summaryrefslogtreecommitdiff
path: root/libjava/classpath/java/awt/BasicStroke.java
blob: eac69d9869f8e6d6c770e71556579cd037c00d19 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
/* BasicStroke.java --
   Copyright (C) 2002, 2003, 2004, 2005, 2006  Free Software Foundation, Inc.

This file is part of GNU Classpath.

GNU Classpath is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2, or (at your option)
any later version.

GNU Classpath is distributed in the hope that it will be useful, but
WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
General Public License for more details.

You should have received a copy of the GNU General Public License
along with GNU Classpath; see the file COPYING.  If not, write to the
Free Software Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA
02110-1301 USA.

Linking this library statically or dynamically with other modules is
making a combined work based on this library.  Thus, the terms and
conditions of the GNU General Public License cover the whole
combination.

As a special exception, the copyright holders of this library give you
permission to link this library with independent modules to produce an
executable, regardless of the license terms of these independent
modules, and to copy and distribute the resulting executable under
terms of your choice, provided that you also meet, for each linked
independent module, the terms and conditions of the license of that
module.  An independent module is a module which is not derived from
or based on this library.  If you modify this library, you may extend
this exception to your version of the library, but you are not
obligated to do so.  If you do not wish to do so, delete this
exception statement from your version. */


package java.awt;

import gnu.java.awt.java2d.CubicSegment;
import gnu.java.awt.java2d.LineSegment;
import gnu.java.awt.java2d.QuadSegment;
import gnu.java.awt.java2d.Segment;

import java.awt.geom.FlatteningPathIterator;
import java.awt.geom.GeneralPath;
import java.awt.geom.PathIterator;
import java.awt.geom.Point2D;
import java.util.Arrays;

/**
 * A general purpose {@link Stroke} implementation that can represent a wide
 * variety of line styles for use with subclasses of {@link Graphics2D}.
 * <p>
 * The line cap and join styles can be set using the options illustrated
 * here:
 * <p>
 * <img src="doc-files/capjoin.png" width="350" height="180"
 * alt="Illustration of line cap and join styles" />
 * <p>
 * A dash array can be used to specify lines with alternating opaque and
 * transparent sections.
 */
public class BasicStroke implements Stroke
{
  /**
   * Indicates a mitered line join style. See the class overview for an
   * illustration.
   */
  public static final int JOIN_MITER = 0;

  /**
   * Indicates a rounded line join style. See the class overview for an
   * illustration.
   */
  public static final int JOIN_ROUND = 1;

  /**
   * Indicates a bevelled line join style. See the class overview for an
   * illustration.
   */
  public static final int JOIN_BEVEL = 2;

  /**
   * Indicates a flat line cap style. See the class overview for an
   * illustration.
   */
  public static final int CAP_BUTT = 0;

  /**
   * Indicates a rounded line cap style. See the class overview for an
   * illustration.
   */
  public static final int CAP_ROUND = 1;

  /**
   * Indicates a square line cap style. See the class overview for an
   * illustration.
   */
  public static final int CAP_SQUARE = 2;

  /** The stroke width. */
  private final float width;

  /** The line cap style. */
  private final int cap;

  /** The line join style. */
  private final int join;

  /** The miter limit. */
  private final float limit;

  /** The dash array. */
  private final float[] dash;

  /** The dash phase. */
  private final float phase;

  // The inner and outer paths of the stroke
  private Segment start, end;

  /**
   * Creates a new <code>BasicStroke</code> instance with the given attributes.
   *
   * @param width  the line width (>= 0.0f).
   * @param cap  the line cap style (one of {@link #CAP_BUTT},
   *             {@link #CAP_ROUND} or {@link #CAP_SQUARE}).
   * @param join  the line join style (one of {@link #JOIN_ROUND},
   *              {@link #JOIN_BEVEL}, or {@link #JOIN_MITER}).
   * @param miterlimit  the limit to trim the miter join. The miterlimit must be
   * greater than or equal to 1.0f.
   * @param dash The array representing the dashing pattern. There must be at
   * least one non-zero entry.
   * @param dashPhase is negative and dash is not null.
   *
   * @throws IllegalArgumentException If one input parameter doesn't meet
   * its needs.
   */
  public BasicStroke(float width, int cap, int join, float miterlimit,
                     float[] dash, float dashPhase)
  {
    if (width < 0.0f )
      throw new IllegalArgumentException("width " + width + " < 0");
    else if (cap < CAP_BUTT || cap > CAP_SQUARE)
      throw new IllegalArgumentException("cap " + cap + " out of range ["
                                         + CAP_BUTT + ".." + CAP_SQUARE + "]");
    else if (miterlimit < 1.0f && join == JOIN_MITER)
      throw new IllegalArgumentException("miterlimit " + miterlimit
                                         + " < 1.0f while join == JOIN_MITER");
    else if (join < JOIN_MITER || join > JOIN_BEVEL)
      throw new IllegalArgumentException("join " + join + " out of range ["
                                         + JOIN_MITER + ".." + JOIN_BEVEL
                                         + "]");
    else if (dashPhase < 0.0f && dash != null)
      throw new IllegalArgumentException("dashPhase " + dashPhase
                                         + " < 0.0f while dash != null");
    else if (dash != null)
      if (dash.length == 0)
        throw new IllegalArgumentException("dash.length is 0");
      else
        {
          boolean allZero = true;

          for ( int i = 0; i < dash.length; ++i)
            {
              if (dash[i] != 0.0f)
                {
                  allZero = false;
                  break;
                }
            }

          if (allZero)
            throw new IllegalArgumentException("all dashes are 0.0f");
        }

    this.width = width;
    this.cap = cap;
    this.join = join;
    limit = miterlimit;
    this.dash = dash == null ? null : (float[]) dash.clone();
    phase = dashPhase;
  }

  /**
   * Creates a new <code>BasicStroke</code> instance with the given attributes.
   *
   * @param width  the line width (>= 0.0f).
   * @param cap  the line cap style (one of {@link #CAP_BUTT},
   *             {@link #CAP_ROUND} or {@link #CAP_SQUARE}).
   * @param join  the line join style (one of {@link #JOIN_ROUND},
   *              {@link #JOIN_BEVEL}, or {@link #JOIN_MITER}).
   * @param miterlimit the limit to trim the miter join. The miterlimit must be
   * greater than or equal to 1.0f.
   *
   * @throws IllegalArgumentException If one input parameter doesn't meet
   * its needs.
   */
  public BasicStroke(float width, int cap, int join, float miterlimit)
  {
    this(width, cap, join, miterlimit, null, 0);
  }

  /**
   * Creates a new <code>BasicStroke</code> instance with the given attributes.
   * The miter limit defaults to <code>10.0</code>.
   *
   * @param width  the line width (>= 0.0f).
   * @param cap  the line cap style (one of {@link #CAP_BUTT},
   *             {@link #CAP_ROUND} or {@link #CAP_SQUARE}).
   * @param join  the line join style (one of {@link #JOIN_ROUND},
   *              {@link #JOIN_BEVEL}, or {@link #JOIN_MITER}).
   *
   * @throws IllegalArgumentException If one input parameter doesn't meet
   * its needs.
   */
  public BasicStroke(float width, int cap, int join)
  {
    this(width, cap, join, 10, null, 0);
  }

  /**
   * Creates a new <code>BasicStroke</code> instance with the given line
   * width.  The default values are:
   * <ul>
   * <li>line cap style: {@link #CAP_SQUARE};</li>
   * <li>line join style: {@link #JOIN_MITER};</li>
   * <li>miter limit: <code>10.0f</code>.
   * </ul>
   *
   * @param width  the line width (>= 0.0f).
   *
   * @throws IllegalArgumentException If <code>width</code> is negative.
   */
  public BasicStroke(float width)
  {
    this(width, CAP_SQUARE, JOIN_MITER, 10, null, 0);
  }

  /**
   * Creates a new <code>BasicStroke</code> instance.  The default values are:
   * <ul>
   * <li>line width: <code>1.0f</code>;</li>
   * <li>line cap style: {@link #CAP_SQUARE};</li>
   * <li>line join style: {@link #JOIN_MITER};</li>
   * <li>miter limit: <code>10.0f</code>.
   * </ul>
   */
  public BasicStroke()
  {
    this(1, CAP_SQUARE, JOIN_MITER, 10, null, 0);
  }

  /**
   * Creates a shape representing the stroked outline of the given shape.
   * THIS METHOD IS NOT YET IMPLEMENTED.
   *
   * @param s  the shape.
   */
  public Shape createStrokedShape(Shape s)
  {
    PathIterator pi = s.getPathIterator(null);

    if( dash == null )
      return solidStroke( pi );

    return dashedStroke( pi );
  }

  /**
   * Returns the line width.
   *
   * @return The line width.
   */
  public float getLineWidth()
  {
    return width;
  }

  /**
   * Returns a code indicating the line cap style (one of {@link #CAP_BUTT},
   * {@link #CAP_ROUND}, {@link #CAP_SQUARE}).
   *
   * @return A code indicating the line cap style.
   */
  public int getEndCap()
  {
    return cap;
  }

  /**
   * Returns a code indicating the line join style (one of {@link #JOIN_BEVEL},
   * {@link #JOIN_MITER} or {@link #JOIN_ROUND}).
   *
   * @return A code indicating the line join style.
   */
  public int getLineJoin()
  {
    return join;
  }

  /**
   * Returns the miter limit.
   *
   * @return The miter limit.
   */
  public float getMiterLimit()
  {
    return limit;
  }

  /**
   * Returns the dash array, which defines the length of alternate opaque and
   * transparent sections in lines drawn with this stroke.  If
   * <code>null</code>, a continuous line will be drawn.
   *
   * @return The dash array (possibly <code>null</code>).
   */
  public float[] getDashArray()
  {
    return dash;
  }

  /**
   * Returns the dash phase for the stroke.  This is the offset from the start
   * of a path at which the pattern defined by {@link #getDashArray()} is
   * rendered.
   *
   * @return The dash phase.
   */
  public float getDashPhase()
  {
    return phase;
  }

  /**
   * Returns the hash code for this object. The hash is calculated by
   * xoring the hash, cap, join, limit, dash array and phase values
   * (converted to <code>int</code> first with
   * <code>Float.floatToIntBits()</code> if the value is a
   * <code>float</code>).
   *
   * @return The hash code.
   */
  public int hashCode()
  {
    int hash = Float.floatToIntBits(width);
    hash ^= cap;
    hash ^= join;
    hash ^= Float.floatToIntBits(limit);

    if (dash != null)
      for (int i = 0; i < dash.length; i++)
        hash ^=  Float.floatToIntBits(dash[i]);

    hash ^= Float.floatToIntBits(phase);

    return hash;
  }

  /**
   * Compares this <code>BasicStroke</code> for equality with an arbitrary
   * object.  This method returns <code>true</code> if and only if:
   * <ul>
   * <li><code>o</code> is an instanceof <code>BasicStroke</code>;</li>
   * <li>this object has the same width, line cap style, line join style,
   * miter limit, dash array and dash phase as <code>o</code>.</li>
   * </ul>
   *
   * @param o  the object (<code>null</code> permitted).
   *
   * @return <code>true</code> if this stroke is equal to <code>o</code> and
   *         <code>false</code> otherwise.
   */
  public boolean equals(Object o)
  {
    if (! (o instanceof BasicStroke))
      return false;
    BasicStroke s = (BasicStroke) o;
    return width == s.width && cap == s.cap && join == s.join
      && limit == s.limit && Arrays.equals(dash, s.dash) && phase == s.phase;
  }

  private Shape solidStroke(PathIterator pi)
  {
    double[] coords = new double[6];
    double x, y, x0, y0;
    boolean pathOpen = false;
    GeneralPath output = new GeneralPath( );
    Segment[] p;
    x = x0 = y = y0 = 0;

    while( !pi.isDone() )
      {
        switch( pi.currentSegment(coords) )
          {
          case PathIterator.SEG_MOVETO:
            x0 = x = coords[0];
            y0 = y = coords[1];
            if( pathOpen )
              {
                capEnds();
                convertPath(output, start);
                start = end = null;
                pathOpen = false;
              }
            break;

          case PathIterator.SEG_LINETO:
            p = (new LineSegment(x, y, coords[0], coords[1])).
              getDisplacedSegments(width/2.0);
            if( !pathOpen )
              {
                start = p[0];
                end = p[1];
                pathOpen = true;
              }
            else
              addSegments(p);

            x = coords[0];
            y = coords[1];
            break;

          case PathIterator.SEG_QUADTO:
            p = (new QuadSegment(x, y, coords[0], coords[1], coords[2],
                                 coords[3])).getDisplacedSegments(width/2.0);
            if( !pathOpen )
              {
                start = p[0];
                end = p[1];
                pathOpen = true;
              }
            else
              addSegments(p);

            x = coords[2];
            y = coords[3];
            break;

          case PathIterator.SEG_CUBICTO:
            p = new CubicSegment(x, y, coords[0], coords[1],
                                 coords[2], coords[3],
                                 coords[4], coords[5]).getDisplacedSegments(width/2.0);
            if( !pathOpen )
              {
                start = p[0];
                end = p[1];
                pathOpen = true;
              }
            else
              addSegments(p);

            x = coords[4];
            y = coords[5];
            break;

          case PathIterator.SEG_CLOSE:
            if (x == x0 && y == y0)
              {
                joinSegments(new Segment[] { start.first, end.first });
              }
            else
              {
                p = (new LineSegment(x, y, x0, y0)).getDisplacedSegments(width / 2.0);
                addSegments(p);
              }
            convertPath(output, start);
            convertPath(output, end);
            start = end = null;
            pathOpen = false;
            output.setWindingRule(GeneralPath.WIND_EVEN_ODD);
            break;
          }
        pi.next();
      }

    if( pathOpen )
      {
        capEnds();
        convertPath(output, start);
      }
    return output;
  }

  private Shape dashedStroke(PathIterator pi)
  {
    // The choice of (flatnessSq == width / 3) is made to be consistent with
    // the flattening in CubicSegment.getDisplacedSegments
    FlatteningPathIterator flat = new FlatteningPathIterator(pi,
                                                             Math.sqrt(width / 3));

    // Holds the endpoint of the current segment (or piece of a segment)
    double[] coords = new double[2];

    // Holds end of the last segment
    double x, y, x0, y0;
    x = x0 = y = y0 = 0;

    // Various useful flags
    boolean pathOpen = false;
    boolean dashOn = true;
    boolean offsetting = (phase != 0);

    // How far we are into the current dash
    double distance = 0;
    int dashIndex = 0;

    // And variables to hold the final output
    GeneralPath output = new GeneralPath();
    Segment[] p;

    // Iterate over the FlatteningPathIterator
    while (! flat.isDone())
      {
        switch (flat.currentSegment(coords))
          {
          case PathIterator.SEG_MOVETO:
            x0 = x = coords[0];
            y0 = y = coords[1];

            if (pathOpen)
              {
                capEnds();
                convertPath(output, start);
                start = end = null;
                pathOpen = false;
              }

            break;

          case PathIterator.SEG_LINETO:
            boolean segmentConsumed = false;

            while (! segmentConsumed)
              {
                // Find the total remaining length of this segment
                double segLength = Math.sqrt((x - coords[0]) * (x - coords[0])
                                             + (y - coords[1])
                                             * (y - coords[1]));
                boolean spanBoundary = true;
                double[] segmentEnd = null;

                // The current segment fits entirely inside the current dash
                if ((offsetting && distance + segLength <= phase)
                    || distance + segLength <= dash[dashIndex])
                  {
                    spanBoundary = false;
                  }

                // Otherwise, we need to split the segment in two, as this
                // segment spans a dash boundry
                else
                  {
                    segmentEnd = (double[]) coords.clone();

                    // Calculate the remaining distance in this dash,
                    // and coordinates of the dash boundary
                    double reqLength;
                    if (offsetting)
                      reqLength = phase - distance;
                    else
                      reqLength = dash[dashIndex] - distance;

                    coords[0] = x + ((coords[0] - x) * reqLength / segLength);
                    coords[1] = y + ((coords[1] - y) * reqLength / segLength);
                  }

                if (offsetting || ! dashOn)
                  {
                    // Dash is off, or we are in offset - treat this as a
                    // moveTo
                    x0 = x = coords[0];
                    y0 = y = coords[1];

                    if (pathOpen)
                      {
                        capEnds();
                        convertPath(output, start);
                        start = end = null;
                        pathOpen = false;
                      }
                  }
                else
                  {
                    // Dash is on - treat this as a lineTo
                    p = (new LineSegment(x, y, coords[0], coords[1])).getDisplacedSegments(width / 2.0);

                    if (! pathOpen)
                      {
                        start = p[0];
                        end = p[1];
                        pathOpen = true;
                      }
                    else
                      addSegments(p);

                    x = coords[0];
                    y = coords[1];
                  }

                // Update variables depending on whether we spanned a
                // dash boundary or not
                if (! spanBoundary)
                  {
                    distance += segLength;
                    segmentConsumed = true;
                  }
                else
                  {
                    if (offsetting)
                      offsetting = false;
                    dashOn = ! dashOn;
                    distance = 0;
                    coords = segmentEnd;

                    if (dashIndex + 1 == dash.length)
                      dashIndex = 0;
                    else
                      dashIndex++;

                    // Since the value of segmentConsumed is still false,
                    // the next run of the while loop will complete the segment
                  }
              }
            break;

          // This is a flattened path, so we don't need to deal with curves
          }
        flat.next();
      }

    if (pathOpen)
      {
        capEnds();
        convertPath(output, start);
      }
    return output;
  }

  /**
   * Cap the ends of the path (joining the start and end list of segments)
   */
  private void capEnds()
  {
    Segment returnPath = end.last;

    end.reverseAll(); // reverse the path.
    end = null;
    capEnd(start, returnPath);
    start.last = returnPath.last;
    end = null;

    capEnd(start, start);
  }

  /**
   * Append the Segments in s to the GeneralPath p
   */
  private void convertPath(GeneralPath p, Segment s)
  {
    Segment v = s;
    p.moveTo((float)s.P1.getX(), (float)s.P1.getY());

    do
      {
        if(v instanceof LineSegment)
          p.lineTo((float)v.P2.getX(), (float)v.P2.getY());
        else if(v instanceof QuadSegment)
          p.quadTo((float)((QuadSegment)v).cp.getX(),
                   (float)((QuadSegment)v).cp.getY(),
                   (float)v.P2.getX(),
                   (float)v.P2.getY());
        else if(v instanceof CubicSegment)
          p.curveTo((float)((CubicSegment)v).cp1.getX(),
                    (float)((CubicSegment)v).cp1.getY(),
                    (float)((CubicSegment)v).cp2.getX(),
                    (float)((CubicSegment)v).cp2.getY(),
                    (float)v.P2.getX(),
                    (float)v.P2.getY());
        v = v.next;
      } while(v != s && v != null);

    p.closePath();
  }

  /**
   * Add the segments to start and end (the inner and outer edges of the stroke)
   */
  private void addSegments(Segment[] segments)
  {
    joinSegments(segments);
    start.add(segments[0]);
    end.add(segments[1]);
  }

  private void joinSegments(Segment[] segments)
  {
    double[] p0 = start.last.cp2();
    double[] p1 = new double[]{start.last.P2.getX(), start.last.P2.getY()};
    double[] p2 = new double[]{segments[0].first.P1.getX(), segments[0].first.P1.getY()};
    double[] p3 = segments[0].cp1();
    Point2D p;

    p = lineIntersection(p0[0],p0[1],p1[0],p1[1],
                                 p2[0],p2[1],p3[0],p3[1], false);

    double det = (p1[0] - p0[0])*(p3[1] - p2[1]) -
      (p3[0] - p2[0])*(p1[1] - p0[1]);

    if( det > 0 )
      {
        // start and segment[0] form the 'inner' part of a join,
        // connect the overlapping segments
        joinInnerSegments(start, segments[0], p);
        joinOuterSegments(end, segments[1], p);
      }
    else
      {
        // end and segment[1] form the 'inner' part
        joinInnerSegments(end, segments[1], p);
        joinOuterSegments(start, segments[0], p);
      }
  }

  /**
   * Make a cap between a and b segments,
   * where a-->b is the direction of iteration.
   */
  private void capEnd(Segment a, Segment b)
  {
    double[] p0, p1;
    double dx, dy, l;
    Point2D c1,c2;

    switch( cap )
      {
      case CAP_BUTT:
        a.add(new LineSegment(a.last.P2, b.P1));
        break;

      case CAP_SQUARE:
        p0 = a.last.cp2();
        p1 = new double[]{a.last.P2.getX(), a.last.P2.getY()};
        dx = p1[0] - p0[0];
        dy = p1[1] - p0[1];
        l = Math.sqrt(dx * dx + dy * dy);
        dx = 0.5*width*dx/l;
        dy = 0.5*width*dy/l;
        c1 = new Point2D.Double(p1[0] + dx, p1[1] + dy);
        c2 = new Point2D.Double(b.P1.getX() + dx, b.P1.getY() + dy);
        a.add(new LineSegment(a.last.P2, c1));
        a.add(new LineSegment(c1, c2));
        a.add(new LineSegment(c2, b.P1));
        break;

      case CAP_ROUND:
        p0 = a.last.cp2();
        p1 = new double[]{a.last.P2.getX(), a.last.P2.getY()};
        dx = p1[0] - p0[0];
        dy = p1[1] - p0[1];
        if (dx != 0 && dy != 0)
          {
            l = Math.sqrt(dx * dx + dy * dy);
            dx = (2.0/3.0)*width*dx/l;
            dy = (2.0/3.0)*width*dy/l;
          }

        c1 = new Point2D.Double(p1[0] + dx, p1[1] + dy);
        c2 = new Point2D.Double(b.P1.getX() + dx, b.P1.getY() + dy);
        a.add(new CubicSegment(a.last.P2, c1, c2, b.P1));
        break;
      }
    a.add(b);
  }

  /**
   * Returns the intersection of two lines, or null if there isn't one.
   * @param infinite - true if the lines should be regarded as infinite, false
   * if the intersection must be within the given segments.
   * @return a Point2D or null.
   */
  private Point2D lineIntersection(double X1, double Y1,
                                   double X2, double Y2,
                                   double X3, double Y3,
                                   double X4, double Y4,
                                   boolean infinite)
  {
    double x1 = X1;
    double y1 = Y1;
    double rx = X2 - x1;
    double ry = Y2 - y1;

    double x2 = X3;
    double y2 = Y3;
    double sx = X4 - x2;
    double sy = Y4 - y2;

    double determinant = sx * ry - sy * rx;
    double nom = (sx * (y2 - y1) + sy * (x1 - x2));

    // lines can be considered parallel.
    if (Math.abs(determinant) < 1E-6)
      return null;

    nom = nom / determinant;

    // check if lines are within the bounds
    if(!infinite && (nom > 1.0 || nom < 0.0))
      return null;

    return new Point2D.Double(x1 + nom * rx, y1 + nom * ry);
  }

  /**
   * Join a and b segments, where a-->b is the direction of iteration.
   *
   * insideP is the inside intersection point of the join, needed for
   * calculating miter lengths.
   */
  private void joinOuterSegments(Segment a, Segment b, Point2D insideP)
  {
    double[] p0, p1;
    double dx, dy, l;
    Point2D c1,c2;

    switch( join )
      {
      case JOIN_MITER:
        p0 = a.last.cp2();
        p1 = new double[]{a.last.P2.getX(), a.last.P2.getY()};
        double[] p2 = new double[]{b.P1.getX(), b.P1.getY()};
        double[] p3 = b.cp1();
        Point2D p = lineIntersection(p0[0],p0[1],p1[0],p1[1],p2[0],p2[1],p3[0],p3[1], true);
        if( p == null || insideP == null )
          a.add(new LineSegment(a.last.P2, b.P1));
        else if((p.distance(insideP)/width) < limit)
          {
            a.add(new LineSegment(a.last.P2, p));
            a.add(new LineSegment(p, b.P1));
          }
        else
          {
            // outside miter limit, do a bevel join.
            a.add(new LineSegment(a.last.P2, b.P1));
          }
        break;

      case JOIN_ROUND:
        p0 = a.last.cp2();
        p1 = new double[]{a.last.P2.getX(), a.last.P2.getY()};
        dx = p1[0] - p0[0];
        dy = p1[1] - p0[1];
        l = Math.sqrt(dx * dx + dy * dy);
        dx = 0.5*width*dx/l;
        dy = 0.5*width*dy/l;
        c1 = new Point2D.Double(p1[0] + dx, p1[1] + dy);

        p0 = new double[]{b.P1.getX(), b.P1.getY()};
        p1 = b.cp1();

        dx = p0[0] - p1[0]; // backwards direction.
        dy = p0[1] - p1[1];
        l = Math.sqrt(dx * dx + dy * dy);
        dx = 0.5*width*dx/l;
        dy = 0.5*width*dy/l;
        c2 = new Point2D.Double(p0[0] + dx, p0[1] + dy);
        a.add(new CubicSegment(a.last.P2, c1, c2, b.P1));
        break;

      case JOIN_BEVEL:
        a.add(new LineSegment(a.last.P2, b.P1));
        break;
      }
  }

  /**
   * Join a and b segments, removing any overlap
   */
  private void joinInnerSegments(Segment a, Segment b, Point2D p)
  {
    double[] p0 = a.last.cp2();
    double[] p1 = new double[] { a.last.P2.getX(), a.last.P2.getY() };
    double[] p2 = new double[] { b.P1.getX(), b.P1.getY() };
    double[] p3 = b.cp1();

    if (p == null)
      {
        // Dodgy.
        a.add(new LineSegment(a.last.P2, b.P1));
        p = new Point2D.Double((b.P1.getX() + a.last.P2.getX()) / 2.0,
                               (b.P1.getY() + a.last.P2.getY()) / 2.0);
      }
    else
      // This assumes segments a and b are single segments, which is
      // incorrect - if they are a linked list of segments (ie, passed in
      // from a flattening operation), this produces strange results!!
      a.last.P2 = b.P1 = p;
  }
}