1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
|
/* DES.java --
Copyright (C) 2002, 2003, 2006 Free Software Foundation, Inc.
This file is a part of GNU Classpath.
GNU Classpath is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or (at
your option) any later version.
GNU Classpath is distributed in the hope that it will be useful, but
WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
General Public License for more details.
You should have received a copy of the GNU General Public License
along with GNU Classpath; if not, write to the Free Software
Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301
USA
Linking this library statically or dynamically with other modules is
making a combined work based on this library. Thus, the terms and
conditions of the GNU General Public License cover the whole
combination.
As a special exception, the copyright holders of this library give you
permission to link this library with independent modules to produce an
executable, regardless of the license terms of these independent
modules, and to copy and distribute the resulting executable under
terms of your choice, provided that you also meet, for each linked
independent module, the terms and conditions of the license of that
module. An independent module is a module which is not derived from
or based on this library. If you modify this library, you may extend
this exception to your version of the library, but you are not
obligated to do so. If you do not wish to do so, delete this
exception statement from your version. */
package gnu.javax.crypto.cipher;
import gnu.java.security.Registry;
import gnu.java.security.Properties;
import gnu.java.security.util.Util;
import java.security.InvalidKeyException;
import java.util.Arrays;
import java.util.Collections;
import java.util.Iterator;
/**
* The Data Encryption Standard. DES is a 64-bit block cipher with a 56-bit
* key, developed by IBM in the 1970's for the standardization process begun by
* the National Bureau of Standards (now NIST).
* <p>
* New applications should not use DES except for compatibility.
* <p>
* This version is based upon the description and sample implementation in
* [1].
* <p>
* References:
* <ol>
* <li>Bruce Schneier, <i>Applied Cryptography: Protocols, Algorithms, and
* Source Code in C, Second Edition</i>. (1996 John Wiley and Sons) ISBN
* 0-471-11709-9. Pages 265--301, 623--632.</li>
* </ol>
*/
public class DES
extends BaseCipher
{
/** DES operates on 64 bit blocks. */
public static final int BLOCK_SIZE = 8;
/** DES uses 56 bits of a 64 bit parity-adjusted key. */
public static final int KEY_SIZE = 8;
// S-Boxes 1 through 8.
private static final int[] SP1 = new int[] {
0x01010400, 0x00000000, 0x00010000, 0x01010404, 0x01010004, 0x00010404,
0x00000004, 0x00010000, 0x00000400, 0x01010400, 0x01010404, 0x00000400,
0x01000404, 0x01010004, 0x01000000, 0x00000004, 0x00000404, 0x01000400,
0x01000400, 0x00010400, 0x00010400, 0x01010000, 0x01010000, 0x01000404,
0x00010004, 0x01000004, 0x01000004, 0x00010004, 0x00000000, 0x00000404,
0x00010404, 0x01000000, 0x00010000, 0x01010404, 0x00000004, 0x01010000,
0x01010400, 0x01000000, 0x01000000, 0x00000400, 0x01010004, 0x00010000,
0x00010400, 0x01000004, 0x00000400, 0x00000004, 0x01000404, 0x00010404,
0x01010404, 0x00010004, 0x01010000, 0x01000404, 0x01000004, 0x00000404,
0x00010404, 0x01010400, 0x00000404, 0x01000400, 0x01000400, 0x00000000,
0x00010004, 0x00010400, 0x00000000, 0x01010004 };
private static final int[] SP2 = new int[] {
0x80108020, 0x80008000, 0x00008000, 0x00108020, 0x00100000, 0x00000020,
0x80100020, 0x80008020, 0x80000020, 0x80108020, 0x80108000, 0x80000000,
0x80008000, 0x00100000, 0x00000020, 0x80100020, 0x00108000, 0x00100020,
0x80008020, 0x00000000, 0x80000000, 0x00008000, 0x00108020, 0x80100000,
0x00100020, 0x80000020, 0x00000000, 0x00108000, 0x00008020, 0x80108000,
0x80100000, 0x00008020, 0x00000000, 0x00108020, 0x80100020, 0x00100000,
0x80008020, 0x80100000, 0x80108000, 0x00008000, 0x80100000, 0x80008000,
0x00000020, 0x80108020, 0x00108020, 0x00000020, 0x00008000, 0x80000000,
0x00008020, 0x80108000, 0x00100000, 0x80000020, 0x00100020, 0x80008020,
0x80000020, 0x00100020, 0x00108000, 0x00000000, 0x80008000, 0x00008020,
0x80000000, 0x80100020, 0x80108020, 0x00108000 };
private static final int[] SP3 = new int[] {
0x00000208, 0x08020200, 0x00000000, 0x08020008, 0x08000200, 0x00000000,
0x00020208, 0x08000200, 0x00020008, 0x08000008, 0x08000008, 0x00020000,
0x08020208, 0x00020008, 0x08020000, 0x00000208, 0x08000000, 0x00000008,
0x08020200, 0x00000200, 0x00020200, 0x08020000, 0x08020008, 0x00020208,
0x08000208, 0x00020200, 0x00020000, 0x08000208, 0x00000008, 0x08020208,
0x00000200, 0x08000000, 0x08020200, 0x08000000, 0x00020008, 0x00000208,
0x00020000, 0x08020200, 0x08000200, 0x00000000, 0x00000200, 0x00020008,
0x08020208, 0x08000200, 0x08000008, 0x00000200, 0x00000000, 0x08020008,
0x08000208, 0x00020000, 0x08000000, 0x08020208, 0x00000008, 0x00020208,
0x00020200, 0x08000008, 0x08020000, 0x08000208, 0x00000208, 0x08020000,
0x00020208, 0x00000008, 0x08020008, 0x00020200 };
private static final int[] SP4 = new int[] {
0x00802001, 0x00002081, 0x00002081, 0x00000080, 0x00802080, 0x00800081,
0x00800001, 0x00002001, 0x00000000, 0x00802000, 0x00802000, 0x00802081,
0x00000081, 0x00000000, 0x00800080, 0x00800001, 0x00000001, 0x00002000,
0x00800000, 0x00802001, 0x00000080, 0x00800000, 0x00002001, 0x00002080,
0x00800081, 0x00000001, 0x00002080, 0x00800080, 0x00002000, 0x00802080,
0x00802081, 0x00000081, 0x00800080, 0x00800001, 0x00802000, 0x00802081,
0x00000081, 0x00000000, 0x00000000, 0x00802000, 0x00002080, 0x00800080,
0x00800081, 0x00000001, 0x00802001, 0x00002081, 0x00002081, 0x00000080,
0x00802081, 0x00000081, 0x00000001, 0x00002000, 0x00800001, 0x00002001,
0x00802080, 0x00800081, 0x00002001, 0x00002080, 0x00800000, 0x00802001,
0x00000080, 0x00800000, 0x00002000, 0x00802080 };
private static final int[] SP5 = new int[] {
0x00000100, 0x02080100, 0x02080000, 0x42000100, 0x00080000, 0x00000100,
0x40000000, 0x02080000, 0x40080100, 0x00080000, 0x02000100, 0x40080100,
0x42000100, 0x42080000, 0x00080100, 0x40000000, 0x02000000, 0x40080000,
0x40080000, 0x00000000, 0x40000100, 0x42080100, 0x42080100, 0x02000100,
0x42080000, 0x40000100, 0x00000000, 0x42000000, 0x02080100, 0x02000000,
0x42000000, 0x00080100, 0x00080000, 0x42000100, 0x00000100, 0x02000000,
0x40000000, 0x02080000, 0x42000100, 0x40080100, 0x02000100, 0x40000000,
0x42080000, 0x02080100, 0x40080100, 0x00000100, 0x02000000, 0x42080000,
0x42080100, 0x00080100, 0x42000000, 0x42080100, 0x02080000, 0x00000000,
0x40080000, 0x42000000, 0x00080100, 0x02000100, 0x40000100, 0x00080000,
0x00000000, 0x40080000, 0x02080100, 0x40000100 };
private static final int[] SP6 = new int[] {
0x20000010, 0x20400000, 0x00004000, 0x20404010, 0x20400000, 0x00000010,
0x20404010, 0x00400000, 0x20004000, 0x00404010, 0x00400000, 0x20000010,
0x00400010, 0x20004000, 0x20000000, 0x00004010, 0x00000000, 0x00400010,
0x20004010, 0x00004000, 0x00404000, 0x20004010, 0x00000010, 0x20400010,
0x20400010, 0x00000000, 0x00404010, 0x20404000, 0x00004010, 0x00404000,
0x20404000, 0x20000000, 0x20004000, 0x00000010, 0x20400010, 0x00404000,
0x20404010, 0x00400000, 0x00004010, 0x20000010, 0x00400000, 0x20004000,
0x20000000, 0x00004010, 0x20000010, 0x20404010, 0x00404000, 0x20400000,
0x00404010, 0x20404000, 0x00000000, 0x20400010, 0x00000010, 0x00004000,
0x20400000, 0x00404010, 0x00004000, 0x00400010, 0x20004010, 0x00000000,
0x20404000, 0x20000000, 0x00400010, 0x20004010 };
private static final int[] SP7 = new int[] {
0x00200000, 0x04200002, 0x04000802, 0x00000000, 0x00000800, 0x04000802,
0x00200802, 0x04200800, 0x04200802, 0x00200000, 0x00000000, 0x04000002,
0x00000002, 0x04000000, 0x04200002, 0x00000802, 0x04000800, 0x00200802,
0x00200002, 0x04000800, 0x04000002, 0x04200000, 0x04200800, 0x00200002,
0x04200000, 0x00000800, 0x00000802, 0x04200802, 0x00200800, 0x00000002,
0x04000000, 0x00200800, 0x04000000, 0x00200800, 0x00200000, 0x04000802,
0x04000802, 0x04200002, 0x04200002, 0x00000002, 0x00200002, 0x04000000,
0x04000800, 0x00200000, 0x04200800, 0x00000802, 0x00200802, 0x04200800,
0x00000802, 0x04000002, 0x04200802, 0x04200000, 0x00200800, 0x00000000,
0x00000002, 0x04200802, 0x00000000, 0x00200802, 0x04200000, 0x00000800,
0x04000002, 0x04000800, 0x00000800, 0x00200002 };
private static final int[] SP8 = new int[] {
0x10001040, 0x00001000, 0x00040000, 0x10041040, 0x10000000, 0x10001040,
0x00000040, 0x10000000, 0x00040040, 0x10040000, 0x10041040, 0x00041000,
0x10041000, 0x00041040, 0x00001000, 0x00000040, 0x10040000, 0x10000040,
0x10001000, 0x00001040, 0x00041000, 0x00040040, 0x10040040, 0x10041000,
0x00001040, 0x00000000, 0x00000000, 0x10040040, 0x10000040, 0x10001000,
0x00041040, 0x00040000, 0x00041040, 0x00040000, 0x10041000, 0x00001000,
0x00000040, 0x10040040, 0x00001000, 0x00041040, 0x10001000, 0x00000040,
0x10000040, 0x10040000, 0x10040040, 0x10000000, 0x00040000, 0x10001040,
0x00000000, 0x10041040, 0x00040040, 0x10000040, 0x10040000, 0x10001000,
0x10001040, 0x00000000, 0x10041040, 0x00041000, 0x00041000, 0x00001040,
0x00001040, 0x00040040, 0x10000000, 0x10041000 };
/**
* Constants that help in determining whether or not a byte array is parity
* adjusted.
*/
private static final byte[] PARITY = {
8, 1, 0, 8, 0, 8, 8, 0, 0, 8, 8, 0, 8, 0, 2, 8,
0, 8, 8, 0, 8, 0, 0, 8, 8, 0, 0, 8, 0, 8, 8, 3,
0, 8, 8, 0, 8, 0, 0, 8, 8, 0, 0, 8, 0, 8, 8, 0,
8, 0, 0, 8, 0, 8, 8, 0, 0, 8, 8, 0, 8, 0, 0, 8,
0, 8, 8, 0, 8, 0, 0, 8, 8, 0, 0, 8, 0, 8, 8, 0,
8, 0, 0, 8, 0, 8, 8, 0, 0, 8, 8, 0, 8, 0, 0, 8,
8, 0, 0, 8, 0, 8, 8, 0, 0, 8, 8, 0, 8, 0, 0, 8,
0, 8, 8, 0, 8, 0, 0, 8, 8, 0, 0, 8, 0, 8, 8, 0,
0, 8, 8, 0, 8, 0, 0, 8, 8, 0, 0, 8, 0, 8, 8, 0,
8, 0, 0, 8, 0, 8, 8, 0, 0, 8, 8, 0, 8, 0, 0, 8,
8, 0, 0, 8, 0, 8, 8, 0, 0, 8, 8, 0, 8, 0, 0, 8,
0, 8, 8, 0, 8, 0, 0, 8, 8, 0, 0, 8, 0, 8, 8, 0,
8, 0, 0, 8, 0, 8, 8, 0, 0, 8, 8, 0, 8, 0, 0, 8,
0, 8, 8, 0, 8, 0, 0, 8, 8, 0, 0, 8, 0, 8, 8, 0,
4, 8, 8, 0, 8, 0, 0, 8, 8, 0, 0, 8, 0, 8, 8, 0,
8, 5, 0, 8, 0, 8, 8, 0, 0, 8, 8, 0, 8, 0, 6, 8 };
// Key schedule constants.
private static final byte[] ROTARS = {
1, 2, 4, 6, 8, 10, 12, 14, 15, 17, 19, 21, 23, 25, 27, 28 };
private static final byte[] PC1 = {
56, 48, 40, 32, 24, 16, 8, 0, 57, 49, 41, 33, 25, 17, 9, 1,
58, 50, 42, 34, 26, 18, 10, 2, 59, 51, 43, 35, 62, 54, 46, 38,
30, 22, 14, 6, 61, 53, 45, 37, 29, 21, 13, 5, 60, 52, 44, 36,
28, 20, 12, 4, 27, 19, 11, 3 };
private static final byte[] PC2 = {
13, 16, 10, 23, 0, 4, 2, 27, 14, 5, 20, 9, 22, 18, 11, 3,
25, 7, 15, 6, 26, 19, 12, 1, 40, 51, 30, 36, 46, 54, 29, 39,
50, 44, 32, 47, 43, 48, 38, 55, 33, 52, 45, 41, 49, 35, 28, 31 };
/**
* Weak keys (parity adjusted): If all the bits in each half are either 0
* or 1, then the key used for any cycle of the algorithm is the same as
* all other cycles.
*/
public static final byte[][] WEAK_KEYS = {
Util.toBytesFromString("0101010101010101"),
Util.toBytesFromString("01010101FEFEFEFE"),
Util.toBytesFromString("FEFEFEFE01010101"),
Util.toBytesFromString("FEFEFEFEFEFEFEFE") };
/**
* Semi-weak keys (parity adjusted): Some pairs of keys encrypt plain text
* to identical cipher text. In other words, one key in the pair can decrypt
* messages that were encrypted with the other key. These keys are called
* semi-weak keys. This occurs because instead of 16 different sub-keys being
* generated, these semi-weak keys produce only two different sub-keys.
*/
public static final byte[][] SEMIWEAK_KEYS = {
Util.toBytesFromString("01FE01FE01FE01FE"),
Util.toBytesFromString("FE01FE01FE01FE01"),
Util.toBytesFromString("1FE01FE00EF10EF1"),
Util.toBytesFromString("E01FE01FF10EF10E"),
Util.toBytesFromString("01E001E001F101F1"),
Util.toBytesFromString("E001E001F101F101"),
Util.toBytesFromString("1FFE1FFE0EFE0EFE"),
Util.toBytesFromString("FE1FFE1FFE0EFE0E"),
Util.toBytesFromString("011F011F010E010E"),
Util.toBytesFromString("1F011F010E010E01"),
Util.toBytesFromString("E0FEE0FEF1FEF1FE"),
Util.toBytesFromString("FEE0FEE0FEF1FEF1") };
/** Possible weak keys (parity adjusted) --produce 4 instead of 16 subkeys. */
public static final byte[][] POSSIBLE_WEAK_KEYS = {
Util.toBytesFromString("1F1F01010E0E0101"),
Util.toBytesFromString("011F1F01010E0E01"),
Util.toBytesFromString("1F01011F0E01010E"),
Util.toBytesFromString("01011F1F01010E0E"),
Util.toBytesFromString("E0E00101F1F10101"),
Util.toBytesFromString("FEFE0101FEFE0101"),
Util.toBytesFromString("FEE01F01FEF10E01"),
Util.toBytesFromString("E0FE1F01F1FE0E01"),
Util.toBytesFromString("FEE0011FFEF1010E"),
Util.toBytesFromString("E0FE011FF1FE010E"),
Util.toBytesFromString("E0E01F1FF1F10E0E"),
Util.toBytesFromString("FEFE1F1FFEFE0E0E"),
Util.toBytesFromString("1F1F01010E0E0101"),
Util.toBytesFromString("011F1F01010E0E01"),
Util.toBytesFromString("1F01011F0E01010E"),
Util.toBytesFromString("01011F1F01010E0E"),
Util.toBytesFromString("01E0E00101F1F101"),
Util.toBytesFromString("1FFEE0010EFEF001"),
Util.toBytesFromString("1FE0FE010EF1FE01"),
Util.toBytesFromString("01FEFE0101FEFE01"),
Util.toBytesFromString("1FE0E01F0EF1F10E"),
Util.toBytesFromString("01FEE01F01FEF10E"),
Util.toBytesFromString("01E0FE1F01F1FE0E"),
Util.toBytesFromString("1FFEFE1F0EFEFE0E"),
Util.toBytesFromString("E00101E0F10101F1"),
Util.toBytesFromString("FE1F01E0FE0E0EF1"),
Util.toBytesFromString("FE011FE0FE010EF1"),
Util.toBytesFromString("E01F1FE0F10E0EF1"),
Util.toBytesFromString("FE0101FEFE0101FE"),
Util.toBytesFromString("E01F01FEF10E01FE"),
Util.toBytesFromString("E0011FFEF1010EFE"),
Util.toBytesFromString("FE1F1FFEFE0E0EFE"),
Util.toBytesFromString("1FFE01E00EFE01F1"),
Util.toBytesFromString("01FE1FE001FE0EF1"),
Util.toBytesFromString("1FE001FE0EF101FE"),
Util.toBytesFromString("01E01FFE01F10EFE"),
Util.toBytesFromString("0101E0E00101F1F1"),
Util.toBytesFromString("1F1FE0E00E0EF1F1"),
Util.toBytesFromString("1F01FEE00E01FEF1"),
Util.toBytesFromString("011FFEE0010EFEF1"),
Util.toBytesFromString("1F01E0FE0E01F1FE"),
Util.toBytesFromString("011FE0FE010EF1FE"),
Util.toBytesFromString("0101FEFE0001FEFE"),
Util.toBytesFromString("1F1FFEFE0E0EFEFE"),
Util.toBytesFromString("FEFEE0E0FEFEF1F1"),
Util.toBytesFromString("E0FEFEE0F1FEFEF1"),
Util.toBytesFromString("FEE0E0FEFEF1F1FE"),
Util.toBytesFromString("E0E0FEFEF1F1FEFE") };
/** Default 0-argument constructor. */
public DES()
{
super(Registry.DES_CIPHER, BLOCK_SIZE, KEY_SIZE);
}
/**
* Adjust the parity for a raw key array. This essentially means that each
* byte in the array will have an odd number of '1' bits (the last bit in
* each byte is unused.
*
* @param kb The key array, to be parity-adjusted.
* @param offset The starting index into the key bytes.
*/
public static void adjustParity(byte[] kb, int offset)
{
for (int i = offset; i < offset + KEY_SIZE; i++)
kb[i] ^= (PARITY[kb[i] & 0xff] == 8) ? 1 : 0;
}
/**
* Test if a byte array, which must be at least 8 bytes long, is parity
* adjusted.
*
* @param kb The key bytes.
* @param offset The starting index into the key bytes.
* @return <code>true</code> if the first 8 bytes of <i>kb</i> have been
* parity adjusted. <code>false</code> otherwise.
*/
public static boolean isParityAdjusted(byte[] kb, int offset)
{
int w = 0x88888888;
int n = PARITY[kb[offset + 0] & 0xff];
n <<= 4;
n |= PARITY[kb[offset + 1] & 0xff];
n <<= 4;
n |= PARITY[kb[offset + 2] & 0xff];
n <<= 4;
n |= PARITY[kb[offset + 3] & 0xff];
n <<= 4;
n |= PARITY[kb[offset + 4] & 0xff];
n <<= 4;
n |= PARITY[kb[offset + 5] & 0xff];
n <<= 4;
n |= PARITY[kb[offset + 6] & 0xff];
n <<= 4;
n |= PARITY[kb[offset + 7] & 0xff];
return (n & w) == 0;
}
/**
* Test if a key is a weak key.
*
* @param kb The key to test.
* @return <code>true</code> if the key is weak.
*/
public static boolean isWeak(byte[] kb)
{
for (int i = 0; i < WEAK_KEYS.length; i++)
if (Arrays.equals(WEAK_KEYS[i], kb))
return true;
return false;
}
/**
* Test if a key is a semi-weak key.
*
* @param kb The key to test.
* @return <code>true</code> if this key is semi-weak.
*/
public static boolean isSemiWeak(byte[] kb)
{
for (int i = 0; i < SEMIWEAK_KEYS.length; i++)
if (Arrays.equals(SEMIWEAK_KEYS[i], kb))
return true;
return false;
}
/**
* Test if the designated byte array represents a possibly weak key.
*
* @param kb the byte array to test.
* @return <code>true</code> if <code>kb</code>represents a possibly weak key.
* Returns <code>false</code> otherwise.
*/
public static boolean isPossibleWeak(byte[] kb)
{
for (int i = 0; i < POSSIBLE_WEAK_KEYS.length; i++)
if (Arrays.equals(POSSIBLE_WEAK_KEYS[i], kb))
return true;
return false;
}
/**
* The core DES function. This is used for both encryption and decryption,
* the only difference being the key.
*
* @param in The input bytes.
* @param i The starting offset into the input bytes.
* @param out The output bytes.
* @param o The starting offset into the output bytes.
* @param key The working key.
*/
private static void desFunc(byte[] in, int i, byte[] out, int o, int[] key)
{
int right, left, work;
// Load.
left = (in[i++] & 0xff) << 24
| (in[i++] & 0xff) << 16
| (in[i++] & 0xff) << 8
| in[i++] & 0xff;
right = (in[i++] & 0xff) << 24
| (in[i++] & 0xff) << 16
| (in[i++] & 0xff) << 8
| in[i ] & 0xff;
// Initial permutation.
work = ((left >>> 4) ^ right) & 0x0F0F0F0F;
left ^= work << 4;
right ^= work;
work = ((left >>> 16) ^ right) & 0x0000FFFF;
left ^= work << 16;
right ^= work;
work = ((right >>> 2) ^ left) & 0x33333333;
right ^= work << 2;
left ^= work;
work = ((right >>> 8) ^ left) & 0x00FF00FF;
right ^= work << 8;
left ^= work;
right = ((right << 1) | ((right >>> 31) & 1)) & 0xFFFFFFFF;
work = (left ^ right) & 0xAAAAAAAA;
left ^= work;
right ^= work;
left = ((left << 1) | ((left >>> 31) & 1)) & 0xFFFFFFFF;
int k = 0, t;
for (int round = 0; round < 8; round++)
{
work = right >>> 4 | right << 28;
work ^= key[k++];
t = SP7[work & 0x3F];
work >>>= 8;
t |= SP5[work & 0x3F];
work >>>= 8;
t |= SP3[work & 0x3F];
work >>>= 8;
t |= SP1[work & 0x3F];
work = right ^ key[k++];
t |= SP8[work & 0x3F];
work >>>= 8;
t |= SP6[work & 0x3F];
work >>>= 8;
t |= SP4[work & 0x3F];
work >>>= 8;
t |= SP2[work & 0x3F];
left ^= t;
work = left >>> 4 | left << 28;
work ^= key[k++];
t = SP7[work & 0x3F];
work >>>= 8;
t |= SP5[work & 0x3F];
work >>>= 8;
t |= SP3[work & 0x3F];
work >>>= 8;
t |= SP1[work & 0x3F];
work = left ^ key[k++];
t |= SP8[work & 0x3F];
work >>>= 8;
t |= SP6[work & 0x3F];
work >>>= 8;
t |= SP4[work & 0x3F];
work >>>= 8;
t |= SP2[work & 0x3F];
right ^= t;
}
// The final permutation.
right = (right << 31) | (right >>> 1);
work = (left ^ right) & 0xAAAAAAAA;
left ^= work;
right ^= work;
left = (left << 31) | (left >>> 1);
work = ((left >>> 8) ^ right) & 0x00FF00FF;
left ^= work << 8;
right ^= work;
work = ((left >>> 2) ^ right) & 0x33333333;
left ^= work << 2;
right ^= work;
work = ((right >>> 16) ^ left) & 0x0000FFFF;
right ^= work << 16;
left ^= work;
work = ((right >>> 4) ^ left) & 0x0F0F0F0F;
right ^= work << 4;
left ^= work;
out[o++] = (byte)(right >>> 24);
out[o++] = (byte)(right >>> 16);
out[o++] = (byte)(right >>> 8);
out[o++] = (byte) right;
out[o++] = (byte)(left >>> 24);
out[o++] = (byte)(left >>> 16);
out[o++] = (byte)(left >>> 8);
out[o ] = (byte) left;
}
public Object clone()
{
return new DES();
}
public Iterator blockSizes()
{
return Collections.singleton(Integer.valueOf(BLOCK_SIZE)).iterator();
}
public Iterator keySizes()
{
return Collections.singleton(Integer.valueOf(KEY_SIZE)).iterator();
}
public Object makeKey(byte[] kb, int bs) throws InvalidKeyException
{
if (kb == null || kb.length != KEY_SIZE)
throw new InvalidKeyException("DES keys must be 8 bytes long");
if (Properties.checkForWeakKeys()
&& (isWeak(kb) || isSemiWeak(kb) || isPossibleWeak(kb)))
throw new WeakKeyException();
int i, j, l, m, n;
long pc1m = 0, pcr = 0;
for (i = 0; i < 56; i++)
{
l = PC1[i];
pc1m |= ((kb[l >>> 3] & (0x80 >>> (l & 7))) != 0) ? (1L << (55 - i))
: 0;
}
Context ctx = new Context();
// Encryption key first.
for (i = 0; i < 16; i++)
{
pcr = 0;
m = i << 1;
n = m + 1;
for (j = 0; j < 28; j++)
{
l = j + ROTARS[i];
if (l < 28)
pcr |= ((pc1m & 1L << (55 - l)) != 0) ? (1L << (55 - j)) : 0;
else
pcr |= ((pc1m & 1L << (55 - (l - 28))) != 0) ? (1L << (55 - j))
: 0;
}
for (j = 28; j < 56; j++)
{
l = j + ROTARS[i];
if (l < 56)
pcr |= ((pc1m & 1L << (55 - l)) != 0) ? (1L << (55 - j)) : 0;
else
pcr |= ((pc1m & 1L << (55 - (l - 28))) != 0) ? (1L << (55 - j))
: 0;
}
for (j = 0; j < 24; j++)
{
if ((pcr & 1L << (55 - PC2[j])) != 0)
ctx.ek[m] |= 1 << (23 - j);
if ((pcr & 1L << (55 - PC2[j + 24])) != 0)
ctx.ek[n] |= 1 << (23 - j);
}
}
// The decryption key is the same, but in reversed order.
for (i = 0; i < Context.EXPANDED_KEY_SIZE; i += 2)
{
ctx.dk[30 - i] = ctx.ek[i];
ctx.dk[31 - i] = ctx.ek[i + 1];
}
// "Cook" the keys.
for (i = 0; i < 32; i += 2)
{
int x, y;
x = ctx.ek[i];
y = ctx.ek[i + 1];
ctx.ek[i ] = ((x & 0x00FC0000) << 6)
| ((x & 0x00000FC0) << 10)
| ((y & 0x00FC0000) >>> 10)
| ((y & 0x00000FC0) >>> 6);
ctx.ek[i + 1] = ((x & 0x0003F000) << 12)
| ((x & 0x0000003F) << 16)
| ((y & 0x0003F000) >>> 4)
| (y & 0x0000003F);
x = ctx.dk[i];
y = ctx.dk[i + 1];
ctx.dk[i ] = ((x & 0x00FC0000) << 6)
| ((x & 0x00000FC0) << 10)
| ((y & 0x00FC0000) >>> 10)
| ((y & 0x00000FC0) >>> 6);
ctx.dk[i + 1] = ((x & 0x0003F000) << 12)
| ((x & 0x0000003F) << 16)
| ((y & 0x0003F000) >>> 4)
| (y & 0x0000003F);
}
return ctx;
}
public void encrypt(byte[] in, int i, byte[] out, int o, Object K, int bs)
{
desFunc(in, i, out, o, ((Context) K).ek);
}
public void decrypt(byte[] in, int i, byte[] out, int o, Object K, int bs)
{
desFunc(in, i, out, o, ((Context) K).dk);
}
/**
* Simple wrapper class around the session keys. Package-private so TripleDES
* can see it.
*/
final class Context
{
private static final int EXPANDED_KEY_SIZE = 32;
/** The encryption key. */
int[] ek;
/** The decryption key. */
int[] dk;
/** Default 0-arguments constructor. */
Context()
{
ek = new int[EXPANDED_KEY_SIZE];
dk = new int[EXPANDED_KEY_SIZE];
}
byte[] getEncryptionKeyBytes()
{
return toByteArray(ek);
}
byte[] getDecryptionKeyBytes()
{
return toByteArray(dk);
}
byte[] toByteArray(int[] k)
{
byte[] result = new byte[4 * k.length];
for (int i = 0, j = 0; i < k.length; i++)
{
result[j++] = (byte)(k[i] >>> 24);
result[j++] = (byte)(k[i] >>> 16);
result[j++] = (byte)(k[i] >>> 8);
result[j++] = (byte) k[i];
}
return result;
}
}
}
|