summaryrefslogtreecommitdiff
path: root/libgomp/testsuite/libgomp.fortran/jacobi.f
blob: b27e20f27669e242ca8a0b2306552a3b0127ef65 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
* { dg-do run }

      program main 
************************************************************
* program to solve a finite difference 
* discretization of Helmholtz equation :  
* (d2/dx2)u + (d2/dy2)u - alpha u = f 
* using Jacobi iterative method. 
*
* Modified: Sanjiv Shah,       Kuck and Associates, Inc. (KAI), 1998
* Author:   Joseph Robicheaux, Kuck and Associates, Inc. (KAI), 1998
* 
* Directives are used in this code to achieve paralleism. 
* All do loops are parallized with default 'static' scheduling.
* 
* Input :  n - grid dimension in x direction 
*          m - grid dimension in y direction
*          alpha - Helmholtz constant (always greater than 0.0)
*          tol   - error tolerance for iterative solver
*          relax - Successice over relaxation parameter
*          mits  - Maximum iterations for iterative solver
*
* On output 
*       : u(n,m) - Dependent variable (solutions)
*       : f(n,m) - Right hand side function 
*************************************************************
      implicit none 

      integer n,m,mits,mtemp
      include "omp_lib.h"
      double precision tol,relax,alpha 

      common /idat/ n,m,mits,mtemp
      common /fdat/tol,alpha,relax
* 
* Read info 
* 
      write(*,*) "Input n,m - grid dimension in x,y direction " 
      n = 64
      m = 64
*     read(5,*) n,m 
      write(*,*) n, m
      write(*,*) "Input alpha - Helmholts constant " 
      alpha = 0.5
*     read(5,*) alpha
      write(*,*) alpha
      write(*,*) "Input relax - Successive over-relaxation parameter"
      relax = 0.9
*     read(5,*) relax 
      write(*,*) relax
      write(*,*) "Input tol - error tolerance for iterative solver" 
      tol = 1.0E-12
*     read(5,*) tol 
      write(*,*) tol
      write(*,*) "Input mits - Maximum iterations for solver" 
      mits = 100
*     read(5,*) mits
      write(*,*) mits

      call omp_set_num_threads (2)

*
* Calls a driver routine 
* 
      call driver () 

      stop
      end 

      subroutine driver ( ) 
*************************************************************
* Subroutine driver () 
* This is where the arrays are allocated and initialzed. 
*
* Working varaibles/arrays 
*     dx  - grid spacing in x direction 
*     dy  - grid spacing in y direction 
*************************************************************
      implicit none 

      integer n,m,mits,mtemp 
      double precision tol,relax,alpha 

      common /idat/ n,m,mits,mtemp
      common /fdat/tol,alpha,relax

      double precision u(n,m),f(n,m),dx,dy

* Initialize data

      call initialize (n,m,alpha,dx,dy,u,f)

* Solve Helmholtz equation

      call jacobi (n,m,dx,dy,alpha,relax,u,f,tol,mits)

* Check error between exact solution

      call  error_check (n,m,alpha,dx,dy,u,f)

      return 
      end 

      subroutine initialize (n,m,alpha,dx,dy,u,f) 
******************************************************
* Initializes data 
* Assumes exact solution is u(x,y) = (1-x^2)*(1-y^2)
*
******************************************************
      implicit none 
     
      integer n,m
      double precision u(n,m),f(n,m),dx,dy,alpha
      
      integer i,j, xx,yy
      double precision PI 
      parameter (PI=3.1415926)

      dx = 2.0 / (n-1)
      dy = 2.0 / (m-1)

* Initilize initial condition and RHS

!$omp parallel do private(xx,yy)
      do j = 1,m
         do i = 1,n
            xx = -1.0 + dx * dble(i-1)        ! -1 < x < 1
            yy = -1.0 + dy * dble(j-1)        ! -1 < y < 1
            u(i,j) = 0.0 
            f(i,j) = -alpha *(1.0-xx*xx)*(1.0-yy*yy) 
     &           - 2.0*(1.0-xx*xx)-2.0*(1.0-yy*yy)
         enddo
      enddo
!$omp end parallel do

      return 
      end 

      subroutine jacobi (n,m,dx,dy,alpha,omega,u,f,tol,maxit)
******************************************************************
* Subroutine HelmholtzJ
* Solves poisson equation on rectangular grid assuming : 
* (1) Uniform discretization in each direction, and 
* (2) Dirichlect boundary conditions 
* 
* Jacobi method is used in this routine 
*
* Input : n,m   Number of grid points in the X/Y directions 
*         dx,dy Grid spacing in the X/Y directions 
*         alpha Helmholtz eqn. coefficient 
*         omega Relaxation factor 
*         f(n,m) Right hand side function 
*         u(n,m) Dependent variable/Solution
*         tol    Tolerance for iterative solver 
*         maxit  Maximum number of iterations 
*
* Output : u(n,m) - Solution 
*****************************************************************
      implicit none 
      integer n,m,maxit
      double precision dx,dy,f(n,m),u(n,m),alpha, tol,omega
*
* Local variables 
* 
      integer i,j,k,k_local 
      double precision error,resid,rsum,ax,ay,b
      double precision error_local, uold(n,m)

      real ta,tb,tc,td,te,ta1,ta2,tb1,tb2,tc1,tc2,td1,td2
      real te1,te2
      real second
      external second
*
* Initialize coefficients 
      ax = 1.0/(dx*dx) ! X-direction coef 
      ay = 1.0/(dy*dy) ! Y-direction coef
      b  = -2.0/(dx*dx)-2.0/(dy*dy) - alpha ! Central coeff  

      error = 10.0 * tol 
      k = 1

      do while (k.le.maxit .and. error.gt. tol) 

         error = 0.0    

* Copy new solution into old
!$omp parallel

!$omp do 
         do j=1,m
            do i=1,n
               uold(i,j) = u(i,j) 
            enddo
         enddo

* Compute stencil, residual, & update

!$omp do private(resid) reduction(+:error)
         do j = 2,m-1
            do i = 2,n-1 
*     Evaluate residual 
               resid = (ax*(uold(i-1,j) + uold(i+1,j)) 
     &                + ay*(uold(i,j-1) + uold(i,j+1))
     &                 + b * uold(i,j) - f(i,j))/b
* Update solution 
               u(i,j) = uold(i,j) - omega * resid
* Accumulate residual error
               error = error + resid*resid 
            end do
         enddo
!$omp enddo nowait

!$omp end parallel

* Error check 

         k = k + 1

         error = sqrt(error)/dble(n*m)
*
      enddo                     ! End iteration loop 
*
      print *, 'Total Number of Iterations ', k 
      print *, 'Residual                   ', error 

      return 
      end 

      subroutine error_check (n,m,alpha,dx,dy,u,f) 
      implicit none 
************************************************************
* Checks error between numerical and exact solution 
*
************************************************************ 
     
      integer n,m
      double precision u(n,m),f(n,m),dx,dy,alpha 
      
      integer i,j
      double precision xx,yy,temp,error 

      dx = 2.0 / (n-1)
      dy = 2.0 / (m-1)
      error = 0.0 

!$omp parallel do private(xx,yy,temp) reduction(+:error)
      do j = 1,m
         do i = 1,n
            xx = -1.0d0 + dx * dble(i-1)
            yy = -1.0d0 + dy * dble(j-1)
            temp  = u(i,j) - (1.0-xx*xx)*(1.0-yy*yy)
            error = error + temp*temp 
         enddo
      enddo
  
      error = sqrt(error)/dble(n*m)

      print *, 'Solution Error : ',error

      return 
      end