summaryrefslogtreecommitdiff
path: root/libjava/java/lang/Math.java
blob: 836b8bd8636155ee949f5fb4bfa5e4e9c65272e4 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
/* java.lang.Math -- common mathematical functions, native allowed
   Copyright (C) 1998, 2001, 2002, 2003, 2006 Free Software Foundation, Inc.

This file is part of GNU Classpath.

GNU Classpath is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2, or (at your option)
any later version.

GNU Classpath is distributed in the hope that it will be useful, but
WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
General Public License for more details.

You should have received a copy of the GNU General Public License
along with GNU Classpath; see the file COPYING.  If not, write to the
Free Software Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA
02110-1301 USA.

Linking this library statically or dynamically with other modules is
making a combined work based on this library.  Thus, the terms and
conditions of the GNU General Public License cover the whole
combination.

As a special exception, the copyright holders of this library give you
permission to link this library with independent modules to produce an
executable, regardless of the license terms of these independent
modules, and to copy and distribute the resulting executable under
terms of your choice, provided that you also meet, for each linked
independent module, the terms and conditions of the license of that
module.  An independent module is a module which is not derived from
or based on this library.  If you modify this library, you may extend
this exception to your version of the library, but you are not
obligated to do so.  If you do not wish to do so, delete this
exception statement from your version. */


package java.lang;

import gnu.classpath.Configuration;

import java.util.Random;

/**
 * Helper class containing useful mathematical functions and constants.
 * <P>
 *
 * Note that angles are specified in radians.  Conversion functions are
 * provided for your convenience.
 *
 * @author Paul Fisher
 * @author John Keiser
 * @author Eric Blake (ebb9@email.byu.edu)
 * @since 1.0
 */
public final class Math
{
  /**
   * Math is non-instantiable
   */
  private Math()
  {
  }

  static
  {
    if (Configuration.INIT_LOAD_LIBRARY)
      {
	System.loadLibrary("javalang");
      }
  }

  /**
   * A random number generator, initialized on first use.
   */
  private static Random rand;

  /**
   * The most accurate approximation to the mathematical constant <em>e</em>:
   * <code>2.718281828459045</code>. Used in natural log and exp.
   *
   * @see #log(double)
   * @see #exp(double)
   */
  public static final double E = 2.718281828459045;

  /**
   * The most accurate approximation to the mathematical constant <em>pi</em>:
   * <code>3.141592653589793</code>. This is the ratio of a circle's diameter
   * to its circumference.
   */
  public static final double PI = 3.141592653589793;

  /**
   * Take the absolute value of the argument.
   * (Absolute value means make it positive.)
   * <P>
   *
   * Note that the the largest negative value (Integer.MIN_VALUE) cannot
   * be made positive.  In this case, because of the rules of negation in
   * a computer, MIN_VALUE is what will be returned.
   * This is a <em>negative</em> value.  You have been warned.
   *
   * @param i the number to take the absolute value of
   * @return the absolute value
   * @see Integer#MIN_VALUE
   */
  public static int abs(int i)
  {
    return (i < 0) ? -i : i;
  }

  /**
   * Take the absolute value of the argument.
   * (Absolute value means make it positive.)
   * <P>
   *
   * Note that the the largest negative value (Long.MIN_VALUE) cannot
   * be made positive.  In this case, because of the rules of negation in
   * a computer, MIN_VALUE is what will be returned.
   * This is a <em>negative</em> value.  You have been warned.
   *
   * @param l the number to take the absolute value of
   * @return the absolute value
   * @see Long#MIN_VALUE
   */
  public static long abs(long l)
  {
    return (l < 0) ? -l : l;
  }

  /**
   * Take the absolute value of the argument.
   * (Absolute value means make it positive.)
   * <P>
   *
   * This is equivalent, but faster than, calling
   * <code>Float.intBitsToFloat(0x7fffffff & Float.floatToIntBits(a))</code>.
   *
   * @param f the number to take the absolute value of
   * @return the absolute value
   */
  public static float abs(float f)
  {
    return (f <= 0) ? 0 - f : f;
  }

  /**
   * Take the absolute value of the argument.
   * (Absolute value means make it positive.)
   *
   * This is equivalent, but faster than, calling
   * <code>Double.longBitsToDouble(Double.doubleToLongBits(a)
   *       &lt;&lt; 1) &gt;&gt;&gt; 1);</code>.
   *
   * @param d the number to take the absolute value of
   * @return the absolute value
   */
  public static double abs(double d)
  {
    return (d <= 0) ? 0 - d : d;
  }

  /**
   * Return whichever argument is smaller.
   *
   * @param a the first number
   * @param b a second number
   * @return the smaller of the two numbers
   */
  public static int min(int a, int b)
  {
    return (a < b) ? a : b;
  }

  /**
   * Return whichever argument is smaller.
   *
   * @param a the first number
   * @param b a second number
   * @return the smaller of the two numbers
   */
  public static long min(long a, long b)
  {
    return (a < b) ? a : b;
  }

  /**
   * Return whichever argument is smaller. If either argument is NaN, the
   * result is NaN, and when comparing 0 and -0, -0 is always smaller.
   *
   * @param a the first number
   * @param b a second number
   * @return the smaller of the two numbers
   */
  public static float min(float a, float b)
  {
    // this check for NaN, from JLS 15.21.1, saves a method call
    if (a != a)
      return a;
    // no need to check if b is NaN; < will work correctly
    // recall that -0.0 == 0.0, but [+-]0.0 - [+-]0.0 behaves special
    if (a == 0 && b == 0)
      return -(-a - b);
    return (a < b) ? a : b;
  }

  /**
   * Return whichever argument is smaller. If either argument is NaN, the
   * result is NaN, and when comparing 0 and -0, -0 is always smaller.
   *
   * @param a the first number
   * @param b a second number
   * @return the smaller of the two numbers
   */
  public static double min(double a, double b)
  {
    // this check for NaN, from JLS 15.21.1, saves a method call
    if (a != a)
      return a;
    // no need to check if b is NaN; < will work correctly
    // recall that -0.0 == 0.0, but [+-]0.0 - [+-]0.0 behaves special
    if (a == 0 && b == 0)
      return -(-a - b);
    return (a < b) ? a : b;
  }

  /**
   * Return whichever argument is larger.
   *
   * @param a the first number
   * @param b a second number
   * @return the larger of the two numbers
   */
  public static int max(int a, int b)
  {
    return (a > b) ? a : b;
  }

  /**
   * Return whichever argument is larger.
   *
   * @param a the first number
   * @param b a second number
   * @return the larger of the two numbers
   */
  public static long max(long a, long b)
  {
    return (a > b) ? a : b;
  }

  /**
   * Return whichever argument is larger. If either argument is NaN, the
   * result is NaN, and when comparing 0 and -0, 0 is always larger.
   *
   * @param a the first number
   * @param b a second number
   * @return the larger of the two numbers
   */
  public static float max(float a, float b)
  {
    // this check for NaN, from JLS 15.21.1, saves a method call
    if (a != a)
      return a;
    // no need to check if b is NaN; > will work correctly
    // recall that -0.0 == 0.0, but [+-]0.0 - [+-]0.0 behaves special
    if (a == 0 && b == 0)
      return a - -b;
    return (a > b) ? a : b;
  }

  /**
   * Return whichever argument is larger. If either argument is NaN, the
   * result is NaN, and when comparing 0 and -0, 0 is always larger.
   *
   * @param a the first number
   * @param b a second number
   * @return the larger of the two numbers
   */
  public static double max(double a, double b)
  {
    // this check for NaN, from JLS 15.21.1, saves a method call
    if (a != a)
      return a;
    // no need to check if b is NaN; > will work correctly
    // recall that -0.0 == 0.0, but [+-]0.0 - [+-]0.0 behaves special
    if (a == 0 && b == 0)
      return a - -b;
    return (a > b) ? a : b;
  }

  /**
   * The trigonometric function <em>sin</em>. The sine of NaN or infinity is
   * NaN, and the sine of 0 retains its sign. This is accurate within 1 ulp,
   * and is semi-monotonic.
   *
   * @param a the angle (in radians)
   * @return sin(a)
   */
  public static native double sin(double a);

  /**
   * The trigonometric function <em>cos</em>. The cosine of NaN or infinity is
   * NaN. This is accurate within 1 ulp, and is semi-monotonic.
   *
   * @param a the angle (in radians)
   * @return cos(a)
   */
  public static native double cos(double a);

  /**
   * The trigonometric function <em>tan</em>. The tangent of NaN or infinity
   * is NaN, and the tangent of 0 retains its sign. This is accurate within 1
   * ulp, and is semi-monotonic.
   *
   * @param a the angle (in radians)
   * @return tan(a)
   */
  public static native double tan(double a);

  /**
   * The trigonometric function <em>arcsin</em>. The range of angles returned
   * is -pi/2 to pi/2 radians (-90 to 90 degrees). If the argument is NaN or
   * its absolute value is beyond 1, the result is NaN; and the arcsine of
   * 0 retains its sign. This is accurate within 1 ulp, and is semi-monotonic.
   *
   * @param a the sin to turn back into an angle
   * @return arcsin(a)
   */
  public static native double asin(double a);

  /**
   * The trigonometric function <em>arccos</em>. The range of angles returned
   * is 0 to pi radians (0 to 180 degrees). If the argument is NaN or
   * its absolute value is beyond 1, the result is NaN. This is accurate
   * within 1 ulp, and is semi-monotonic.
   *
   * @param a the cos to turn back into an angle
   * @return arccos(a)
   */
  public static native double acos(double a);

  /**
   * The trigonometric function <em>arcsin</em>. The range of angles returned
   * is -pi/2 to pi/2 radians (-90 to 90 degrees). If the argument is NaN, the
   * result is NaN; and the arctangent of 0 retains its sign. This is accurate
   * within 1 ulp, and is semi-monotonic.
   *
   * @param a the tan to turn back into an angle
   * @return arcsin(a)
   * @see #atan2(double, double)
   */
  public static native double atan(double a);

  /**
   * A special version of the trigonometric function <em>arctan</em>, for
   * converting rectangular coordinates <em>(x, y)</em> to polar
   * <em>(r, theta)</em>. This computes the arctangent of x/y in the range
   * of -pi to pi radians (-180 to 180 degrees). Special cases:<ul>
   * <li>If either argument is NaN, the result is NaN.</li>
   * <li>If the first argument is positive zero and the second argument is
   * positive, or the first argument is positive and finite and the second
   * argument is positive infinity, then the result is positive zero.</li>
   * <li>If the first argument is negative zero and the second argument is
   * positive, or the first argument is negative and finite and the second
   * argument is positive infinity, then the result is negative zero.</li>
   * <li>If the first argument is positive zero and the second argument is
   * negative, or the first argument is positive and finite and the second
   * argument is negative infinity, then the result is the double value
   * closest to pi.</li>
   * <li>If the first argument is negative zero and the second argument is
   * negative, or the first argument is negative and finite and the second
   * argument is negative infinity, then the result is the double value
   * closest to -pi.</li>
   * <li>If the first argument is positive and the second argument is
   * positive zero or negative zero, or the first argument is positive
   * infinity and the second argument is finite, then the result is the
   * double value closest to pi/2.</li>
   * <li>If the first argument is negative and the second argument is
   * positive zero or negative zero, or the first argument is negative
   * infinity and the second argument is finite, then the result is the
   * double value closest to -pi/2.</li>
   * <li>If both arguments are positive infinity, then the result is the
   * double value closest to pi/4.</li>
   * <li>If the first argument is positive infinity and the second argument
   * is negative infinity, then the result is the double value closest to
   * 3*pi/4.</li>
   * <li>If the first argument is negative infinity and the second argument
   * is positive infinity, then the result is the double value closest to
   * -pi/4.</li>
   * <li>If both arguments are negative infinity, then the result is the
   * double value closest to -3*pi/4.</li>
   *
   * </ul><p>This is accurate within 2 ulps, and is semi-monotonic. To get r,
   * use sqrt(x*x+y*y).
   *
   * @param y the y position
   * @param x the x position
   * @return <em>theta</em> in the conversion of (x, y) to (r, theta)
   * @see #atan(double)
   */
  public static native double atan2(double y, double x);

  /**
   * Take <em>e</em><sup>a</sup>.  The opposite of <code>log()</code>. If the
   * argument is NaN, the result is NaN; if the argument is positive infinity,
   * the result is positive infinity; and if the argument is negative
   * infinity, the result is positive zero. This is accurate within 1 ulp,
   * and is semi-monotonic.
   *
   * @param a the number to raise to the power
   * @return the number raised to the power of <em>e</em>
   * @see #log(double)
   * @see #pow(double, double)
   */
  public static native double exp(double a);

  /**
   * Take ln(a) (the natural log).  The opposite of <code>exp()</code>. If the
   * argument is NaN or negative, the result is NaN; if the argument is
   * positive infinity, the result is positive infinity; and if the argument
   * is either zero, the result is negative infinity. This is accurate within
   * 1 ulp, and is semi-monotonic.
   *
   * <p>Note that the way to get log<sub>b</sub>(a) is to do this:
   * <code>ln(a) / ln(b)</code>.
   *
   * @param a the number to take the natural log of
   * @return the natural log of <code>a</code>
   * @see #exp(double)
   */
  public static native double log(double a);

  /**
   * Take a square root. If the argument is NaN or negative, the result is
   * NaN; if the argument is positive infinity, the result is positive
   * infinity; and if the result is either zero, the result is the same.
   * This is accurate within the limits of doubles.
   *
   * <p>For other roots, use pow(a, 1 / rootNumber).
   *
   * @param a the numeric argument
   * @return the square root of the argument
   * @see #pow(double, double)
   */
  public static native double sqrt(double a);

  /**
   * Raise a number to a power. Special cases:<ul>
   * <li>If the second argument is positive or negative zero, then the result
   * is 1.0.</li>
   * <li>If the second argument is 1.0, then the result is the same as the
   * first argument.</li>
   * <li>If the second argument is NaN, then the result is NaN.</li>
   * <li>If the first argument is NaN and the second argument is nonzero,
   * then the result is NaN.</li>
   * <li>If the absolute value of the first argument is greater than 1 and
   * the second argument is positive infinity, or the absolute value of the
   * first argument is less than 1 and the second argument is negative
   * infinity, then the result is positive infinity.</li>
   * <li>If the absolute value of the first argument is greater than 1 and
   * the second argument is negative infinity, or the absolute value of the
   * first argument is less than 1 and the second argument is positive
   * infinity, then the result is positive zero.</li>
   * <li>If the absolute value of the first argument equals 1 and the second
   * argument is infinite, then the result is NaN.</li>
   * <li>If the first argument is positive zero and the second argument is
   * greater than zero, or the first argument is positive infinity and the
   * second argument is less than zero, then the result is positive zero.</li>
   * <li>If the first argument is positive zero and the second argument is
   * less than zero, or the first argument is positive infinity and the
   * second argument is greater than zero, then the result is positive
   * infinity.</li>
   * <li>If the first argument is negative zero and the second argument is
   * greater than zero but not a finite odd integer, or the first argument is
   * negative infinity and the second argument is less than zero but not a
   * finite odd integer, then the result is positive zero.</li>
   * <li>If the first argument is negative zero and the second argument is a
   * positive finite odd integer, or the first argument is negative infinity
   * and the second argument is a negative finite odd integer, then the result
   * is negative zero.</li>
   * <li>If the first argument is negative zero and the second argument is
   * less than zero but not a finite odd integer, or the first argument is
   * negative infinity and the second argument is greater than zero but not a
   * finite odd integer, then the result is positive infinity.</li>
   * <li>If the first argument is negative zero and the second argument is a
   * negative finite odd integer, or the first argument is negative infinity
   * and the second argument is a positive finite odd integer, then the result
   * is negative infinity.</li>
   * <li>If the first argument is less than zero and the second argument is a
   * finite even integer, then the result is equal to the result of raising
   * the absolute value of the first argument to the power of the second
   * argument.</li>
   * <li>If the first argument is less than zero and the second argument is a
   * finite odd integer, then the result is equal to the negative of the
   * result of raising the absolute value of the first argument to the power
   * of the second argument.</li>
   * <li>If the first argument is finite and less than zero and the second
   * argument is finite and not an integer, then the result is NaN.</li>
   * <li>If both arguments are integers, then the result is exactly equal to
   * the mathematical result of raising the first argument to the power of
   * the second argument if that result can in fact be represented exactly as
   * a double value.</li>
   *
   * </ul><p>(In the foregoing descriptions, a floating-point value is
   * considered to be an integer if and only if it is a fixed point of the
   * method {@link #ceil(double)} or, equivalently, a fixed point of the
   * method {@link #floor(double)}. A value is a fixed point of a one-argument
   * method if and only if the result of applying the method to the value is
   * equal to the value.) This is accurate within 1 ulp, and is semi-monotonic.
   *
   * @param a the number to raise
   * @param b the power to raise it to
   * @return a<sup>b</sup>
   */
  public static native double pow(double a, double b);

  /**
   * Get the IEEE 754 floating point remainder on two numbers. This is the
   * value of <code>x - y * <em>n</em></code>, where <em>n</em> is the closest
   * double to <code>x / y</code> (ties go to the even n); for a zero
   * remainder, the sign is that of <code>x</code>. If either argument is NaN,
   * the first argument is infinite, or the second argument is zero, the result
   * is NaN; if x is finite but y is infinite, the result is x. This is
   * accurate within the limits of doubles.
   *
   * @param x the dividend (the top half)
   * @param y the divisor (the bottom half)
   * @return the IEEE 754-defined floating point remainder of x/y
   * @see #rint(double)
   */
  public static native double IEEEremainder(double x, double y);

  /**
   * Take the nearest integer that is that is greater than or equal to the
   * argument. If the argument is NaN, infinite, or zero, the result is the
   * same; if the argument is between -1 and 0, the result is negative zero.
   * Note that <code>Math.ceil(x) == -Math.floor(-x)</code>.
   *
   * @param a the value to act upon
   * @return the nearest integer &gt;= <code>a</code>
   */
  public static native double ceil(double a);

  /**
   * Take the nearest integer that is that is less than or equal to the
   * argument. If the argument is NaN, infinite, or zero, the result is the
   * same. Note that <code>Math.ceil(x) == -Math.floor(-x)</code>.
   *
   * @param a the value to act upon
   * @return the nearest integer &lt;= <code>a</code>
   */
  public static native double floor(double a);

  /**
   * Take the nearest integer to the argument.  If it is exactly between
   * two integers, the even integer is taken. If the argument is NaN,
   * infinite, or zero, the result is the same.
   *
   * @param a the value to act upon
   * @return the nearest integer to <code>a</code>
   */
  public static native double rint(double a);

  /**
   * Take the nearest integer to the argument.  This is equivalent to
   * <code>(int) Math.floor(a + 0.5f)</code>. If the argument is NaN, the result
   * is 0; otherwise if the argument is outside the range of int, the result
   * will be Integer.MIN_VALUE or Integer.MAX_VALUE, as appropriate.
   *
   * @param a the argument to round
   * @return the nearest integer to the argument
   * @see Integer#MIN_VALUE
   * @see Integer#MAX_VALUE
   */
  public static int round(float a)
  {
    // this check for NaN, from JLS 15.21.1, saves a method call
    if (a != a)
      return 0;
    return (int) floor(a + 0.5f);
  }

  /**
   * Take the nearest long to the argument.  This is equivalent to
   * <code>(long) Math.floor(a + 0.5)</code>. If the argument is NaN, the
   * result is 0; otherwise if the argument is outside the range of long, the
   * result will be Long.MIN_VALUE or Long.MAX_VALUE, as appropriate.
   *
   * @param a the argument to round
   * @return the nearest long to the argument
   * @see Long#MIN_VALUE
   * @see Long#MAX_VALUE
   */
  public static long round(double a)
  {
    // this check for NaN, from JLS 15.21.1, saves a method call
    if (a != a)
      return 0;
    return (long) floor(a + 0.5d);
  }

  /**
   * Get a random number.  This behaves like Random.nextDouble(), seeded by
   * System.currentTimeMillis() when first called. In other words, the number
   * is from a pseudorandom sequence, and lies in the range [+0.0, 1.0).
   * This random sequence is only used by this method, and is threadsafe,
   * although you may want your own random number generator if it is shared
   * among threads.
   *
   * @return a random number
   * @see Random#nextDouble()
   * @see System#currentTimeMillis()
   */
  public static synchronized double random()
  {
    if (rand == null)
      rand = new Random();
    return rand.nextDouble();
  }

  /**
   * Convert from degrees to radians. The formula for this is
   * radians = degrees * (pi/180); however it is not always exact given the
   * limitations of floating point numbers.
   *
   * @param degrees an angle in degrees
   * @return the angle in radians
   * @since 1.2
   */
  public static double toRadians(double degrees)
  {
    return (degrees * PI) / 180;
  }

  /**
   * Convert from radians to degrees. The formula for this is
   * degrees = radians * (180/pi); however it is not always exact given the
   * limitations of floating point numbers.
   *
   * @param rads an angle in radians
   * @return the angle in degrees
   * @since 1.2
   */
  public static double toDegrees(double rads)
  {
    return (rads * 180) / PI;
  }

  /**
   * <p>
   * Take a cube root. If the argument is <code>NaN</code>, an infinity or
   * zero, then the original value is returned.  The returned result is
   * within 1 ulp of the exact result.  For a finite value, <code>x</code>,
   * the cube root of <code>-x</code> is equal to the negation of the cube root
   * of <code>x</code>. 
   * </p>
   * <p>
   * For a square root, use <code>sqrt</code>.  For other roots, use
   * <code>pow(a, 1 / rootNumber)</code>.
   * </p>
   *
   * @param a the numeric argument
   * @return the cube root of the argument
   * @see #sqrt(double)
   * @see #pow(double, double)
   * @since 1.5
   */
  public static native double cbrt(double a);

  /**
   * <p>
   * Returns the hyperbolic cosine of the given value.  For a value,
   * <code>x</code>, the hyperbolic cosine is <code>(e<sup>x</sup> + 
   * e<sup>-x</sup>)/2</code>
   * with <code>e</code> being <a href="#E">Euler's number</a>.  The returned
   * result is within 2.5 ulps of the exact result.
   * </p>
   * <p>
   * If the supplied value is <code>NaN</code>, then the original value is
   * returned.  For either infinity, positive infinity is returned.
   * The hyperbolic cosine of zero is 1.0.
   * </p>
   * 
   * @param a the numeric argument
   * @return the hyperbolic cosine of <code>a</code>.
   * @since 1.5
   */
  public static native double cosh(double a);

  /**
   * <p>
   * Returns <code>e<sup>a</sup> - 1.  For values close to 0, the
   * result of <code>expm1(a) + 1</code> tend to be much closer to the
   * exact result than simply <code>exp(x)</code>.  The result is within
   * 1 ulp of the exact result, and results are semi-monotonic.  For finite
   * inputs, the returned value is greater than or equal to -1.0.  Once
   * a result enters within half a ulp of this limit, the limit is returned.
   * </p>   
   * <p>
   * For <code>NaN</code>, positive infinity and zero, the original value
   * is returned.  Negative infinity returns a result of -1.0 (the limit).
   * </p>
   * 
   * @param a the numeric argument
   * @return <code>e<sup>a</sup> - 1</code>
   * @since 1.5
   */
  public static native double expm1(double a);

  /**
   * <p>
   * Returns the hypotenuse, <code>a<sup>2</sup> + b<sup>2</sup></code>,
   * without intermediate overflow or underflow.  The returned result is
   * within 1 ulp of the exact result.  If one parameter is held constant,
   * then the result in the other parameter is semi-monotonic.
   * </p>
   * <p>
   * If either of the arguments is an infinity, then the returned result
   * is positive infinity.  Otherwise, if either argument is <code>NaN</code>,
   * then <code>NaN</code> is returned.
   * </p>
   * 
   * @param a the first parameter.
   * @param b the second parameter.
   * @return the hypotenuse matching the supplied parameters.
   * @since 1.5
   */
  public static native double hypot(double a, double b);

  /**
   * <p>
   * Returns the base 10 logarithm of the supplied value.  The returned
   * result is within 1 ulp of the exact result, and the results are
   * semi-monotonic.
   * </p>
   * <p>
   * Arguments of either <code>NaN</code> or less than zero return
   * <code>NaN</code>.  An argument of positive infinity returns positive
   * infinity.  Negative infinity is returned if either positive or negative
   * zero is supplied.  Where the argument is the result of
   * <code>10<sup>n</sup</code>, then <code>n</code> is returned.
   * </p>
   *
   * @param a the numeric argument.
   * @return the base 10 logarithm of <code>a</code>.
   * @since 1.5
   */
  public static native double log10(double a);

  /**
   * <p>
   * Returns the natural logarithm resulting from the sum of the argument,
   * <code>a</code> and 1.  For values close to 0, the
   * result of <code>log1p(a)</code> tend to be much closer to the
   * exact result than simply <code>log(1.0+a)</code>.  The returned
   * result is within 1 ulp of the exact result, and the results are
   * semi-monotonic.
   * </p>
   * <p>
   * Arguments of either <code>NaN</code> or less than -1 return
   * <code>NaN</code>.  An argument of positive infinity or zero
   * returns the original argument.  Negative infinity is returned from an
   * argument of -1.
   * </p>
   *
   * @param a the numeric argument.
   * @return the natural logarithm of <code>a</code> + 1.
   * @since 1.5
   */
  public static native double log1p(double a);

  /**
   * <p>
   * Returns the sign of the argument as follows:
   * </p>
   * <ul>
   * <li>If <code>a</code> is greater than zero, the result is 1.0.</li>
   * <li>If <code>a</code> is less than zero, the result is -1.0.</li>
   * <li>If <code>a</code> is <code>NaN</code>, the result is <code>NaN</code>.
   * <li>If <code>a</code> is positive or negative zero, the result is the
   * same.</li>
   * </ul>
   *
   * @param a the numeric argument.
   * @return the sign of the argument.
   * @since 1.5.
   */
  public static double signum(double a)
  {
    if (Double.isNaN(a))
      return Double.NaN;
    if (a > 0)
      return 1.0;
    if (a < 0)
      return -1.0;
    return a;
  }

  /**
   * <p>
   * Returns the sign of the argument as follows:
   * </p>
   * <ul>
   * <li>If <code>a</code> is greater than zero, the result is 1.0f.</li>
   * <li>If <code>a</code> is less than zero, the result is -1.0f.</li>
   * <li>If <code>a</code> is <code>NaN</code>, the result is <code>NaN</code>.
   * <li>If <code>a</code> is positive or negative zero, the result is the
   * same.</li>
   * </ul>
   *
   * @param a the numeric argument.
   * @return the sign of the argument.
   * @since 1.5.
   */
  public static float signum(float a)
  {
    if (Float.isNaN(a))
      return Float.NaN;
    if (a > 0)
      return 1.0f;
    if (a < 0)
      return -1.0f;
    return a;
  }

  /**
   * <p>
   * Returns the hyperbolic sine of the given value.  For a value,
   * <code>x</code>, the hyperbolic sine is <code>(e<sup>x</sup> - 
   * e<sup>-x</sup>)/2</code>
   * with <code>e</code> being <a href="#E">Euler's number</a>.  The returned
   * result is within 2.5 ulps of the exact result.
   * </p>
   * <p>
   * If the supplied value is <code>NaN</code>, an infinity or a zero, then the
   * original value is returned.
   * </p>
   * 
   * @param a the numeric argument
   * @return the hyperbolic sine of <code>a</code>.
   * @since 1.5
   */
  public static native double sinh(double a);

  /**
   * <p>
   * Returns the hyperbolic tangent of the given value.  For a value,
   * <code>x</code>, the hyperbolic tangent is <code>(e<sup>x</sup> - 
   * e<sup>-x</sup>)/(e<sup>x</sup> + e<sup>-x</sup>)</code>
   * (i.e. <code>sinh(a)/cosh(a)</code>)
   * with <code>e</code> being <a href="#E">Euler's number</a>.  The returned
   * result is within 2.5 ulps of the exact result.  The absolute value
   * of the exact result is always less than 1.  Computed results are thus
   * less than or equal to 1 for finite arguments, with results within
   * half a ulp of either positive or negative 1 returning the appropriate
   * limit value (i.e. as if the argument was an infinity).
   * </p>
   * <p>
   * If the supplied value is <code>NaN</code> or zero, then the original
   * value is returned.  Positive infinity returns +1.0 and negative infinity
   * returns -1.0.
   * </p>
   * 
   * @param a the numeric argument
   * @return the hyperbolic tangent of <code>a</code>.
   * @since 1.5
   */
  public static native double tanh(double a);

  /**
   * Return the ulp for the given double argument.  The ulp is the
   * difference between the argument and the next larger double.  Note
   * that the sign of the double argument is ignored, that is,
   * ulp(x) == ulp(-x).  If the argument is a NaN, then NaN is returned.
   * If the argument is an infinity, then +Inf is returned.  If the
   * argument is zero (either positive or negative), then
   * {@link Double#MIN_VALUE} is returned.
   * @param d the double whose ulp should be returned
   * @return the difference between the argument and the next larger double
   * @since 1.5
   */
  public static double ulp(double d)
  {
    if (Double.isNaN(d))
      return d;
    if (Double.isInfinite(d))
      return Double.POSITIVE_INFINITY;
    // This handles both +0.0 and -0.0.
    if (d == 0.0)
      return Double.MIN_VALUE;
    long bits = Double.doubleToLongBits(d);
    final int mantissaBits = 52;
    final int exponentBits = 11;
    final long mantMask = (1L << mantissaBits) - 1;
    long mantissa = bits & mantMask;
    final long expMask = (1L << exponentBits) - 1;
    long exponent = (bits >>> mantissaBits) & expMask;

    // Denormal number, so the answer is easy.
    if (exponent == 0)
      {
        long result = (exponent << mantissaBits) | 1L;
        return Double.longBitsToDouble(result);
      }

    // Conceptually we want to have '1' as the mantissa.  Then we would
    // shift the mantissa over to make a normal number.  If this underflows
    // the exponent, we will make a denormal result.
    long newExponent = exponent - mantissaBits;
    long newMantissa;
    if (newExponent > 0)
      newMantissa = 0;
    else
      {
        newMantissa = 1L << -(newExponent - 1);
        newExponent = 0;
      }
    return Double.longBitsToDouble((newExponent << mantissaBits) | newMantissa);
  }

  /**
   * Return the ulp for the given float argument.  The ulp is the
   * difference between the argument and the next larger float.  Note
   * that the sign of the float argument is ignored, that is,
   * ulp(x) == ulp(-x).  If the argument is a NaN, then NaN is returned.
   * If the argument is an infinity, then +Inf is returned.  If the
   * argument is zero (either positive or negative), then
   * {@link Float#MIN_VALUE} is returned.
   * @param f the float whose ulp should be returned
   * @return the difference between the argument and the next larger float
   * @since 1.5
   */
  public static float ulp(float f)
  {
    if (Float.isNaN(f))
      return f;
    if (Float.isInfinite(f))
      return Float.POSITIVE_INFINITY;
    // This handles both +0.0 and -0.0.
    if (f == 0.0)
      return Float.MIN_VALUE;
    int bits = Float.floatToIntBits(f);
    final int mantissaBits = 23;
    final int exponentBits = 8;
    final int mantMask = (1 << mantissaBits) - 1;
    int mantissa = bits & mantMask;
    final int expMask = (1 << exponentBits) - 1;
    int exponent = (bits >>> mantissaBits) & expMask;

    // Denormal number, so the answer is easy.
    if (exponent == 0)
      {
        int result = (exponent << mantissaBits) | 1;
        return Float.intBitsToFloat(result);
      }

    // Conceptually we want to have '1' as the mantissa.  Then we would
    // shift the mantissa over to make a normal number.  If this underflows
    // the exponent, we will make a denormal result.
    int newExponent = exponent - mantissaBits;
    int newMantissa;
    if (newExponent > 0)
      newMantissa = 0;
    else
      {
        newMantissa = 1 << -(newExponent - 1);
        newExponent = 0;
      }
    return Float.intBitsToFloat((newExponent << mantissaBits) | newMantissa);
  }
}