1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
|
/*
FUNCTION
<<strtod>>, <<strtodf>>---string to double or float
INDEX
strtod
INDEX
_strtod_r
INDEX
strtodf
ANSI_SYNOPSIS
#include <stdlib.h>
double strtod(const char *<[str]>, char **<[tail]>);
float strtodf(const char *<[str]>, char **<[tail]>);
double _strtod_r(void *<[reent]>,
const char *<[str]>, char **<[tail]>);
TRAD_SYNOPSIS
#include <stdlib.h>
double strtod(<[str]>,<[tail]>)
char *<[str]>;
char **<[tail]>;
float strtodf(<[str]>,<[tail]>)
char *<[str]>;
char **<[tail]>;
double _strtod_r(<[reent]>,<[str]>,<[tail]>)
char *<[reent]>;
char *<[str]>;
char **<[tail]>;
DESCRIPTION
The function <<strtod>> parses the character string <[str]>,
producing a substring which can be converted to a double
value. The substring converted is the longest initial
subsequence of <[str]>, beginning with the first
non-whitespace character, that has the format:
.[+|-]<[digits]>[.][<[digits]>][(e|E)[+|-]<[digits]>]
The substring contains no characters if <[str]> is empty, consists
entirely of whitespace, or if the first non-whitespace
character is something other than <<+>>, <<->>, <<.>>, or a
digit. If the substring is empty, no conversion is done, and
the value of <[str]> is stored in <<*<[tail]>>>. Otherwise,
the substring is converted, and a pointer to the final string
(which will contain at least the terminating null character of
<[str]>) is stored in <<*<[tail]>>>. If you want no
assignment to <<*<[tail]>>>, pass a null pointer as <[tail]>.
<<strtodf>> is identical to <<strtod>> except for its return type.
This implementation returns the nearest machine number to the
input decimal string. Ties are broken by using the IEEE
round-even rule.
The alternate function <<_strtod_r>> is a reentrant version.
The extra argument <[reent]> is a pointer to a reentrancy structure.
RETURNS
<<strtod>> returns the converted substring value, if any. If
no conversion could be performed, 0 is returned. If the
correct value is out of the range of representable values,
plus or minus <<HUGE_VAL>> is returned, and <<ERANGE>> is
stored in errno. If the correct value would cause underflow, 0
is returned and <<ERANGE>> is stored in errno.
Supporting OS subroutines required: <<close>>, <<fstat>>, <<isatty>>,
<<lseek>>, <<read>>, <<sbrk>>, <<write>>.
*/
/****************************************************************
*
* The author of this software is David M. Gay.
*
* Copyright (c) 1991 by AT&T.
*
* Permission to use, copy, modify, and distribute this software for any
* purpose without fee is hereby granted, provided that this entire notice
* is included in all copies of any software which is or includes a copy
* or modification of this software and in all copies of the supporting
* documentation for such software.
*
* THIS SOFTWARE IS BEING PROVIDED "AS IS", WITHOUT ANY EXPRESS OR IMPLIED
* WARRANTY. IN PARTICULAR, NEITHER THE AUTHOR NOR AT&T MAKES ANY
* REPRESENTATION OR WARRANTY OF ANY KIND CONCERNING THE MERCHANTABILITY
* OF THIS SOFTWARE OR ITS FITNESS FOR ANY PARTICULAR PURPOSE.
*
***************************************************************/
/* Please send bug reports to
David M. Gay
AT&T Bell Laboratories, Room 2C-463
600 Mountain Avenue
Murray Hill, NJ 07974-2070
U.S.A.
dmg@research.att.com or research!dmg
*/
#include <string.h>
#include <float.h>
#include <errno.h>
#include "mprec.h"
double
_DEFUN (_strtod_r, (ptr, s00, se),
struct _Jv_reent *ptr _AND
_CONST char *s00 _AND
char **se)
{
int bb2, bb5, bbe, bd2, bd5, bbbits, bs2, c, dsign, e1, esign, i, j,
k, nd, nd0, nf, nz, nz0, sign;
int digits = 0; /* Number of digits found in fraction part. */
long e;
_CONST char *s, *s0, *s1;
double aadj, aadj1, adj;
long L;
unsigned long y, z;
union double_union rv, rv0;
_Jv_Bigint *bb = NULL, *bb1, *bd = NULL, *bd0, *bs = NULL, *delta = NULL;
sign = nz0 = nz = 0;
rv.d = 0.;
for (s = s00;; s++)
switch (*s)
{
case '-':
sign = 1;
/* no break */
case '+':
if (*++s)
goto break2;
/* no break */
case 0:
s = s00;
goto ret;
case '\t':
case '\n':
case '\v':
case '\f':
case '\r':
case ' ':
continue;
default:
goto break2;
}
break2:
if (*s == '0')
{
digits++;
nz0 = 1;
while (*++s == '0')
digits++;
if (!*s)
goto ret;
}
s0 = s;
y = z = 0;
for (nd = nf = 0; (c = *s) >= '0' && c <= '9'; nd++, s++)
{
digits++;
if (nd < 9)
y = 10 * y + c - '0';
else if (nd < 16)
z = 10 * z + c - '0';
}
nd0 = nd;
if (c == '.')
{
c = *++s;
if (!nd)
{
for (; c == '0'; c = *++s)
{
digits++;
nz++;
}
if (c > '0' && c <= '9')
{
digits++;
s0 = s;
nf += nz;
nz = 0;
goto have_dig;
}
goto dig_done;
}
for (; c >= '0' && c <= '9'; c = *++s)
{
digits++;
have_dig:
nz++;
if (c -= '0')
{
nf += nz;
for (i = 1; i < nz; i++)
if (nd++ < 9)
y *= 10;
else if (nd <= DBL_DIG + 1)
z *= 10;
if (nd++ < 9)
y = 10 * y + c;
else if (nd <= DBL_DIG + 1)
z = 10 * z + c;
nz = 0;
}
}
}
dig_done:
e = 0;
if (c == 'e' || c == 'E')
{
if (!nd && !nz && !nz0)
{
s = s00;
goto ret;
}
s00 = s;
esign = 0;
switch (c = *++s)
{
case '-':
esign = 1;
case '+':
c = *++s;
}
if (c >= '0' && c <= '9')
{
while (c == '0')
c = *++s;
if (c > '0' && c <= '9')
{
e = c - '0';
s1 = s;
while ((c = *++s) >= '0' && c <= '9')
e = 10 * e + c - '0';
if (s - s1 > 8)
/* Avoid confusion from exponents
* so large that e might overflow.
*/
e = 9999999L;
if (esign)
e = -e;
}
}
else
{
/* No exponent after an 'E' : that's an error. */
ptr->_errno = EINVAL;
e = 0;
s = s00;
goto ret;
}
}
if (!nd)
{
if (!nz && !nz0)
s = s00;
goto ret;
}
e1 = e -= nf;
/* Now we have nd0 digits, starting at s0, followed by a
* decimal point, followed by nd-nd0 digits. The number we're
* after is the integer represented by those digits times
* 10**e */
if (!nd0)
nd0 = nd;
k = nd < DBL_DIG + 1 ? nd : DBL_DIG + 1;
rv.d = y;
if (k > 9)
rv.d = tens[k - 9] * rv.d + z;
bd0 = 0;
if (nd <= DBL_DIG
#ifndef RND_PRODQUOT
&& FLT_ROUNDS == 1
#endif
)
{
if (!e)
goto ret;
if (e > 0)
{
if (e <= Ten_pmax)
{
#ifdef VAX
goto vax_ovfl_check;
#else
/* rv.d = */ rounded_product (rv.d, tens[e]);
goto ret;
#endif
}
i = DBL_DIG - nd;
if (e <= Ten_pmax + i)
{
/* A fancier test would sometimes let us do
* this for larger i values.
*/
e -= i;
rv.d *= tens[i];
#ifdef VAX
/* VAX exponent range is so narrow we must
* worry about overflow here...
*/
vax_ovfl_check:
word0 (rv) -= P * Exp_msk1;
/* rv.d = */ rounded_product (rv.d, tens[e]);
if ((word0 (rv) & Exp_mask)
> Exp_msk1 * (DBL_MAX_EXP + Bias - 1 - P))
goto ovfl;
word0 (rv) += P * Exp_msk1;
#else
/* rv.d = */ rounded_product (rv.d, tens[e]);
#endif
goto ret;
}
}
#ifndef Inaccurate_Divide
else if (e >= -Ten_pmax)
{
/* rv.d = */ rounded_quotient (rv.d, tens[-e]);
goto ret;
}
#endif
}
e1 += nd - k;
/* Get starting approximation = rv.d * 10**e1 */
if (e1 > 0)
{
if ((i = e1 & 15))
rv.d *= tens[i];
if (e1 &= ~15)
{
if (e1 > DBL_MAX_10_EXP)
{
ovfl:
ptr->_errno = ERANGE;
/* Force result to IEEE infinity. */
word0 (rv) = Exp_mask;
word1 (rv) = 0;
if (bd0)
goto retfree;
goto ret;
}
if (e1 >>= 4)
{
for (j = 0; e1 > 1; j++, e1 >>= 1)
if (e1 & 1)
rv.d *= bigtens[j];
/* The last multiplication could overflow. */
word0 (rv) -= P * Exp_msk1;
rv.d *= bigtens[j];
if ((z = word0 (rv) & Exp_mask)
> Exp_msk1 * (DBL_MAX_EXP + Bias - P))
goto ovfl;
if (z > Exp_msk1 * (DBL_MAX_EXP + Bias - 1 - P))
{
/* set to largest number */
/* (Can't trust DBL_MAX) */
word0 (rv) = Big0;
#ifndef _DOUBLE_IS_32BITS
word1 (rv) = Big1;
#endif
}
else
word0 (rv) += P * Exp_msk1;
}
}
}
else if (e1 < 0)
{
e1 = -e1;
if ((i = e1 & 15))
rv.d /= tens[i];
if (e1 &= ~15)
{
e1 >>= 4;
if (e1 >= 1 << n_bigtens)
goto undfl;
for (j = 0; e1 > 1; j++, e1 >>= 1)
if (e1 & 1)
rv.d *= tinytens[j];
/* The last multiplication could underflow. */
rv0.d = rv.d;
rv.d *= tinytens[j];
if (!rv.d)
{
rv.d = 2. * rv0.d;
rv.d *= tinytens[j];
if (!rv.d)
{
undfl:
rv.d = 0.;
ptr->_errno = ERANGE;
if (bd0)
goto retfree;
goto ret;
}
#ifndef _DOUBLE_IS_32BITS
word0 (rv) = Tiny0;
word1 (rv) = Tiny1;
#else
word0 (rv) = Tiny1;
#endif
/* The refinement below will clean
* this approximation up.
*/
}
}
}
/* Now the hard part -- adjusting rv to the correct value.*/
/* Put digits into bd: true value = bd * 10^e */
bd0 = s2b (ptr, s0, nd0, nd, y);
for (;;)
{
bd = Balloc (ptr, bd0->_k);
Bcopy (bd, bd0);
bb = d2b (ptr, rv.d, &bbe, &bbbits); /* rv.d = bb * 2^bbe */
bs = i2b (ptr, 1);
if (e >= 0)
{
bb2 = bb5 = 0;
bd2 = bd5 = e;
}
else
{
bb2 = bb5 = -e;
bd2 = bd5 = 0;
}
if (bbe >= 0)
bb2 += bbe;
else
bd2 -= bbe;
bs2 = bb2;
#ifdef Sudden_Underflow
#ifdef IBM
j = 1 + 4 * P - 3 - bbbits + ((bbe + bbbits - 1) & 3);
#else
j = P + 1 - bbbits;
#endif
#else
i = bbe + bbbits - 1; /* logb(rv.d) */
if (i < Emin) /* denormal */
j = bbe + (P - Emin);
else
j = P + 1 - bbbits;
#endif
bb2 += j;
bd2 += j;
i = bb2 < bd2 ? bb2 : bd2;
if (i > bs2)
i = bs2;
if (i > 0)
{
bb2 -= i;
bd2 -= i;
bs2 -= i;
}
if (bb5 > 0)
{
bs = pow5mult (ptr, bs, bb5);
bb1 = mult (ptr, bs, bb);
Bfree (ptr, bb);
bb = bb1;
}
if (bb2 > 0)
bb = lshift (ptr, bb, bb2);
if (bd5 > 0)
bd = pow5mult (ptr, bd, bd5);
if (bd2 > 0)
bd = lshift (ptr, bd, bd2);
if (bs2 > 0)
bs = lshift (ptr, bs, bs2);
delta = diff (ptr, bb, bd);
dsign = delta->_sign;
delta->_sign = 0;
i = cmp (delta, bs);
if (i < 0)
{
/* Error is less than half an ulp -- check for
* special case of mantissa a power of two.
*/
if (dsign || word1 (rv) || word0 (rv) & Bndry_mask)
break;
delta = lshift (ptr, delta, Log2P);
if (cmp (delta, bs) > 0)
goto drop_down;
break;
}
if (i == 0)
{
/* exactly half-way between */
if (dsign)
{
if ((word0 (rv) & Bndry_mask1) == Bndry_mask1
&& word1 (rv) == 0xffffffff)
{
/*boundary case -- increment exponent*/
word0 (rv) = (word0 (rv) & Exp_mask)
+ Exp_msk1
#ifdef IBM
| Exp_msk1 >> 4
#endif
;
#ifndef _DOUBLE_IS_32BITS
word1 (rv) = 0;
#endif
break;
}
}
else if (!(word0 (rv) & Bndry_mask) && !word1 (rv))
{
drop_down:
/* boundary case -- decrement exponent */
#ifdef Sudden_Underflow
L = word0 (rv) & Exp_mask;
#ifdef IBM
if (L < Exp_msk1)
#else
if (L <= Exp_msk1)
#endif
goto undfl;
L -= Exp_msk1;
#else
L = (word0 (rv) & Exp_mask) - Exp_msk1;
#endif
word0 (rv) = L | Bndry_mask1;
#ifndef _DOUBLE_IS_32BITS
word1 (rv) = 0xffffffff;
#endif
#ifdef IBM
goto cont;
#else
break;
#endif
}
#ifndef ROUND_BIASED
if (!(word1 (rv) & LSB))
break;
#endif
if (dsign)
rv.d += ulp (rv.d);
#ifndef ROUND_BIASED
else
{
rv.d -= ulp (rv.d);
#ifndef Sudden_Underflow
if (!rv.d)
goto undfl;
#endif
}
#endif
break;
}
if ((aadj = ratio (delta, bs)) <= 2.)
{
if (dsign)
aadj = aadj1 = 1.;
else if (word1 (rv) || word0 (rv) & Bndry_mask)
{
#ifndef Sudden_Underflow
if (word1 (rv) == Tiny1 && !word0 (rv))
goto undfl;
#endif
aadj = 1.;
aadj1 = -1.;
}
else
{
/* special case -- power of FLT_RADIX to be */
/* rounded down... */
if (aadj < 2. / FLT_RADIX)
aadj = 1. / FLT_RADIX;
else
aadj *= 0.5;
aadj1 = -aadj;
}
}
else
{
aadj *= 0.5;
aadj1 = dsign ? aadj : -aadj;
#ifdef Check_FLT_ROUNDS
switch (FLT_ROUNDS)
{
case 2: /* towards +infinity */
aadj1 -= 0.5;
break;
case 0: /* towards 0 */
case 3: /* towards -infinity */
aadj1 += 0.5;
}
#else
if (FLT_ROUNDS == 0)
aadj1 += 0.5;
#endif
}
y = word0 (rv) & Exp_mask;
/* Check for overflow */
if (y == Exp_msk1 * (DBL_MAX_EXP + Bias - 1))
{
rv0.d = rv.d;
word0 (rv) -= P * Exp_msk1;
adj = aadj1 * ulp (rv.d);
rv.d += adj;
if ((word0 (rv) & Exp_mask) >=
Exp_msk1 * (DBL_MAX_EXP + Bias - P))
{
if (word0 (rv0) == Big0 && word1 (rv0) == Big1)
goto ovfl;
#ifdef _DOUBLE_IS_32BITS
word0 (rv) = Big1;
#else
word0 (rv) = Big0;
word1 (rv) = Big1;
#endif
goto cont;
}
else
word0 (rv) += P * Exp_msk1;
}
else
{
#ifdef Sudden_Underflow
if ((word0 (rv) & Exp_mask) <= P * Exp_msk1)
{
rv0.d = rv.d;
word0 (rv) += P * Exp_msk1;
adj = aadj1 * ulp (rv.d);
rv.d += adj;
#ifdef IBM
if ((word0 (rv) & Exp_mask) < P * Exp_msk1)
#else
if ((word0 (rv) & Exp_mask) <= P * Exp_msk1)
#endif
{
if (word0 (rv0) == Tiny0
&& word1 (rv0) == Tiny1)
goto undfl;
word0 (rv) = Tiny0;
word1 (rv) = Tiny1;
goto cont;
}
else
word0 (rv) -= P * Exp_msk1;
}
else
{
adj = aadj1 * ulp (rv.d);
rv.d += adj;
}
#else
/* Compute adj so that the IEEE rounding rules will
* correctly round rv.d + adj in some half-way cases.
* If rv.d * ulp(rv.d) is denormalized (i.e.,
* y <= (P-1)*Exp_msk1), we must adjust aadj to avoid
* trouble from bits lost to denormalization;
* example: 1.2e-307 .
*/
if (y <= (P - 1) * Exp_msk1 && aadj >= 1.)
{
aadj1 = (double) (int) (aadj + 0.5);
if (!dsign)
aadj1 = -aadj1;
}
adj = aadj1 * ulp (rv.d);
rv.d += adj;
#endif
}
z = word0 (rv) & Exp_mask;
if (y == z)
{
/* Can we stop now? */
L = aadj;
aadj -= L;
/* The tolerances below are conservative. */
if (dsign || word1 (rv) || word0 (rv) & Bndry_mask)
{
if (aadj < .4999999 || aadj > .5000001)
break;
}
else if (aadj < .4999999 / FLT_RADIX)
break;
}
cont:
Bfree (ptr, bb);
Bfree (ptr, bd);
Bfree (ptr, bs);
Bfree (ptr, delta);
}
retfree:
Bfree (ptr, bb);
Bfree (ptr, bd);
Bfree (ptr, bs);
Bfree (ptr, bd0);
Bfree (ptr, delta);
ret:
if (se)
*se = (char *) s;
if (digits == 0)
ptr->_errno = EINVAL;
return sign ? -rv.d : rv.d;
}
|