.buf[left+len(t.ldelim)]
			if firstChar == '.' || firstChar == '#' {
				// It's special and the first thing on the line. Is it the last?
				for j := right; j < len(t.buf) && white(t.buf[j]); j++ {
					if t.buf[j] == '\n' {
						// Yes it is. Drop the surrounding space and return the {.foo}
						t.linenum++
						t.p = j + 1
						return t.buf[left:right]
					}
				}
			}
		}
		// No it's not. If there's leading space, return that.
		if leadingSpace {
			// not trimming space: return leading white space if there is some.
			t.p = left
			return t.buf[start:left]
		}
		// Return the word, leave the trailing space.
		start = left
		break
	default:
		for ; i < len(t.buf); i++ {
			if t.buf[i] == '\n' {
				newline()
				break
			}
			if equal(t.buf, i, t.ldelim) {
				break
			}
		}
	}
	item := t.buf[start:i]
	t.p = i
	return item
}

// Turn a byte array into a white-space-split array of strings.
func words(buf []byte) []string {
	s := make([]string, 0, 5)
	p := 0 // position in buf
	// one word per loop
	for i := 0; ; i++ {
		// skip white space
		for ; p < len(buf) && white(buf[p]); p++ {
		}
		// grab word
		start := p
		for ; p < len(buf) && !white(buf[p]); p++ {
		}
		if start == p { // no text left
			break
		}
		s = append(s, string(buf[start:p]))
	}
	return s
}

// Analyze an item and return its token type and, if it's an action item, an array of
// its constituent words.
func (t *Template) analyze(item []byte) (tok int, w []string) {
	// item is known to be non-empty
	if !equal(item, 0, t.ldelim) { // doesn't start with left delimiter
		tok = tokText
		return
	}
	if !equal(item, len(item)-len(t.rdelim), t.rdelim) { // doesn't end with right delimiter
		t.parseError("internal error: unmatched opening delimiter") // lexing should prevent this
		return
	}
	if len(item) <= len(t.ldelim)+len(t.rdelim) { // no contents
		t.parseError("empty directive")
		return
	}
	// Comment
	if item[len(t.ldelim)] == '#' {
		tok = tokComment
		return
	}
	// Split into words
	w = words(item[len(t.ldelim) : len(item)-len(t.rdelim)]) // drop final delimiter
	if len(w) == 0 {
		t.parseError("empty directive")
		return
	}
	if len(w) > 0 && w[0][0] != '.' {
		tok = tokVariable
		return
	}
	switch w[0] {
	case ".meta-left", ".meta-right", ".space", ".tab":
		tok = tokLiteral
		return
	case ".or":
		tok = tokOr
		return
	case ".end":
		tok = tokEnd
		return
	case ".section":
		if len(w) != 2 {
			t.parseError("incorrect fields for .section: %s", item)
			return
		}
		tok = tokSection
		return
	case ".repeated":
		if len(w) != 3 || w[1] != "section" {
			t.parseError("incorrect fields for .repeated: %s", item)
			return
		}
		tok = tokRepeated
		return
	case ".alternates":
		if len(w) != 2 || w[1] != "with" {
			t.parseError("incorrect fields for .alternates: %s", item)
			return
		}
		tok = tokAlternates
		return
	}
	t.parseError("bad directive: %s", item)
	return
}

// -- Parsing

// Allocate a new variable-evaluation element.
func (t *Template) newVariable(words []string) (v *variableElement) {
	// The words are tokenized elements from the {item}. The last one may be of
	// the form "|fmt".  For example: {a b c|d}
	formatter := ""
	lastWord := words[len(words)-1]
	bar := strings.Index(lastWord, "|")
	if bar >= 0 {
		words[len(words)-1] = lastWord[0:bar]
		formatter = lastWord[bar+1:]
	}
	// Probably ok, so let's build it.
	v = &variableElement{t.linenum, words, formatter}

	// We could remember the function address here and avoid the lookup later,
	// but it's more dynamic to let the user change the map contents underfoot.
	// We do require the name to be present, though.

	// Is it in user-supplied map?
	if t.fmap != nil {
		if _, ok := t.fmap[formatter]; ok {
			return
		}
	}
	// Is it in builtin map?
	if _, ok := builtins[formatter]; ok {
		return
	}
	t.parseError("unknown formatter: %s", formatter)
	return
}

// Grab the next item.  If it's simple, just append it to the template.
// Otherwise return its details.
func (t *Template) parseSimple(item []byte) (done bool, tok int, w []string) {
	tok, w = t.analyze(item)
	done = true // assume for simplicity
	switch tok {
	case tokComment:
		return
	case tokText:
		t.elems.Push(&textElement{item})
		return
	case tokLiteral:
		switch w[0] {
		case ".meta-left":
			t.elems.Push(&literalElement{t.ldelim})
		case ".meta-right":
			t.elems.Push(&literalElement{t.rdelim})
		case ".space":
			t.elems.Push(&literalElement{space})
		case ".tab":
			t.elems.Push(&literalElement{tab})
		default:
			t.parseError("internal error: unknown literal: %s", w[0])
		}
		return
	case tokVariable:
		t.elems.Push(t.newVariable(w))
		return
	}
	return false, tok, w
}

// parseRepeated and parseSection are mutually recursive

func (t *Template) parseRepeated(words []string) *repeatedElement {
	r := new(repeatedElement)
	t.elems.Push(r)
	r.linenum = t.linenum
	r.field = words[2]
	// Scan section, collecting true and false (.or) blocks.
	r.start = t.elems.Len()
	r.or = -1
	r.altstart = -1
	r.altend = -1
Loop:
	for {
		item := t.nextItem()
		if len(item) == 0 {
			t.parseError("missing .end for .repeated section")
			break
		}
		done, tok, w := t.parseSimple(item)
		if done {
			continue
		}
		switch tok {
		case tokEnd:
			break Loop
		case tokOr:
			if r.or >= 0 {
				t.parseError("extra .or in .repeated section")
				break Loop
			}
			r.altend = t.elems.Len()
			r.or = t.elems.Len()
		case tokSection:
			t.parseSection(w)
		case tokRepeated:
			t.parseRepeated(w)
		case tokAlternates:
			if r.altstart >= 0 {
				t.parseError("extra .alternates in .repeated section")
				break Loop
			}
			if r.or >= 0 {
				t.parseError(".alternates inside .or block in .repeated section")
				break Loop
			}
			r.altstart = t.elems.Len()
		default:
			t.parseError("internal error: unknown repeated section item: %s", item)
			break Loop
		}
	}
	if r.altend < 0 {
		r.altend = t.elems.Len()
	}
	r.end = t.elems.Len()
	return r
}

func (t *Template) parseSection(words []string) *sectionElement {
	s := new(sectionElement)
	t.elems.Push(s)
	s.linenum = t.linenum
	s.field = words[1]
	// Scan section, collecting true and false (.or) blocks.
	s.start = t.elems.Len()
	s.or = -1
Loop:
	for {
		item := t.nextItem()
		if len(item) == 0 {
			t.parseError("missing .end for .section")
			break
		}
		done, tok, w := t.parseSimple(item)
		if done {
			continue
		}
		switch tok {
		case tokEnd:
			break Loop
		case tokOr:
			if s.or >= 0 {
				t.parseError("extra .or in .section")
				break Loop
			}
			s.or = t.elems.Len()
		case tokSection:
			t.parseSection(w)
		case tokRepeated:
			t.parseRepeated(w)
		case tokAlternates:
			t.parseError(".alternates not in .repeated")
		default:
			t.parseError("internal error: unknown section item: %s", item)
		}
	}
	s.end = t.elems.Len()
	return s
}

func (t *Template) parse() {
	for {
		item := t.nextItem()
		if len(item) == 0 {
			break
		}
		done, tok, w := t.parseSimple(item)
		if done {
			continue
		}
		switch tok {
		case tokOr, tokEnd, tokAlternates:
			t.parseError("unexpected %s", w[0])
		case tokSection:
			t.parseSection(w)
		case tokRepeated:
			t.parseRepeated(w)
		default:
			t.parseError("internal error: bad directive in parse: %s", item)
		}
	}
}

// -- Execution

// Evaluate interfaces and pointers looking for a value that can look up the name, via a
// struct field, method, or map key, and return the result of the lookup.
func (t *Template) lookup(st *state, v reflect.Value, name string) reflect.Value {
	for v != nil {
		typ := v.Type()
		if n := v.Type().NumMethod(); n > 0 {
			for i := 0; i < n; i++ {
				m := typ.Method(i)
				mtyp := m.Type
				if m.Name == name && mtyp.NumIn() == 1 && mtyp.NumOut() == 1 {
					if !isExported(name) {
						t.execError(st, t.linenum, "name not exported: %s in type %s", name, st.data.Type())
					}
					return v.Method(i).Call(nil)[0]
				}
			}
		}
		switch av := v.(type) {
		case *reflect.PtrValue:
			v = av.Elem()
		case *reflect.InterfaceValue:
			v = av.Elem()
		case *reflect.StructValue:
			if !isExported(name) {
				t.execError(st, t.linenum, "name not exported: %s in type %s", name, st.data.Type())
			}
			return av.FieldByName(name)
		case *reflect.MapValue:
			return av.Elem(reflect.NewValue(name))
		default:
			return nil
		}
	}
	return v
}

// Walk v through pointers and interfaces, extracting the elements within.
func indirect(v reflect.Value) reflect.Value {
loop:
	for v != nil {
		switch av := v.(type) {
		case *reflect.PtrValue:
			v = av.Elem()
		case *reflect.InterfaceValue:
			v = av.Elem()
		default:
			break loop
		}
	}
	return v
}

// If the data for this template is a struct, find the named variable.
// Names of the form a.b.c are walked down the data tree.
// The special name "@" (the "cursor") denotes the current data.
// The value coming in (st.data) might need indirecting to reach
// a struct while the return value is not indirected - that is,
// it represents the actual named field.
func (t *Template) findVar(st *state, s string) reflect.Value {
	if s == "@" {
		return st.data
	}
	data := st.data
	for _, elem := range strings.Split(s, ".", -1) {
		// Look up field; data must be a struct or map.
		data = t.lookup(st, data, elem)
		if data == nil {
			return nil
		}
	}
	return data
}

// Is there no data to look at?
func empty(v reflect.Value) bool {
	v = indirect(v)
	if v == nil {
		return true
	}
	switch v := v.(type) {
	case *reflect.BoolValue:
		return v.Get() == false
	case *reflect.StringValue:
		return v.Get() == ""
	case *reflect.StructValue:
		return false
	case *reflect.MapValue:
		return false
	case *reflect.ArrayValue:
		return v.Len() == 0
	case *reflect.SliceValue:
		return v.Len() == 0
	}
	return false
}

// Look up a variable or method, up through the parent if necessary.
func (t *Template) varValue(name string, st *state) reflect.Value {
	field := t.findVar(st, name)
	if field == nil {
		if st.parent == nil {
			t.execError(st, t.linenum, "name not found: %s in type %s", name, st.data.Type())
		}
		return t.varValue(name, st.parent)
	}
	return field
}

// Evaluate a variable, looking up through the parent if necessary.
// If it has a formatter attached ({var|formatter}) run that too.
func (t *Template) writeVariable(v *variableElement, st *state) {
	formatter := v.formatter
	// Turn the words of the invocation into values.
	val := make([]interface{}, len(v.word))
	for i, word := range v.word {
		val[i] = t.varValue(word, st).Interface()
	}
	// is it in user-supplied map?
	if t.fmap != nil {
		if fn, ok := t.fmap[formatter]; ok {
			fn(st.wr, formatter, val...)
			return
		}
	}
	// is it in builtin map?
	if fn, ok := builtins[formatter]; ok {
		fn(st.wr, formatter, val...)
		return
	}
	t.execError(st, v.linenum, "missing formatter %s for variable %s", formatter, v.word[0])
}

// Execute element i.  Return next index to execute.
func (t *Template) executeElement(i int, st *state) int {
	switch elem := t.elems.At(i).(type) {
	case *textElement:
		st.wr.Write(elem.text)
		return i + 1
	case *literalElement:
		st.wr.Write(elem.text)
		return i + 1
	case *variableElement:
		t.writeVariable(elem, st)
		return i + 1
	case *sectionElement:
		t.executeSection(elem, st)
		return elem.end
	case *repeatedElement:
		t.executeRepeated(elem, st)
		return elem.end
	}
	e := t.elems.At(i)
	t.execError(st, 0, "internal error: bad directive in execute: %v %T\n", reflect.NewValue(e).Interface(), e)
	return 0
}

// Execute the template.
func (t *Template) execute(start, end int, st *state) {
	for i := start; i < end; {
		i = t.executeElement(i, st)
	}
}

// Execute a .section
func (t *Template) executeSection(s *sectionElement, st *state) {
	// Find driver data for this section.  It must be in the current struct.
	field := t.varValue(s.field, st)
	if field == nil {
		t.execError(st, s.linenum, ".section: cannot find field %s in %s", s.field, st.data.Type())
	}
	st = st.clone(field)
	start, end := s.start, s.or
	if !empty(field) {
		// Execute the normal block.
		if end < 0 {
			end = s.end
		}
	} else {
		// Execute the .or block.  If it's missing, do nothing.
		start, end = s.or, s.end
		if start < 0 {
			return
		}
	}
	for i := start; i < end; {
		i = t.executeElement(i, st)
	}
}

// Return the result of calling the Iter method on v, or nil.
func iter(v reflect.Value) *reflect.ChanValue {
	for j := 0; j < v.Type().NumMethod(); j++ {
		mth := v.Type().Method(j)
		fv := v.Method(j)
		ft := fv.Type().(*reflect.FuncType)
		// TODO(rsc): NumIn() should return 0 here, because ft is from a curried FuncValue.
		if mth.Name != "Iter" || ft.NumIn() != 1 || ft.NumOut() != 1 {
			continue
		}
		ct, ok := ft.Out(0).(*reflect.ChanType)
		if !ok || ct.Dir()&reflect.RecvDir == 0 {
			continue
		}
		return fv.Call(nil)[0].(*reflect.ChanValue)
	}
	return nil
}

// Execute a .repeated section
func (t *Template) executeRepeated(r *repeatedElement, st *state) {
	// Find driver data for this section.  It must be in the current struct.
	field := t.varValue(r.field, st)
	if field == nil {
		t.execError(st, r.linenum, ".repeated: cannot find field %s in %s", r.field, st.data.Type())
	}
	field = indirect(field)

	start, end := r.start, r.or
	if end < 0 {
		end = r.end
	}
	if r.altstart >= 0 {
		end = r.altstart
	}
	first := true

	// Code common to all the loops.
	loopBody := func(newst *state) {
		// .alternates between elements
		if !first && r.altstart >= 0 {
			for i := r.altstart; i < r.altend; {
				i = t.executeElement(i, newst)
			}
		}
		first = false
		for i := start; i < end; {
			i = t.executeElement(i, newst)
		}
	}

	if array, ok := field.(reflect.ArrayOrSliceValue); ok {
		for j := 0; j < array.Len(); j++ {
			loopBody(st.clone(array.Elem(j)))
		}
	} else if m, ok := field.(*reflect.MapValue); ok {
		for _, key := range m.Keys() {
			loopBody(st.clone(m.Elem(key)))
		}
	} else if ch := iter(field); ch != nil {
		for {
			e := ch.Recv()
			if ch.Closed() {
				break
			}
			loopBody(st.clone(e))
		}
	} else {
		t.execError(st, r.linenum, ".repeated: cannot repeat %s (type %s)",
			r.field, field.Type())
	}

	if first {
		// Empty. Execute the .or block, once.  If it's missing, do nothing.
		start, end := r.or, r.end
		if start >= 0 {
			newst := st.clone(field)
			for i := start; i < end; {
				i = t.executeElement(i, newst)
			}
		}
		return
	}
}

// A valid delimiter must contain no white space and be non-empty.
func validDelim(d []byte) bool {
	if len(d) == 0 {
		return false
	}
	for _, c := range d {
		if white(c) {
			return false
		}
	}
	return true
}

// checkError is a deferred function to turn a panic with type *Error into a plain error return.
// Other panics are unexpected and so are re-enabled.
func checkError(error *os.Error) {
	if v := recover(); v != nil {
		if e, ok := v.(*Error); ok {
			*error = e
		} else {
			// runtime errors should crash
			panic(v)
		}
	}
}

// -- Public interface

// Parse initializes a Template by parsing its definition.  The string
// s contains the template text.  If any errors occur, Parse returns
// the error.
func (t *Template) Parse(s string) (err os.Error) {
	if t.elems == nil {
		return &Error{1, "template not allocated with New"}
	}
	if !validDelim(t.ldelim) || !validDelim(t.rdelim) {
		return &Error{1, fmt.Sprintf("bad delimiter strings %q %q", t.ldelim, t.rdelim)}
	}
	defer checkError(&err)
	t.buf = []byte(s)
	t.p = 0
	t.linenum = 1
	t.parse()
	return nil
}

// ParseFile is like Parse but reads the template definition from the
// named file.
func (t *Template) ParseFile(filename string) (err os.Error) {
	b, err := ioutil.ReadFile(filename)
	if err != nil {
		return err
	}
	return t.Parse(string(b))
}

// Execute applies a parsed template to the specified data object,
// generating output to wr.
func (t *Template) Execute(data interface{}, wr io.Writer) (err os.Error) {
	// Extract the driver data.
	val := reflect.NewValue(data)
	defer checkError(&err)
	t.p = 0
	t.execute(0, t.elems.Len(), &state{nil, val, wr})
	return nil
}

// SetDelims sets the left and right delimiters for operations in the
// template.  They are validated during parsing.  They could be
// validated here but it's better to keep the routine simple.  The
// delimiters are very rarely invalid and Parse has the necessary
// error-handling interface already.
func (t *Template) SetDelims(left, right string) {
	t.ldelim = []byte(left)
	t.rdelim = []byte(right)
}

// Parse creates a Template with default parameters (such as {} for
// metacharacters).  The string s contains the template text while
// the formatter map fmap, which may be nil, defines auxiliary functions
// for formatting variables.  The template is returned. If any errors
// occur, err will be non-nil.
func Parse(s string, fmap FormatterMap) (t *Template, err os.Error) {
	t = New(fmap)
	err = t.Parse(s)
	if err != nil {
		t = nil
	}
	return
}

// ParseFile is a wrapper function that creates a Template with default
// parameters (such as {} for metacharacters).  The filename identifies
// a file containing the template text, while the formatter map fmap, which
// may be nil, defines auxiliary functions for formatting variables.
// The template is returned. If any errors occur, err will be non-nil.
func ParseFile(filename string, fmap FormatterMap) (t *Template, err os.Error) {
	b, err := ioutil.ReadFile(filename)
	if err != nil {
		return nil, err
	}
	return Parse(string(b), fmap)
}

// MustParse is like Parse but panics if the template cannot be parsed.
func MustParse(s string, fmap FormatterMap) *Template {
	t, err := Parse(s, fmap)
	if err != nil {
		panic("template.MustParse error: " + err.String())
	}
	return t
}

// MustParseFile is like ParseFile but panics if the file cannot be read
// or the template cannot be parsed.
func MustParseFile(filename string, fmap FormatterMap) *Template {
	b, err := ioutil.ReadFile(filename)
	if err != nil {
		panic("template.MustParseFile error: " + err.String())
	}
	return MustParse(string(b), fmap)
}