1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
|
/* Bidi.java -- Bidirectional Algorithm implementation
Copyright (C) 2005, 2006 Free Software Foundation, Inc.
This file is part of GNU Classpath.
GNU Classpath is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2, or (at your option)
any later version.
GNU Classpath is distributed in the hope that it will be useful, but
WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
General Public License for more details.
You should have received a copy of the GNU General Public License
along with GNU Classpath; see the file COPYING. If not, write to the
Free Software Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA
02110-1301 USA.
Linking this library statically or dynamically with other modules is
making a combined work based on this library. Thus, the terms and
conditions of the GNU General Public License cover the whole
combination.
As a special exception, the copyright holders of this library give you
permission to link this library with independent modules to produce an
executable, regardless of the license terms of these independent
modules, and to copy and distribute the resulting executable under
terms of your choice, provided that you also meet, for each linked
independent module, the terms and conditions of the license of that
module. An independent module is a module which is not derived from
or based on this library. If you modify this library, you may extend
this exception to your version of the library, but you are not
obligated to do so. If you do not wish to do so, delete this
exception statement from your version. */
package java.text;
import java.awt.font.NumericShaper;
import java.awt.font.TextAttribute;
import java.util.ArrayList;
/**
* Bidirectional Algorithm implementation.
*
* The full algorithm is
* <a href="http://www.unicode.org/unicode/reports/tr9/">Unicode Standard
* Annex #9: The Bidirectional Algorithm</a>.
*
* @since 1.4
*/
public final class Bidi
{
/**
* This indicates that a strongly directional character in the text should
* set the initial direction, but if no such character is found, then the
* initial direction will be left-to-right.
*/
public static final int DIRECTION_DEFAULT_LEFT_TO_RIGHT = -2;
/**
* This indicates that a strongly directional character in the text should
* set the initial direction, but if no such character is found, then the
* initial direction will be right-to-left.
*/
public static final int DIRECTION_DEFAULT_RIGHT_TO_LEFT = -1;
/**
* This indicates that the initial direction should be left-to-right.
*/
public static final int DIRECTION_LEFT_TO_RIGHT = 0;
/**
* This indicates that the initial direction should be right-to-left.
*/
public static final int DIRECTION_RIGHT_TO_LEFT = 1;
// Flags used when computing the result.
private static final int LTOR = 1 << DIRECTION_LEFT_TO_RIGHT;
private static final int RTOL = 1 << DIRECTION_RIGHT_TO_LEFT;
// The text we are examining, and the starting offset.
// If we had a better way to handle createLineBidi, we wouldn't
// need this at all -- which for the String case would be an
// efficiency win.
private char[] text;
private int textOffset;
// The embeddings corresponding to the text, and the starting offset.
private byte[] embeddings;
private int embeddingOffset;
// The length of the text (and embeddings) to use.
private int length;
// The flags.
private int flags;
// All instance fields following this point are initialized
// during analysis. Fields before this must be set by the constructor.
// The initial embedding level.
private int baseEmbedding;
// The type of each character in the text.
private byte[] types;
// The levels we compute.
private byte[] levels;
// A list of indices where a formatting code was found. These
// are indicies into the original text -- not into the text after
// the codes have been removed.
private ArrayList formatterIndices;
// Indices of the starts of runs in the text.
private int[] runs;
// A convenience field where we keep track of what kinds of runs
// we've seen.
private int resultFlags;
/**
* Create a new Bidi object given an attributed character iterator.
* This constructor will examine various attributes of the text:
* <ul>
* <li> {@link TextAttribute#RUN_DIRECTION} is used to determine the
* paragraph's base embedding level. This constructor will recognize
* either {@link TextAttribute#RUN_DIRECTION_LTR} or
* {@link TextAttribute#RUN_DIRECTION_RTL}. If neither is given,
* {@link #DIRECTION_DEFAULT_LEFT_TO_RIGHT} is assumed.
* </li>
*
* <li> If {@link TextAttribute#NUMERIC_SHAPING} is seen, then numeric
* shaping will be done before the Bidi algorithm is run.
* </li>
*
* <li> If {@link TextAttribute#BIDI_EMBEDDING} is seen on a given
* character, then the value of this attribute will be used as an
* embedding level override.
* </li>
* </ul>
* @param iter the attributed character iterator to use
*/
public Bidi(AttributedCharacterIterator iter)
{
// If set, this attribute should be set on all characters.
// We don't check this (should we?) but we do assume that we
// can simply examine the first character.
Object val = iter.getAttribute(TextAttribute.RUN_DIRECTION);
if (val == TextAttribute.RUN_DIRECTION_LTR)
this.flags = DIRECTION_LEFT_TO_RIGHT;
else if (val == TextAttribute.RUN_DIRECTION_RTL)
this.flags = DIRECTION_RIGHT_TO_LEFT;
else
this.flags = DIRECTION_DEFAULT_LEFT_TO_RIGHT;
// Likewise this attribute should be specified on the whole text.
// We read it here and then, if it is set, we apply the numeric shaper
// to the text before processing it.
NumericShaper shaper = null;
val = iter.getAttribute(TextAttribute.NUMERIC_SHAPING);
if (val instanceof NumericShaper)
shaper = (NumericShaper) val;
char[] text = new char[iter.getEndIndex() - iter.getBeginIndex()];
this.embeddings = new byte[this.text.length];
this.embeddingOffset = 0;
this.length = text.length;
for (int i = 0; i < this.text.length; ++i)
{
this.text[i] = iter.current();
val = iter.getAttribute(TextAttribute.BIDI_EMBEDDING);
if (val instanceof Integer)
{
int ival = ((Integer) val).intValue();
byte bval;
if (ival < -62 || ival > 62)
bval = 0;
else
bval = (byte) ival;
this.embeddings[i] = bval;
}
}
// Invoke the numeric shaper, if specified.
if (shaper != null)
shaper.shape(this.text, 0, this.length);
runBidi();
}
/**
* Create a new Bidi object with the indicated text and, possibly, explicit
* embedding settings.
*
* If the embeddings array is null, it is ignored. Otherwise it is taken to
* be explicit embedding settings corresponding to the text. Positive values
* from 1 to 61 are embedding levels, and negative values from -1 to -61 are
* embedding overrides. (FIXME: not at all clear what this really means.)
*
* @param text the text to use
* @param offset the offset of the first character of the text
* @param embeddings the explicit embeddings, or null if there are none
* @param embedOffset the offset of the first embedding value to use
* @param length the length of both the text and the embeddings
* @param flags a flag indicating the base embedding direction
*/
public Bidi(char[] text, int offset, byte[] embeddings, int embedOffset,
int length, int flags)
{
if (flags != DIRECTION_DEFAULT_LEFT_TO_RIGHT
&& flags != DIRECTION_DEFAULT_RIGHT_TO_LEFT
&& flags != DIRECTION_LEFT_TO_RIGHT
&& flags != DIRECTION_RIGHT_TO_LEFT)
throw new IllegalArgumentException("unrecognized 'flags' argument: "
+ flags);
this.text = text;
this.textOffset = offset;
this.embeddings = embeddings;
this.embeddingOffset = embedOffset;
this.length = length;
this.flags = flags;
runBidi();
}
/**
* Create a new Bidi object using the contents of the given String
* as the text.
* @param text the text to use
* @param flags a flag indicating the base embedding direction
*/
public Bidi(String text, int flags)
{
if (flags != DIRECTION_DEFAULT_LEFT_TO_RIGHT
&& flags != DIRECTION_DEFAULT_RIGHT_TO_LEFT
&& flags != DIRECTION_LEFT_TO_RIGHT
&& flags != DIRECTION_RIGHT_TO_LEFT)
throw new IllegalArgumentException("unrecognized 'flags' argument: "
+ flags);
// This is inefficient, but it isn't clear whether it matters.
// If it does we can change our implementation a bit to allow either
// a String or a char[].
this.text = text.toCharArray();
this.textOffset = 0;
this.embeddings = null;
this.embeddingOffset = 0;
this.length = text.length();
this.flags = flags;
runBidi();
}
/**
* Implementation function which computes the initial type of
* each character in the input.
*/
private void computeTypes()
{
types = new byte[length];
for (int i = 0; i < length; ++i)
types[i] = Character.getDirectionality(text[textOffset + i]);
}
/**
* An internal function which implements rules P2 and P3.
* This computes the base embedding level.
* @return the paragraph's base embedding level
*/
private int computeParagraphEmbeddingLevel()
{
// First check to see if the user supplied a directionality override.
if (flags == DIRECTION_LEFT_TO_RIGHT
|| flags == DIRECTION_RIGHT_TO_LEFT)
return flags;
// This implements rules P2 and P3.
// (Note that we don't need P1, as the user supplies
// a paragraph.)
for (int i = 0; i < length; ++i)
{
int dir = types[i];
if (dir == Character.DIRECTIONALITY_LEFT_TO_RIGHT)
return DIRECTION_LEFT_TO_RIGHT;
if (dir == Character.DIRECTIONALITY_RIGHT_TO_LEFT
|| dir == Character.DIRECTIONALITY_RIGHT_TO_LEFT)
return DIRECTION_RIGHT_TO_LEFT;
}
return (flags == DIRECTION_DEFAULT_LEFT_TO_RIGHT
? DIRECTION_LEFT_TO_RIGHT
: DIRECTION_RIGHT_TO_LEFT);
}
/**
* An internal function which implements rules X1 through X9.
* This computes the initial levels for the text, handling
* explicit overrides and embeddings.
*/
private void computeExplicitLevels()
{
levels = new byte[length];
byte currentEmbedding = (byte) baseEmbedding;
// The directional override is a Character directionality
// constant. -1 means there is no override.
byte directionalOverride = -1;
// The stack of pushed embeddings, and the stack pointer.
// Note that because the direction is inherent in the depth,
// and because we have a bit left over in a byte, we can encode
// the override, if any, directly in this value on the stack.
final int MAX_DEPTH = 62;
byte[] embeddingStack = new byte[MAX_DEPTH];
int sp = 0;
for (int i = 0; i < length; ++i)
{
// If we see an explicit embedding, we use that, even if
// the current character is itself a directional override.
if (embeddings != null && embeddings[embeddingOffset + i] != 0)
{
// It isn't at all clear what we're supposed to do here.
// What does a negative value really mean?
// Should we push on the embedding stack here?
currentEmbedding = embeddings[embeddingOffset + i];
if (currentEmbedding < 0)
{
currentEmbedding = (byte) -currentEmbedding;
directionalOverride
= (((currentEmbedding % 2) == 0)
? Character.DIRECTIONALITY_LEFT_TO_RIGHT
: Character.DIRECTIONALITY_RIGHT_TO_LEFT);
}
else
directionalOverride = -1;
continue;
}
// No explicit embedding.
boolean isLtoR = false;
boolean isSpecial = true;
switch (types[i])
{
case Character.DIRECTIONALITY_LEFT_TO_RIGHT_EMBEDDING:
case Character.DIRECTIONALITY_LEFT_TO_RIGHT_OVERRIDE:
isLtoR = true;
// Fall through.
case Character.DIRECTIONALITY_RIGHT_TO_LEFT_EMBEDDING:
case Character.DIRECTIONALITY_RIGHT_TO_LEFT_OVERRIDE:
{
byte newEmbedding;
if (isLtoR)
{
// Least greater even.
newEmbedding = (byte) ((currentEmbedding & ~1) + 2);
}
else
{
// Least greater odd.
newEmbedding = (byte) ((currentEmbedding + 1) | 1);
}
// FIXME: we don't properly handle invalid pushes.
if (newEmbedding < MAX_DEPTH)
{
// The new level is valid. Push the old value.
// See above for a comment on the encoding here.
if (directionalOverride != -1)
currentEmbedding |= Byte.MIN_VALUE;
embeddingStack[sp++] = currentEmbedding;
currentEmbedding = newEmbedding;
if (types[i] == Character.DIRECTIONALITY_LEFT_TO_RIGHT_OVERRIDE)
directionalOverride = Character.DIRECTIONALITY_LEFT_TO_RIGHT;
else if (types[i] == Character.DIRECTIONALITY_RIGHT_TO_LEFT_OVERRIDE)
directionalOverride = Character.DIRECTIONALITY_RIGHT_TO_LEFT;
else
directionalOverride = -1;
}
}
break;
case Character.DIRECTIONALITY_POP_DIRECTIONAL_FORMAT:
{
// FIXME: we don't properly handle a pop with a corresponding
// invalid push.
if (sp == 0)
{
// We saw a pop without a push. Just ignore it.
break;
}
byte newEmbedding = embeddingStack[--sp];
currentEmbedding = (byte) (newEmbedding & 0x7f);
if (newEmbedding < 0)
directionalOverride
= (((newEmbedding & 1) == 0)
? Character.DIRECTIONALITY_LEFT_TO_RIGHT
: Character.DIRECTIONALITY_RIGHT_TO_LEFT);
else
directionalOverride = -1;
}
break;
default:
isSpecial = false;
break;
}
levels[i] = currentEmbedding;
if (isSpecial)
{
// Mark this character for removal.
if (formatterIndices == null)
formatterIndices = new ArrayList();
formatterIndices.add(Integer.valueOf(i));
}
else if (directionalOverride != -1)
types[i] = directionalOverride;
}
// Remove the formatting codes and update both the arrays
// and 'length'. It would be more efficient not to remove
// these codes, but it is also more complicated. Also, the
// Unicode algorithm reference does not properly describe
// how this is to be done -- from what I can tell, their suggestions
// in this area will not yield the correct results.
if (formatterIndices == null)
return;
int output = 0, input = 0;
final int size = formatterIndices.size();
for (int i = 0; i <= size; ++i)
{
int nextFmt;
if (i == size)
nextFmt = length;
else
nextFmt = ((Integer) formatterIndices.get(i)).intValue();
// Non-formatter codes are from 'input' to 'nextFmt'.
int len = nextFmt - input;
System.arraycopy(levels, input, levels, output, len);
System.arraycopy(types, input, types, output, len);
output += len;
input = nextFmt + 1;
}
length -= formatterIndices.size();
}
/**
* An internal function to compute the boundaries of runs
* in the text. It isn't strictly necessary to do this, but
* it lets us write some following passes in a less complicated
* way. Also it lets us efficiently implement some of the public
* methods. A run is simply a sequence of characters at the
* same level.
*/
private void computeRuns()
{
int runCount = 0;
int currentEmbedding = baseEmbedding;
for (int i = 0; i < length; ++i)
{
if (levels[i] != currentEmbedding)
{
currentEmbedding = levels[i];
++runCount;
}
}
// This may be called multiple times. If so, and if
// the number of runs has not changed, then don't bother
// allocating a new array.
if (runs == null || runs.length != runCount + 1)
runs = new int[runCount + 1];
int where = 0;
int lastRunStart = 0;
currentEmbedding = baseEmbedding;
for (int i = 0; i < length; ++i)
{
if (levels[i] != currentEmbedding)
{
runs[where++] = lastRunStart;
lastRunStart = i;
currentEmbedding = levels[i];
}
}
runs[where++] = lastRunStart;
}
/**
* An internal method to resolve weak types. This implements
* rules W1 through W7.
*/
private void resolveWeakTypes()
{
final int runCount = getRunCount();
int previousLevel = baseEmbedding;
for (int run = 0; run < runCount; ++run)
{
int start = getRunStart(run);
int end = getRunLimit(run);
int level = getRunLevel(run);
// These are the names used in the Bidi algorithm.
byte sor = (((Math.max(previousLevel, level) % 2) == 0)
? Character.DIRECTIONALITY_LEFT_TO_RIGHT
: Character.DIRECTIONALITY_RIGHT_TO_LEFT);
int nextLevel;
if (run == runCount - 1)
nextLevel = baseEmbedding;
else
nextLevel = getRunLevel(run + 1);
byte eor = (((Math.max(level, nextLevel) % 2) == 0)
? Character.DIRECTIONALITY_LEFT_TO_RIGHT
: Character.DIRECTIONALITY_RIGHT_TO_LEFT);
byte prevType = sor;
byte prevStrongType = sor;
for (int i = start; i < end; ++i)
{
final byte nextType = (i == end - 1) ? eor : types[i + 1];
// Rule W1: change NSM to the prevailing direction.
if (types[i] == Character.DIRECTIONALITY_NONSPACING_MARK)
types[i] = prevType;
else
prevType = types[i];
// Rule W2: change EN to AN in some cases.
if (types[i] == Character.DIRECTIONALITY_EUROPEAN_NUMBER)
{
if (prevStrongType == Character.DIRECTIONALITY_RIGHT_TO_LEFT_ARABIC)
types[i] = Character.DIRECTIONALITY_ARABIC_NUMBER;
}
else if (types[i] == Character.DIRECTIONALITY_LEFT_TO_RIGHT
|| types[i] == Character.DIRECTIONALITY_RIGHT_TO_LEFT
|| types[i] == Character.DIRECTIONALITY_RIGHT_TO_LEFT_ARABIC)
prevStrongType = types[i];
// Rule W3: change AL to R.
if (types[i] == Character.DIRECTIONALITY_RIGHT_TO_LEFT_ARABIC)
types[i] = Character.DIRECTIONALITY_RIGHT_TO_LEFT;
// Rule W4: handle separators between two numbers.
if (prevType == Character.DIRECTIONALITY_EUROPEAN_NUMBER
&& nextType == Character.DIRECTIONALITY_EUROPEAN_NUMBER)
{
if (types[i] == Character.DIRECTIONALITY_EUROPEAN_NUMBER_SEPARATOR
|| types[i] == Character.DIRECTIONALITY_COMMON_NUMBER_SEPARATOR)
types[i] = nextType;
}
else if (prevType == Character.DIRECTIONALITY_ARABIC_NUMBER
&& nextType == Character.DIRECTIONALITY_ARABIC_NUMBER
&& types[i] == Character.DIRECTIONALITY_COMMON_NUMBER_SEPARATOR)
types[i] = nextType;
// Rule W5: change a sequence of european terminators to
// european numbers, if they are adjacent to european numbers.
// We also include BN characters in this.
if (types[i] == Character.DIRECTIONALITY_EUROPEAN_NUMBER_TERMINATOR
|| types[i] == Character.DIRECTIONALITY_BOUNDARY_NEUTRAL)
{
if (prevType == Character.DIRECTIONALITY_EUROPEAN_NUMBER)
types[i] = prevType;
else
{
// Look ahead to see if there is an EN terminating this
// sequence of ETs.
int j = i + 1;
while (j < end
&& (types[j] == Character.DIRECTIONALITY_EUROPEAN_NUMBER_TERMINATOR
|| types[j] == Character.DIRECTIONALITY_BOUNDARY_NEUTRAL))
++j;
if (j < end
&& types[j] == Character.DIRECTIONALITY_EUROPEAN_NUMBER)
{
// Change them all to EN now.
for (int k = i; k < j; ++k)
types[k] = Character.DIRECTIONALITY_EUROPEAN_NUMBER;
}
}
}
// Rule W6: separators and terminators change to ON.
// Again we include BN.
if (types[i] == Character.DIRECTIONALITY_EUROPEAN_NUMBER_TERMINATOR
|| types[i] == Character.DIRECTIONALITY_EUROPEAN_NUMBER_TERMINATOR
|| types[i] == Character.DIRECTIONALITY_COMMON_NUMBER_SEPARATOR
|| types[i] == Character.DIRECTIONALITY_BOUNDARY_NEUTRAL)
types[i] = Character.DIRECTIONALITY_OTHER_NEUTRALS;
// Rule W7: change european number types.
if (prevStrongType == Character.DIRECTIONALITY_LEFT_TO_RIGHT
&& types[i] == Character.DIRECTIONALITY_EUROPEAN_NUMBER)
types[i] = prevStrongType;
}
previousLevel = level;
}
}
/**
* An internal method to resolve neutral types. This implements
* rules N1 and N2.
*/
private void resolveNeutralTypes()
{
// This implements rules N1 and N2.
final int runCount = getRunCount();
int previousLevel = baseEmbedding;
for (int run = 0; run < runCount; ++run)
{
int start = getRunStart(run);
int end = getRunLimit(run);
int level = getRunLevel(run);
byte embeddingDirection
= (((level % 2) == 0) ? Character.DIRECTIONALITY_LEFT_TO_RIGHT
: Character.DIRECTIONALITY_RIGHT_TO_LEFT);
// These are the names used in the Bidi algorithm.
byte sor = (((Math.max(previousLevel, level) % 2) == 0)
? Character.DIRECTIONALITY_LEFT_TO_RIGHT
: Character.DIRECTIONALITY_RIGHT_TO_LEFT);
int nextLevel;
if (run == runCount - 1)
nextLevel = baseEmbedding;
else
nextLevel = getRunLevel(run + 1);
byte eor = (((Math.max(level, nextLevel) % 2) == 0)
? Character.DIRECTIONALITY_LEFT_TO_RIGHT
: Character.DIRECTIONALITY_RIGHT_TO_LEFT);
byte prevStrong = sor;
int neutralStart = -1;
for (int i = start; i <= end; ++i)
{
byte newStrong = -1;
byte thisType = i == end ? eor : types[i];
switch (thisType)
{
case Character.DIRECTIONALITY_LEFT_TO_RIGHT:
newStrong = Character.DIRECTIONALITY_LEFT_TO_RIGHT;
break;
case Character.DIRECTIONALITY_RIGHT_TO_LEFT:
case Character.DIRECTIONALITY_ARABIC_NUMBER:
case Character.DIRECTIONALITY_EUROPEAN_NUMBER:
newStrong = Character.DIRECTIONALITY_RIGHT_TO_LEFT;
break;
case Character.DIRECTIONALITY_BOUNDARY_NEUTRAL:
case Character.DIRECTIONALITY_OTHER_NEUTRALS:
case Character.DIRECTIONALITY_SEGMENT_SEPARATOR:
case Character.DIRECTIONALITY_PARAGRAPH_SEPARATOR:
case Character.DIRECTIONALITY_WHITESPACE:
if (neutralStart == -1)
neutralStart = i;
break;
}
// If we see a strong character, update all the neutrals.
if (newStrong != -1)
{
if (neutralStart != -1)
{
byte override = (prevStrong == newStrong
? prevStrong
: embeddingDirection);
for (int j = neutralStart; j < i; ++j)
types[j] = override;
}
prevStrong = newStrong;
neutralStart = -1;
}
}
previousLevel = level;
}
}
/**
* An internal method to resolve implicit levels.
* This implements rules I1 and I2.
*/
private void resolveImplicitLevels()
{
// This implements rules I1 and I2.
for (int i = 0; i < length; ++i)
{
if ((levels[i] & 1) == 0)
{
if (types[i] == Character.DIRECTIONALITY_RIGHT_TO_LEFT)
++levels[i];
else if (types[i] == Character.DIRECTIONALITY_ARABIC_NUMBER
|| types[i] == Character.DIRECTIONALITY_EUROPEAN_NUMBER)
levels[i] += 2;
}
else
{
if (types[i] == Character.DIRECTIONALITY_LEFT_TO_RIGHT
|| types[i] == Character.DIRECTIONALITY_ARABIC_NUMBER
|| types[i] == Character.DIRECTIONALITY_EUROPEAN_NUMBER)
++levels[i];
}
// Update the result flags.
resultFlags |= 1 << (levels[i] & 1);
}
// One final update of the result flags, using the base level.
resultFlags |= 1 << baseEmbedding;
}
/**
* This reinserts the formatting codes that we removed early on.
* Actually it does not insert formatting codes per se, but rather
* simply inserts new levels at the appropriate locations in the
* 'levels' array.
*/
private void reinsertFormattingCodes()
{
if (formatterIndices == null)
return;
int input = length;
int output = levels.length;
// Process from the end as we are copying the array over itself here.
for (int index = formatterIndices.size() - 1; index >= 0; --index)
{
int nextFmt = ((Integer) formatterIndices.get(index)).intValue();
// nextFmt points to a location in the original array. So,
// nextFmt+1 is the target of our copying. output is the location
// to which we last copied, thus we can derive the length of the
// copy from it.
int len = output - nextFmt - 1;
output = nextFmt;
input -= len;
// Note that we no longer need 'types' at this point, so we
// only edit 'levels'.
if (nextFmt + 1 < levels.length)
System.arraycopy(levels, input, levels, nextFmt + 1, len);
// Now set the level at the reinsertion point.
int rightLevel;
if (output == levels.length - 1)
rightLevel = baseEmbedding;
else
rightLevel = levels[output + 1];
int leftLevel;
if (input == 0)
leftLevel = baseEmbedding;
else
leftLevel = levels[input];
levels[output] = (byte) Math.max(leftLevel, rightLevel);
}
length = levels.length;
}
/**
* This is the main internal entry point. After a constructor
* has initialized the appropriate local state, it will call
* this method to do all the work.
*/
private void runBidi()
{
computeTypes();
baseEmbedding = computeParagraphEmbeddingLevel();
computeExplicitLevels();
computeRuns();
resolveWeakTypes();
resolveNeutralTypes();
resolveImplicitLevels();
// We're done with the types. Let the GC clean up.
types = null;
reinsertFormattingCodes();
// After resolving the implicit levels, the number
// of runs may have changed.
computeRuns();
}
/**
* Return true if the paragraph base embedding is left-to-right,
* false otherwise.
*/
public boolean baseIsLeftToRight()
{
return baseEmbedding == DIRECTION_LEFT_TO_RIGHT;
}
/**
* Create a new Bidi object for a single line of text, taken
* from the text used when creating the current Bidi object.
* @param start the index of the first character of the line
* @param end the index of the final character of the line
* @return a new Bidi object for the indicated line of text
*/
public Bidi createLineBidi(int start, int end)
{
// This isn't the most efficient implementation possible.
// This probably does not matter, so we choose simplicity instead.
int level = getLevelAt(start);
int flag = (((level % 2) == 0)
? DIRECTION_LEFT_TO_RIGHT
: DIRECTION_RIGHT_TO_LEFT);
return new Bidi(text, textOffset + start,
embeddings, embeddingOffset + start,
end - start, flag);
}
/**
* Return the base embedding level of the paragraph.
*/
public int getBaseLevel()
{
return baseEmbedding;
}
/**
* Return the length of the paragraph, in characters.
*/
public int getLength()
{
return length;
}
/**
* Return the level at the indicated character. If the
* supplied index is less than zero or greater than the length
* of the text, then the paragraph's base embedding level will
* be returned.
* @param offset the character to examine
* @return the level of that character
*/
public int getLevelAt(int offset)
{
if (offset < 0 || offset >= length)
return getBaseLevel();
return levels[offset];
}
/**
* Return the number of runs in the result. A run is
* a sequence of characters at the same embedding level.
*/
public int getRunCount()
{
return runs.length;
}
/**
* Return the level of the indicated run.
* @param which the run to examine
* @return the level of that run
*/
public int getRunLevel(int which)
{
return levels[runs[which]];
}
/**
* Return the index of the character just following the end
* of the indicated run.
* @param which the run to examine
* @return the index of the character after the final character
* of the run
*/
public int getRunLimit(int which)
{
if (which == runs.length - 1)
return length;
return runs[which + 1];
}
/**
* Return the index of the first character in the indicated run.
* @param which the run to examine
* @return the index of the first character of the run
*/
public int getRunStart(int which)
{
return runs[which];
}
/**
* Return true if the text is entirely left-to-right, and the
* base embedding is also left-to-right.
*/
public boolean isLeftToRight()
{
return resultFlags == LTOR;
}
/**
* Return true if the text consists of mixed left-to-right and
* right-to-left runs, or if the text consists of one kind of run
* which differs from the base embedding direction.
*/
public boolean isMixed()
{
return resultFlags == (LTOR | RTOL);
}
/**
* Return true if the text is entirely right-to-left, and the
* base embedding is also right-to-left.
*/
public boolean isRightToLeft()
{
return resultFlags == RTOL;
}
/**
* Return a String describing the internal state of this object.
* This is only useful for debugging.
*/
public String toString()
{
return "Bidi Bidi Bidi I like you, Buck!";
}
/**
* Reorder objects according to the levels passed in. This implements
* reordering as defined by the Unicode bidirectional layout specification.
* The levels are integers from 0 to 62; even numbers represent left-to-right
* runs, and odd numbers represent right-to-left runs.
*
* @param levels the levels associated with each object
* @param levelOffset the index of the first level to use
* @param objs the objects to reorder according to the levels
* @param objOffset the index of the first object to use
* @param count the number of objects (and levels) to manipulate
*/
public static void reorderVisually(byte[] levels, int levelOffset,
Object[] objs, int objOffset, int count)
{
// We need a copy of the 'levels' array, as we are going to modify it.
// This is unfortunate but difficult to avoid.
byte[] levelCopy = new byte[count];
// Do this explicitly so we can also find the maximum depth at the
// same time.
int max = 0;
int lowestOdd = 63;
for (int i = 0; i < count; ++i)
{
levelCopy[i] = levels[levelOffset + i];
max = Math.max(levelCopy[i], max);
if (levelCopy[i] % 2 != 0)
lowestOdd = Math.min(lowestOdd, levelCopy[i]);
}
// Reverse the runs starting with the deepest.
for (int depth = max; depth >= lowestOdd; --depth)
{
int start = 0;
while (start < count)
{
// Find the start of a run >= DEPTH.
while (start < count && levelCopy[start] < depth)
++start;
if (start == count)
break;
// Find the end of the run.
int end = start + 1;
while (end < count && levelCopy[end] >= depth)
++end;
// Reverse this run.
for (int i = 0; i < (end - start) / 2; ++i)
{
byte tmpb = levelCopy[end - i - 1];
levelCopy[end - i - 1] = levelCopy[start + i];
levelCopy[start + i] = tmpb;
Object tmpo = objs[objOffset + end - i - 1];
objs[objOffset + end - i - 1] = objs[objOffset + start + i];
objs[objOffset + start + i] = tmpo;
}
// Handle the next run.
start = end + 1;
}
}
}
/**
* Returns false if all characters in the text between start and end
* are all left-to-right text. This implementation is just calls
* <code>Character.getDirectionality(char)</code> on all characters
* and makes sure all characters are either explicitly left-to-right
* or neutral in directionality (character types L, EN, ES, ET, AN,
* CS, S and WS).
*/
public static boolean requiresBidi(char[] text, int start, int end)
{
for (int i = start; i < end; i++)
{
byte dir = Character.getDirectionality(text[i]);
if (dir != Character.DIRECTIONALITY_LEFT_TO_RIGHT
&& dir != Character.DIRECTIONALITY_EUROPEAN_NUMBER
&& dir != Character.DIRECTIONALITY_EUROPEAN_NUMBER_SEPARATOR
&& dir != Character.DIRECTIONALITY_EUROPEAN_NUMBER_TERMINATOR
&& dir != Character.DIRECTIONALITY_ARABIC_NUMBER
&& dir != Character.DIRECTIONALITY_COMMON_NUMBER_SEPARATOR
&& dir != Character.DIRECTIONALITY_SEGMENT_SEPARATOR
&& dir != Character.DIRECTIONALITY_WHITESPACE
&& dir != Character.DIRECTIONALITY_PARAGRAPH_SEPARATOR)
return true;
}
return false;
}
}
|