1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
|
/* java.math.BigDecimal -- Arbitrary precision decimals.
Copyright (C) 1999, 2000, 2001, 2003, 2005, 2006 Free Software Foundation, Inc.
This file is part of GNU Classpath.
GNU Classpath is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2, or (at your option)
any later version.
GNU Classpath is distributed in the hope that it will be useful, but
WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
General Public License for more details.
You should have received a copy of the GNU General Public License
along with GNU Classpath; see the file COPYING. If not, write to the
Free Software Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA
02110-1301 USA.
Linking this library statically or dynamically with other modules is
making a combined work based on this library. Thus, the terms and
conditions of the GNU General Public License cover the whole
combination.
As a special exception, the copyright holders of this library give you
permission to link this library with independent modules to produce an
executable, regardless of the license terms of these independent
modules, and to copy and distribute the resulting executable under
terms of your choice, provided that you also meet, for each linked
independent module, the terms and conditions of the license of that
module. An independent module is a module which is not derived from
or based on this library. If you modify this library, you may extend
this exception to your version of the library, but you are not
obligated to do so. If you do not wish to do so, delete this
exception statement from your version. */
package java.math;
import gnu.java.lang.CPStringBuilder;
public class BigDecimal extends Number implements Comparable<BigDecimal>
{
private BigInteger intVal;
private int scale;
private int precision = 0;
private static final long serialVersionUID = 6108874887143696463L;
/**
* The constant zero as a BigDecimal with scale zero.
* @since 1.5
*/
public static final BigDecimal ZERO =
new BigDecimal (BigInteger.ZERO, 0);
/**
* The constant one as a BigDecimal with scale zero.
* @since 1.5
*/
public static final BigDecimal ONE =
new BigDecimal (BigInteger.ONE, 0);
/**
* The constant ten as a BigDecimal with scale zero.
* @since 1.5
*/
public static final BigDecimal TEN =
new BigDecimal (BigInteger.TEN, 0);
public static final int ROUND_UP = 0;
public static final int ROUND_DOWN = 1;
public static final int ROUND_CEILING = 2;
public static final int ROUND_FLOOR = 3;
public static final int ROUND_HALF_UP = 4;
public static final int ROUND_HALF_DOWN = 5;
public static final int ROUND_HALF_EVEN = 6;
public static final int ROUND_UNNECESSARY = 7;
/**
* Constructs a new BigDecimal whose unscaled value is val and whose
* scale is zero.
* @param val the value of the new BigDecimal
* @since 1.5
*/
public BigDecimal (int val)
{
this.intVal = BigInteger.valueOf(val);
this.scale = 0;
}
/**
* Constructs a BigDecimal using the BigDecimal(int) constructor and then
* rounds according to the MathContext.
* @param val the value for the initial (unrounded) BigDecimal
* @param mc the MathContext specifying the rounding
* @throws ArithmeticException if the result is inexact but the rounding type
* is RoundingMode.UNNECESSARY
* @since 1.5
*/
public BigDecimal (int val, MathContext mc)
{
this (val);
if (mc.getPrecision() != 0)
{
BigDecimal result = this.round(mc);
this.intVal = result.intVal;
this.scale = result.scale;
this.precision = result.precision;
}
}
/**
* Constructs a new BigDecimal whose unscaled value is val and whose
* scale is zero.
* @param val the value of the new BigDecimal
*/
public BigDecimal (long val)
{
this.intVal = BigInteger.valueOf(val);
this.scale = 0;
}
/**
* Constructs a BigDecimal from the long in the same way as BigDecimal(long)
* and then rounds according to the MathContext.
* @param val the long from which we create the initial BigDecimal
* @param mc the MathContext that specifies the rounding behaviour
* @throws ArithmeticException if the result is inexact but the rounding type
* is RoundingMode.UNNECESSARY
* @since 1.5
*/
public BigDecimal (long val, MathContext mc)
{
this(val);
if (mc.getPrecision() != 0)
{
BigDecimal result = this.round(mc);
this.intVal = result.intVal;
this.scale = result.scale;
this.precision = result.precision;
}
}
/**
* Constructs a BigDecimal whose value is given by num rounded according to
* mc. Since num is already a BigInteger, the rounding refers only to the
* precision setting in mc, if mc.getPrecision() returns an int lower than
* the number of digits in num, then rounding is necessary.
* @param num the unscaledValue, before rounding
* @param mc the MathContext that specifies the precision
* @throws ArithmeticException if the result is inexact but the rounding type
* is RoundingMode.UNNECESSARY
* * @since 1.5
*/
public BigDecimal (BigInteger num, MathContext mc)
{
this (num, 0);
if (mc.getPrecision() != 0)
{
BigDecimal result = this.round(mc);
this.intVal = result.intVal;
this.scale = result.scale;
this.precision = result.precision;
}
}
/**
* Constructs a BigDecimal from the String val according to the same
* rules as the BigDecimal(String) constructor and then rounds
* according to the MathContext mc.
* @param val the String from which we construct the initial BigDecimal
* @param mc the MathContext that specifies the rounding
* @throws ArithmeticException if the result is inexact but the rounding type
* is RoundingMode.UNNECESSARY
* @since 1.5
*/
public BigDecimal (String val, MathContext mc)
{
this (val);
if (mc.getPrecision() != 0)
{
BigDecimal result = this.round(mc);
this.intVal = result.intVal;
this.scale = result.scale;
this.precision = result.precision;
}
}
/**
* Constructs a BigDecimal whose unscaled value is num and whose
* scale is zero.
* @param num the value of the new BigDecimal
*/
public BigDecimal (BigInteger num)
{
this (num, 0);
}
/**
* Constructs a BigDecimal whose unscaled value is num and whose
* scale is scale.
* @param num
* @param scale
*/
public BigDecimal (BigInteger num, int scale)
{
this.intVal = num;
this.scale = scale;
}
/**
* Constructs a BigDecimal using the BigDecimal(BigInteger, int)
* constructor and then rounds according to the MathContext.
* @param num the unscaled value of the unrounded BigDecimal
* @param scale the scale of the unrounded BigDecimal
* @param mc the MathContext specifying the rounding
* @throws ArithmeticException if the result is inexact but the rounding type
* is RoundingMode.UNNECESSARY
* @since 1.5
*/
public BigDecimal (BigInteger num, int scale, MathContext mc)
{
this (num, scale);
if (mc.getPrecision() != 0)
{
BigDecimal result = this.round(mc);
this.intVal = result.intVal;
this.scale = result.scale;
this.precision = result.precision;
}
}
/**
* Constructs a BigDecimal in the same way as BigDecimal(double) and then
* rounds according to the MathContext.
* @param num the double from which the initial BigDecimal is created
* @param mc the MathContext that specifies the rounding behaviour
* @throws ArithmeticException if the result is inexact but the rounding type
* is RoundingMode.UNNECESSARY
* @since 1.5
*/
public BigDecimal (double num, MathContext mc)
{
this (num);
if (mc.getPrecision() != 0)
{
BigDecimal result = this.round(mc);
this.intVal = result.intVal;
this.scale = result.scale;
this.precision = result.precision;
}
}
public BigDecimal (double num) throws NumberFormatException
{
if (Double.isInfinite (num) || Double.isNaN (num))
throw new NumberFormatException ("invalid argument: " + num);
// Note we can't convert NUM to a String and then use the
// String-based constructor. The BigDecimal documentation makes
// it clear that the two constructors work differently.
final int mantissaBits = 52;
final int exponentBits = 11;
final long mantMask = (1L << mantissaBits) - 1;
final long expMask = (1L << exponentBits) - 1;
long bits = Double.doubleToLongBits (num);
long mantissa = bits & mantMask;
long exponent = (bits >>> mantissaBits) & expMask;
boolean denormal = exponent == 0;
// Correct the exponent for the bias.
exponent -= denormal ? 1022 : 1023;
// Now correct the exponent to account for the bits to the right
// of the decimal.
exponent -= mantissaBits;
// Ordinary numbers have an implied leading `1' bit.
if (! denormal)
mantissa |= (1L << mantissaBits);
// Shave off factors of 10.
while (exponent < 0 && (mantissa & 1) == 0)
{
++exponent;
mantissa >>= 1;
}
intVal = BigInteger.valueOf (bits < 0 ? - mantissa : mantissa);
if (exponent < 0)
{
// We have MANTISSA * 2 ^ (EXPONENT).
// Since (1/2)^N == 5^N * 10^-N we can easily convert this
// into a power of 10.
scale = (int) (- exponent);
BigInteger mult = BigInteger.valueOf (5).pow (scale);
intVal = intVal.multiply (mult);
}
else
{
intVal = intVal.shiftLeft ((int) exponent);
scale = 0;
}
}
/**
* Constructs a BigDecimal from the char subarray and rounding
* according to the MathContext.
* @param in the char array
* @param offset the start of the subarray
* @param len the length of the subarray
* @param mc the MathContext for rounding
* @throws NumberFormatException if the char subarray is not a valid
* BigDecimal representation
* @throws ArithmeticException if the result is inexact but the rounding
* mode is RoundingMode.UNNECESSARY
* @since 1.5
*/
public BigDecimal(char[] in, int offset, int len, MathContext mc)
{
this(in, offset, len);
// If mc has precision other than zero then we must round.
if (mc.getPrecision() != 0)
{
BigDecimal temp = this.round(mc);
this.intVal = temp.intVal;
this.scale = temp.scale;
this.precision = temp.precision;
}
}
/**
* Constructs a BigDecimal from the char array and rounding according
* to the MathContext.
* @param in the char array
* @param mc the MathContext
* @throws NumberFormatException if <code>in</code> is not a valid BigDecimal
* representation
* @throws ArithmeticException if the result is inexact but the rounding mode
* is RoundingMode.UNNECESSARY
* @since 1.5
*/
public BigDecimal(char[] in, MathContext mc)
{
this(in, 0, in.length);
// If mc has precision other than zero then we must round.
if (mc.getPrecision() != 0)
{
BigDecimal temp = this.round(mc);
this.intVal = temp.intVal;
this.scale = temp.scale;
this.precision = temp.precision;
}
}
/**
* Constructs a BigDecimal from the given char array, accepting the same
* sequence of characters as the BigDecimal(String) constructor.
* @param in the char array
* @throws NumberFormatException if <code>in</code> is not a valid BigDecimal
* representation
* @since 1.5
*/
public BigDecimal(char[] in)
{
this(in, 0, in.length);
}
/**
* Constructs a BigDecimal from a char subarray, accepting the same sequence
* of characters as the BigDecimal(String) constructor.
* @param in the char array
* @param offset the start of the subarray
* @param len the length of the subarray
* @throws NumberFormatException if <code>in</code> is not a valid
* BigDecimal representation.
* @since 1.5
*/
public BigDecimal(char[] in, int offset, int len)
{
// start is the index into the char array where the significand starts
int start = offset;
// end is one greater than the index of the last character used
int end = offset + len;
// point is the index into the char array where the exponent starts
// (or, if there is no exponent, this is equal to end)
int point = offset;
// dot is the index into the char array where the decimal point is
// found, or -1 if there is no decimal point
int dot = -1;
// The following examples show what these variables mean. Note that
// point and dot don't yet have the correct values, they will be
// properly assigned in a loop later on in this method.
//
// Example 1
//
// + 1 0 2 . 4 6 9
// __ __ __ __ __ __ __ __ __ __ __ __ __ __ __ __
//
// offset = 2, len = 8, start = 3, dot = 6, point = end = 10
//
// Example 2
//
// + 2 3 4 . 6 1 3 E - 1
// __ __ __ __ __ __ __ __ __ __ __ __ __ __ __ __
//
// offset = 2, len = 11, start = 3, dot = 6, point = 10, end = 13
//
// Example 3
//
// - 1 2 3 4 5 e 7
// __ __ __ __ __ __ __ __ __ __ __ __ __ __ __ __
//
// offset = 2, len = 8, start = 3, dot = -1, point = 8, end = 10
// Determine the sign of the number.
boolean negative = false;
if (in[offset] == '+')
{
++start;
++point;
}
else if (in[offset] == '-')
{
++start;
++point;
negative = true;
}
// Check each character looking for the decimal point and the
// start of the exponent.
while (point < end)
{
char c = in[point];
if (c == '.')
{
// If dot != -1 then we've seen more than one decimal point.
if (dot != -1)
throw new NumberFormatException("multiple `.'s in number");
dot = point;
}
// Break when we reach the start of the exponent.
else if (c == 'e' || c == 'E')
break;
// Throw an exception if the character was not a decimal or an
// exponent and is not a digit.
else if (!Character.isDigit(c))
throw new NumberFormatException("unrecognized character at " + point
+ ": " + c);
++point;
}
// val is a StringBuilder from which we'll create a BigInteger
// which will be the unscaled value for this BigDecimal
CPStringBuilder val = new CPStringBuilder(point - start - 1);
if (dot != -1)
{
// If there was a decimal we must combine the two parts that
// contain only digits and we must set the scale properly.
val.append(in, start, dot - start);
val.append(in, dot + 1, point - dot - 1);
scale = point - 1 - dot;
}
else
{
// If there was no decimal then the unscaled value is just the number
// formed from all the digits and the scale is zero.
val.append(in, start, point - start);
scale = 0;
}
if (val.length() == 0)
throw new NumberFormatException("no digits seen");
// Prepend a negative sign if necessary.
if (negative)
val.insert(0, '-');
intVal = new BigInteger(val.toString());
// Now parse exponent.
// If point < end that means we broke out of the previous loop when we
// saw an 'e' or an 'E'.
if (point < end)
{
point++;
// Ignore a '+' sign.
if (in[point] == '+')
point++;
// Throw an exception if there were no digits found after the 'e'
// or 'E'.
if (point >= end)
throw new NumberFormatException("no exponent following e or E");
try
{
// Adjust the scale according to the exponent.
// Remember that the value of a BigDecimal is
// unscaledValue x Math.pow(10, -scale)
scale -= Integer.parseInt(new String(in, point, end - point));
}
catch (NumberFormatException ex)
{
throw new NumberFormatException("malformed exponent");
}
}
}
public BigDecimal (String num) throws NumberFormatException
{
int len = num.length();
int start = 0, point = 0;
int dot = -1;
boolean negative = false;
if (num.charAt(0) == '+')
{
++start;
++point;
}
else if (num.charAt(0) == '-')
{
++start;
++point;
negative = true;
}
while (point < len)
{
char c = num.charAt (point);
if (c == '.')
{
if (dot >= 0)
throw new NumberFormatException ("multiple `.'s in number");
dot = point;
}
else if (c == 'e' || c == 'E')
break;
else if (Character.digit (c, 10) < 0)
throw new NumberFormatException ("unrecognized character: " + c);
++point;
}
String val;
if (dot >= 0)
{
val = num.substring (start, dot) + num.substring (dot + 1, point);
scale = point - 1 - dot;
}
else
{
val = num.substring (start, point);
scale = 0;
}
if (val.length () == 0)
throw new NumberFormatException ("no digits seen");
if (negative)
val = "-" + val;
intVal = new BigInteger (val);
// Now parse exponent.
if (point < len)
{
point++;
if (num.charAt(point) == '+')
point++;
if (point >= len )
throw new NumberFormatException ("no exponent following e or E");
try
{
scale -= Integer.parseInt (num.substring (point));
}
catch (NumberFormatException ex)
{
throw new NumberFormatException ("malformed exponent");
}
}
}
public static BigDecimal valueOf (long val)
{
return valueOf (val, 0);
}
public static BigDecimal valueOf (long val, int scale)
throws NumberFormatException
{
if ((scale == 0) && ((int)val == val))
switch ((int) val)
{
case 0:
return ZERO;
case 1:
return ONE;
}
return new BigDecimal (BigInteger.valueOf (val), scale);
}
public BigDecimal add (BigDecimal val)
{
// For addition, need to line up decimals. Note that the movePointRight
// method cannot be used for this as it might return a BigDecimal with
// scale == 0 instead of the scale we need.
BigInteger op1 = intVal;
BigInteger op2 = val.intVal;
if (scale < val.scale)
op1 = op1.multiply (BigInteger.TEN.pow (val.scale - scale));
else if (scale > val.scale)
op2 = op2.multiply (BigInteger.TEN.pow (scale - val.scale));
return new BigDecimal (op1.add (op2), Math.max (scale, val.scale));
}
/**
* Returns a BigDecimal whose value is found first by calling the
* method add(val) and then by rounding according to the MathContext mc.
* @param val the augend
* @param mc the MathContext for rounding
* @throws ArithmeticException if the value is inexact but the rounding is
* RoundingMode.UNNECESSARY
* @return <code>this</code> + <code>val</code>, rounded if need be
* @since 1.5
*/
public BigDecimal add (BigDecimal val, MathContext mc)
{
return add(val).round(mc);
}
public BigDecimal subtract (BigDecimal val)
{
return this.add(val.negate());
}
/**
* Returns a BigDecimal whose value is found first by calling the
* method subtract(val) and then by rounding according to the MathContext mc.
* @param val the subtrahend
* @param mc the MathContext for rounding
* @throws ArithmeticException if the value is inexact but the rounding is
* RoundingMode.UNNECESSARY
* @return <code>this</code> - <code>val</code>, rounded if need be
* @since 1.5
*/
public BigDecimal subtract (BigDecimal val, MathContext mc)
{
return subtract(val).round(mc);
}
public BigDecimal multiply (BigDecimal val)
{
return new BigDecimal (intVal.multiply (val.intVal), scale + val.scale);
}
/**
* Returns a BigDecimal whose value is (this x val) before it is rounded
* according to the MathContext mc.
* @param val the multiplicand
* @param mc the MathContext for rounding
* @return a new BigDecimal with value approximately (this x val)
* @throws ArithmeticException if the value is inexact but the rounding mode
* is RoundingMode.UNNECESSARY
* @since 1.5
*/
public BigDecimal multiply (BigDecimal val, MathContext mc)
{
return multiply(val).round(mc);
}
public BigDecimal divide (BigDecimal val, int roundingMode)
throws ArithmeticException, IllegalArgumentException
{
return divide (val, scale, roundingMode);
}
/**
* Returns a BigDecimal whose value is (this / val), with the specified scale
* and rounding according to the RoundingMode
* @param val the divisor
* @param scale the scale of the BigDecimal returned
* @param roundingMode the rounding mode to use
* @return a BigDecimal whose value is approximately (this / val)
* @throws ArithmeticException if divisor is zero or the rounding mode is
* UNNECESSARY but the specified scale cannot represent the value exactly
* @since 1.5
*/
public BigDecimal divide(BigDecimal val,
int scale, RoundingMode roundingMode)
{
return divide (val, scale, roundingMode.ordinal());
}
/**
* Returns a BigDecimal whose value is (this / val) rounded according to the
* RoundingMode
* @param val the divisor
* @param roundingMode the rounding mode to use
* @return a BigDecimal whose value is approximately (this / val)
* @throws ArithmeticException if divisor is zero or the rounding mode is
* UNNECESSARY but the specified scale cannot represent the value exactly
*/
public BigDecimal divide (BigDecimal val, RoundingMode roundingMode)
{
return divide (val, scale, roundingMode.ordinal());
}
public BigDecimal divide(BigDecimal val, int newScale, int roundingMode)
throws ArithmeticException, IllegalArgumentException
{
if (roundingMode < 0 || roundingMode > 7)
throw
new IllegalArgumentException("illegal rounding mode: " + roundingMode);
if (intVal.signum () == 0) // handle special case of 0.0/0.0
return newScale == 0 ? ZERO : new BigDecimal (ZERO.intVal, newScale);
// Ensure that pow gets a non-negative value.
BigInteger valIntVal = val.intVal;
int power = newScale - (scale - val.scale);
if (power < 0)
{
// Effectively increase the scale of val to avoid an
// ArithmeticException for a negative power.
valIntVal = valIntVal.multiply (BigInteger.TEN.pow (-power));
power = 0;
}
BigInteger dividend = intVal.multiply (BigInteger.TEN.pow (power));
BigInteger parts[] = dividend.divideAndRemainder (valIntVal);
BigInteger unrounded = parts[0];
if (parts[1].signum () == 0) // no remainder, no rounding necessary
return new BigDecimal (unrounded, newScale);
if (roundingMode == ROUND_UNNECESSARY)
throw new ArithmeticException ("Rounding necessary");
int sign = intVal.signum () * valIntVal.signum ();
if (roundingMode == ROUND_CEILING)
roundingMode = (sign > 0) ? ROUND_UP : ROUND_DOWN;
else if (roundingMode == ROUND_FLOOR)
roundingMode = (sign < 0) ? ROUND_UP : ROUND_DOWN;
else
{
// half is -1 if remainder*2 < positive intValue (*power), 0 if equal,
// 1 if >. This implies that the remainder to round is less than,
// equal to, or greater than half way to the next digit.
BigInteger posRemainder
= parts[1].signum () < 0 ? parts[1].negate() : parts[1];
valIntVal = valIntVal.signum () < 0 ? valIntVal.negate () : valIntVal;
int half = posRemainder.shiftLeft(1).compareTo(valIntVal);
switch(roundingMode)
{
case ROUND_HALF_UP:
roundingMode = (half < 0) ? ROUND_DOWN : ROUND_UP;
break;
case ROUND_HALF_DOWN:
roundingMode = (half > 0) ? ROUND_UP : ROUND_DOWN;
break;
case ROUND_HALF_EVEN:
if (half < 0)
roundingMode = ROUND_DOWN;
else if (half > 0)
roundingMode = ROUND_UP;
else if (unrounded.testBit(0)) // odd, then ROUND_HALF_UP
roundingMode = ROUND_UP;
else // even, ROUND_HALF_DOWN
roundingMode = ROUND_DOWN;
break;
}
}
if (roundingMode == ROUND_UP)
unrounded = unrounded.add (BigInteger.valueOf (sign > 0 ? 1 : -1));
// roundingMode == ROUND_DOWN
return new BigDecimal (unrounded, newScale);
}
/**
* Performs division, if the resulting quotient requires rounding
* (has a nonterminating decimal expansion),
* an ArithmeticException is thrown.
* #see divide(BigDecimal, int, int)
* @since 1.5
*/
public BigDecimal divide(BigDecimal divisor)
throws ArithmeticException, IllegalArgumentException
{
return divide(divisor, scale, ROUND_UNNECESSARY);
}
/**
* Returns a BigDecimal whose value is the remainder in the quotient
* this / val. This is obtained by
* subtract(divideToIntegralValue(val).multiply(val)).
* @param val the divisor
* @return a BigDecimal whose value is the remainder
* @throws ArithmeticException if val == 0
* @since 1.5
*/
public BigDecimal remainder(BigDecimal val)
{
return subtract(divideToIntegralValue(val).multiply(val));
}
/**
* Returns a BigDecimal array, the first element of which is the integer part
* of this / val, and the second element of which is the remainder of
* that quotient.
* @param val the divisor
* @return the above described BigDecimal array
* @throws ArithmeticException if val == 0
* @since 1.5
*/
public BigDecimal[] divideAndRemainder(BigDecimal val)
{
BigDecimal[] result = new BigDecimal[2];
result[0] = divideToIntegralValue(val);
result[1] = subtract(result[0].multiply(val));
return result;
}
/**
* Returns a BigDecimal whose value is the integer part of the quotient
* this / val. The preferred scale is this.scale - val.scale.
* @param val the divisor
* @return a BigDecimal whose value is the integer part of this / val.
* @throws ArithmeticException if val == 0
* @since 1.5
*/
public BigDecimal divideToIntegralValue(BigDecimal val)
{
return divide(val, ROUND_DOWN).floor().setScale(scale - val.scale, ROUND_DOWN);
}
/**
* Mutates this BigDecimal into one with no fractional part, whose value is
* equal to the largest integer that is <= to this BigDecimal. Note that
* since this method is private it is okay to mutate this BigDecimal.
* @return the BigDecimal obtained through the floor operation on this
* BigDecimal.
*/
private BigDecimal floor()
{
if (scale <= 0)
return this;
String intValStr = intVal.toString();
intValStr = intValStr.substring(0, intValStr.length() - scale);
intVal = new BigInteger(intValStr).multiply(BigInteger.TEN.pow(scale));
return this;
}
public int compareTo (BigDecimal val)
{
if (scale == val.scale)
return intVal.compareTo (val.intVal);
BigInteger thisParts[] =
intVal.divideAndRemainder (BigInteger.TEN.pow (scale));
BigInteger valParts[] =
val.intVal.divideAndRemainder (BigInteger.TEN.pow (val.scale));
int compare;
if ((compare = thisParts[0].compareTo (valParts[0])) != 0)
return compare;
// quotients are the same, so compare remainders
// Add some trailing zeros to the remainder with the smallest scale
if (scale < val.scale)
thisParts[1] = thisParts[1].multiply
(BigInteger.valueOf (10).pow (val.scale - scale));
else if (scale > val.scale)
valParts[1] = valParts[1].multiply
(BigInteger.valueOf (10).pow (scale - val.scale));
// and compare them
return thisParts[1].compareTo (valParts[1]);
}
public boolean equals (Object o)
{
return (o instanceof BigDecimal
&& scale == ((BigDecimal) o).scale
&& compareTo ((BigDecimal) o) == 0);
}
public int hashCode()
{
return intValue() ^ scale;
}
public BigDecimal max (BigDecimal val)
{
switch (compareTo (val))
{
case 1:
return this;
default:
return val;
}
}
public BigDecimal min (BigDecimal val)
{
switch (compareTo (val))
{
case -1:
return this;
default:
return val;
}
}
public BigDecimal movePointLeft (int n)
{
return (n < 0) ? movePointRight (-n) : new BigDecimal (intVal, scale + n);
}
public BigDecimal movePointRight (int n)
{
if (n < 0)
return movePointLeft (-n);
if (scale >= n)
return new BigDecimal (intVal, scale - n);
return new BigDecimal (intVal.multiply
(BigInteger.TEN.pow (n - scale)), 0);
}
public int signum ()
{
return intVal.signum ();
}
public int scale ()
{
return scale;
}
public BigInteger unscaledValue()
{
return intVal;
}
public BigDecimal abs ()
{
return new BigDecimal (intVal.abs (), scale);
}
public BigDecimal negate ()
{
return new BigDecimal (intVal.negate (), scale);
}
/**
* Returns a BigDecimal whose value is found first by negating this via
* the negate() method, then by rounding according to the MathContext mc.
* @param mc the MathContext for rounding
* @return a BigDecimal whose value is approximately (-this)
* @throws ArithmeticException if the value is inexact but the rounding mode
* is RoundingMode.UNNECESSARY
* @since 1.5
*/
public BigDecimal negate(MathContext mc)
{
BigDecimal result = negate();
if (mc.getPrecision() != 0)
result = result.round(mc);
return result;
}
/**
* Returns this BigDecimal. This is included for symmetry with the
* method negate().
* @return this
* @since 1.5
*/
public BigDecimal plus()
{
return this;
}
/**
* Returns a BigDecimal whose value is found by rounding <code>this</code>
* according to the MathContext. This is the same as round(MathContext).
* @param mc the MathContext for rounding
* @return a BigDecimal whose value is <code>this</code> before being rounded
* @throws ArithmeticException if the value is inexact but the rounding mode
* is RoundingMode.UNNECESSARY
* @since 1.5
*/
public BigDecimal plus(MathContext mc)
{
return round(mc);
}
/**
* Returns a BigDecimal which is this BigDecimal rounded according to the
* MathContext rounding settings.
* @param mc the MathContext that tells us how to round
* @return the rounded BigDecimal
*/
public BigDecimal round(MathContext mc)
{
int mcPrecision = mc.getPrecision();
int numToChop = precision() - mcPrecision;
// If mc specifies not to chop any digits or if we've already chopped
// enough digits (say by using a MathContext in the constructor for this
// BigDecimal) then just return this.
if (mcPrecision == 0 || numToChop <= 0)
return this;
// Make a new BigDecimal which is the correct power of 10 to chop off
// the required number of digits and then call divide.
BigDecimal div = new BigDecimal(BigInteger.TEN.pow(numToChop));
BigDecimal rounded = divide(div, scale, mc.getRoundingMode().ordinal());
rounded.scale -= numToChop;
rounded.precision = mcPrecision;
return rounded;
}
/**
* Returns the precision of this BigDecimal (the number of digits in the
* unscaled value). The precision of a zero value is 1.
* @return the number of digits in the unscaled value, or 1 if the value
* is zero.
*/
public int precision()
{
if (precision == 0)
{
String s = intVal.toString();
precision = s.length() - (( s.charAt(0) == '-' ) ? 1 : 0);
}
return precision;
}
/**
* Returns the String representation of this BigDecimal, using scientific
* notation if necessary. The following steps are taken to generate
* the result:
*
* 1. the BigInteger unscaledValue's toString method is called and if
* <code>scale == 0<code> is returned.
* 2. an <code>int adjExp</code> is created which is equal to the negation
* of <code>scale</code> plus the number of digits in the unscaled value,
* minus one.
* 3. if <code>scale >= 0 && adjExp >= -6</code> then we represent this
* BigDecimal without scientific notation. A decimal is added if the
* scale is positive and zeros are prepended as necessary.
* 4. if scale is negative or adjExp is less than -6 we use scientific
* notation. If the unscaled value has more than one digit, a decimal
* as inserted after the first digit, the character 'E' is appended
* and adjExp is appended.
*/
public String toString()
{
// bigStr is the String representation of the unscaled value. If
// scale is zero we simply return this.
String bigStr = intVal.toString();
if (scale == 0)
return bigStr;
boolean negative = (bigStr.charAt(0) == '-');
int point = bigStr.length() - scale - (negative ? 1 : 0);
CPStringBuilder val = new CPStringBuilder();
if (scale >= 0 && (point - 1) >= -6)
{
// Convert to character form without scientific notation.
if (point <= 0)
{
// Zeros need to be prepended to the StringBuilder.
if (negative)
val.append('-');
// Prepend a '0' and a '.' and then as many more '0's as necessary.
val.append('0').append('.');
while (point < 0)
{
val.append('0');
point++;
}
// Append the unscaled value.
val.append(bigStr.substring(negative ? 1 : 0));
}
else
{
// No zeros need to be prepended so the String is simply the
// unscaled value with the decimal point inserted.
val.append(bigStr);
val.insert(point + (negative ? 1 : 0), '.');
}
}
else
{
// We must use scientific notation to represent this BigDecimal.
val.append(bigStr);
// If there is more than one digit in the unscaled value we put a
// decimal after the first digit.
if (bigStr.length() > 1)
val.insert( ( negative ? 2 : 1 ), '.');
// And then append 'E' and the exponent = (point - 1).
val.append('E');
if (point - 1 >= 0)
val.append('+');
val.append( point - 1 );
}
return val.toString();
}
/**
* Returns the String representation of this BigDecimal, using engineering
* notation if necessary. This is similar to toString() but when exponents
* are used the exponent is made to be a multiple of 3 such that the integer
* part is between 1 and 999.
*
* @return a String representation of this BigDecimal in engineering notation
* @since 1.5
*/
public String toEngineeringString()
{
// bigStr is the String representation of the unscaled value. If
// scale is zero we simply return this.
String bigStr = intVal.toString();
if (scale == 0)
return bigStr;
boolean negative = (bigStr.charAt(0) == '-');
int point = bigStr.length() - scale - (negative ? 1 : 0);
// This is the adjusted exponent described above.
int adjExp = point - 1;
CPStringBuilder val = new CPStringBuilder();
if (scale >= 0 && adjExp >= -6)
{
// Convert to character form without scientific notation.
if (point <= 0)
{
// Zeros need to be prepended to the StringBuilder.
if (negative)
val.append('-');
// Prepend a '0' and a '.' and then as many more '0's as necessary.
val.append('0').append('.');
while (point < 0)
{
val.append('0');
point++;
}
// Append the unscaled value.
val.append(bigStr.substring(negative ? 1 : 0));
}
else
{
// No zeros need to be prepended so the String is simply the
// unscaled value with the decimal point inserted.
val.append(bigStr);
val.insert(point + (negative ? 1 : 0), '.');
}
}
else
{
// We must use scientific notation to represent this BigDecimal.
// The exponent must be a multiple of 3 and the integer part
// must be between 1 and 999.
val.append(bigStr);
int zeros = adjExp % 3;
int dot = 1;
if (adjExp > 0)
{
// If the exponent is positive we just move the decimal to the
// right and decrease the exponent until it is a multiple of 3.
dot += zeros;
adjExp -= zeros;
}
else
{
// If the exponent is negative then we move the dot to the right
// and decrease the exponent (increase its magnitude) until
// it is a multiple of 3. Note that this is not adjExp -= zeros
// because the mod operator doesn't give us the distance to the
// correct multiple of 3. (-5 mod 3) is -2 but the distance from
// -5 to the correct multiple of 3 (-6) is 1, not 2.
if (zeros == -2)
{
dot += 1;
adjExp -= 1;
}
else if (zeros == -1)
{
dot += 2;
adjExp -= 2;
}
}
// Either we have to append zeros because, for example, 1.1E+5 should
// be 110E+3, or we just have to put the decimal in the right place.
if (dot > val.length())
{
while (dot > val.length())
val.append('0');
}
else if (bigStr.length() > dot)
val.insert(dot + (negative ? 1 : 0), '.');
// And then append 'E' and the exponent (adjExp).
val.append('E');
if (adjExp >= 0)
val.append('+');
val.append(adjExp);
}
return val.toString();
}
/**
* Returns a String representation of this BigDecimal without using
* scientific notation. This is how toString() worked for releases 1.4
* and previous. Zeros may be added to the end of the String. For
* example, an unscaled value of 1234 and a scale of -3 would result in
* the String 1234000, but the toString() method would return
* 1.234E+6.
* @return a String representation of this BigDecimal
* @since 1.5
*/
public String toPlainString()
{
// If the scale is zero we simply return the String representation of the
// unscaled value.
String bigStr = intVal.toString();
if (scale == 0)
return bigStr;
// Remember if we have to put a negative sign at the start.
boolean negative = (bigStr.charAt(0) == '-');
int point = bigStr.length() - scale - (negative ? 1 : 0);
CPStringBuilder sb = new CPStringBuilder(bigStr.length() + 2
+ (point <= 0 ? (-point + 1) : 0));
if (point <= 0)
{
// We have to prepend zeros and a decimal point.
if (negative)
sb.append('-');
sb.append('0').append('.');
while (point < 0)
{
sb.append('0');
point++;
}
sb.append(bigStr.substring(negative ? 1 : 0));
}
else if (point < bigStr.length())
{
// No zeros need to be prepended or appended, just put the decimal
// in the right place.
sb.append(bigStr);
sb.insert(point + (negative ? 1 : 0), '.');
}
else
{
// We must append zeros instead of using scientific notation.
sb.append(bigStr);
for (int i = bigStr.length(); i < point; i++)
sb.append('0');
}
return sb.toString();
}
/**
* Converts this BigDecimal to a BigInteger. Any fractional part will
* be discarded.
* @return a BigDecimal whose value is equal to floor[this]
*/
public BigInteger toBigInteger ()
{
// If scale > 0 then we must divide, if scale > 0 then we must multiply,
// and if scale is zero then we just return intVal;
if (scale > 0)
return intVal.divide (BigInteger.TEN.pow (scale));
else if (scale < 0)
return intVal.multiply(BigInteger.TEN.pow(-scale));
return intVal;
}
/**
* Converts this BigDecimal into a BigInteger, throwing an
* ArithmeticException if the conversion is not exact.
* @return a BigInteger whose value is equal to the value of this BigDecimal
* @since 1.5
*/
public BigInteger toBigIntegerExact()
{
if (scale > 0)
{
// If we have to divide, we must check if the result is exact.
BigInteger[] result =
intVal.divideAndRemainder(BigInteger.TEN.pow(scale));
if (result[1].equals(BigInteger.ZERO))
return result[0];
throw new ArithmeticException("No exact BigInteger representation");
}
else if (scale < 0)
// If we're multiplying instead, then we needn't check for exactness.
return intVal.multiply(BigInteger.TEN.pow(-scale));
// If the scale is zero we can simply return intVal.
return intVal;
}
public int intValue ()
{
return toBigInteger ().intValue ();
}
/**
* Returns a BigDecimal which is numerically equal to this BigDecimal but
* with no trailing zeros in the representation. For example, if this
* BigDecimal has [unscaledValue, scale] = [6313000, 4] this method returns
* a BigDecimal with [unscaledValue, scale] = [6313, 1]. As another
* example, [12400, -2] would become [124, -4].
* @return a numerically equal BigDecimal with no trailing zeros
*/
public BigDecimal stripTrailingZeros()
{
String intValStr = intVal.toString();
int newScale = scale;
int pointer = intValStr.length() - 1;
// This loop adjusts pointer which will be used to give us the substring
// of intValStr to use in our new BigDecimal, and also accordingly
// adjusts the scale of our new BigDecimal.
while (intValStr.charAt(pointer) == '0')
{
pointer --;
newScale --;
}
// Create a new BigDecimal with the appropriate substring and then
// set its scale.
BigDecimal result = new BigDecimal(intValStr.substring(0, pointer + 1));
result.scale = newScale;
return result;
}
public long longValue ()
{
return toBigInteger().longValue();
}
public float floatValue()
{
return Float.valueOf(toString()).floatValue();
}
public double doubleValue()
{
return Double.valueOf(toString()).doubleValue();
}
public BigDecimal setScale (int scale) throws ArithmeticException
{
return setScale (scale, ROUND_UNNECESSARY);
}
public BigDecimal setScale (int scale, int roundingMode)
throws ArithmeticException, IllegalArgumentException
{
// NOTE: The 1.5 JRE doesn't throw this, ones prior to it do and
// the spec says it should. Nevertheless, if 1.6 doesn't fix this
// we should consider removing it.
if( scale < 0 ) throw new ArithmeticException("Scale parameter < 0.");
return divide (ONE, scale, roundingMode);
}
/**
* Returns a BigDecimal whose value is the same as this BigDecimal but whose
* representation has a scale of <code>newScale</code>. If the scale is
* reduced then rounding may occur, according to the RoundingMode.
* @param newScale
* @param roundingMode
* @return a BigDecimal whose scale is as given, whose value is
* <code>this</code> with possible rounding
* @throws ArithmeticException if the rounding mode is UNNECESSARY but
* rounding is required
* @since 1.5
*/
public BigDecimal setScale(int newScale, RoundingMode roundingMode)
{
return setScale(newScale, roundingMode.ordinal());
}
/**
* Returns a new BigDecimal constructed from the BigDecimal(String)
* constructor using the Double.toString(double) method to obtain
* the String.
* @param val the double value used in Double.toString(double)
* @return a BigDecimal representation of val
* @throws NumberFormatException if val is NaN or infinite
* @since 1.5
*/
public static BigDecimal valueOf(double val)
{
if (Double.isInfinite(val) || Double.isNaN(val))
throw new NumberFormatException("argument cannot be NaN or infinite.");
return new BigDecimal(Double.toString(val));
}
/**
* Returns a BigDecimal whose numerical value is the numerical value
* of this BigDecimal multiplied by 10 to the power of <code>n</code>.
* @param n the power of ten
* @return the new BigDecimal
* @since 1.5
*/
public BigDecimal scaleByPowerOfTen(int n)
{
BigDecimal result = new BigDecimal(intVal, scale - n);
result.precision = precision;
return result;
}
/**
* Returns a BigDecimal whose value is <code>this</code> to the power of
* <code>n</code>.
* @param n the power
* @return the new BigDecimal
* @since 1.5
*/
public BigDecimal pow(int n)
{
if (n < 0 || n > 999999999)
throw new ArithmeticException("n must be between 0 and 999999999");
BigDecimal result = new BigDecimal(intVal.pow(n), scale * n);
return result;
}
/**
* Returns a BigDecimal whose value is determined by first calling pow(n)
* and then by rounding according to the MathContext mc.
* @param n the power
* @param mc the MathContext
* @return the new BigDecimal
* @throws ArithmeticException if n < 0 or n > 999999999 or if the result is
* inexact but the rounding is RoundingMode.UNNECESSARY
* @since 1.5
*/
public BigDecimal pow(int n, MathContext mc)
{
// FIXME: The specs claim to use the X3.274-1996 algorithm. We
// currently do not.
return pow(n).round(mc);
}
/**
* Returns a BigDecimal whose value is the absolute value of this BigDecimal
* with rounding according to the given MathContext.
* @param mc the MathContext
* @return the new BigDecimal
*/
public BigDecimal abs(MathContext mc)
{
BigDecimal result = abs();
result = result.round(mc);
return result;
}
/**
* Returns the size of a unit in the last place of this BigDecimal. This
* returns a BigDecimal with [unscaledValue, scale] = [1, this.scale()].
* @return the size of a unit in the last place of <code>this</code>.
* @since 1.5
*/
public BigDecimal ulp()
{
return new BigDecimal(BigInteger.ONE, scale);
}
/**
* Converts this BigDecimal to a long value.
* @return the long value
* @throws ArithmeticException if rounding occurs or if overflow occurs
* @since 1.5
*/
public long longValueExact()
{
// Set scale will throw an exception if rounding occurs.
BigDecimal temp = setScale(0, ROUND_UNNECESSARY);
BigInteger tempVal = temp.intVal;
// Check for overflow.
long result = intVal.longValue();
if (tempVal.compareTo(BigInteger.valueOf(Long.MAX_VALUE)) > 1
|| (result < 0 && signum() == 1) || (result > 0 && signum() == -1))
throw new ArithmeticException("this BigDecimal is too " +
"large to fit into the return type");
return intVal.longValue();
}
/**
* Converts this BigDecimal into an int by first calling longValueExact
* and then checking that the <code>long</code> returned from that
* method fits into an <code>int</code>.
* @return an int whose value is <code>this</code>
* @throws ArithmeticException if this BigDecimal has a fractional part
* or is too large to fit into an int.
* @since 1.5
*/
public int intValueExact()
{
long temp = longValueExact();
int result = (int)temp;
if (result != temp)
throw new ArithmeticException ("this BigDecimal cannot fit into an int");
return result;
}
/**
* Converts this BigDecimal into a byte by first calling longValueExact
* and then checking that the <code>long</code> returned from that
* method fits into a <code>byte</code>.
* @return a byte whose value is <code>this</code>
* @throws ArithmeticException if this BigDecimal has a fractional part
* or is too large to fit into a byte.
* @since 1.5
*/
public byte byteValueExact()
{
long temp = longValueExact();
byte result = (byte)temp;
if (result != temp)
throw new ArithmeticException ("this BigDecimal cannot fit into a byte");
return result;
}
/**
* Converts this BigDecimal into a short by first calling longValueExact
* and then checking that the <code>long</code> returned from that
* method fits into a <code>short</code>.
* @return a short whose value is <code>this</code>
* @throws ArithmeticException if this BigDecimal has a fractional part
* or is too large to fit into a short.
* @since 1.5
*/
public short shortValueExact()
{
long temp = longValueExact();
short result = (short)temp;
if (result != temp)
throw new ArithmeticException ("this BigDecimal cannot fit into a short");
return result;
}
}
|