1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
|
<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.0 Transitional//EN">
<html>
<head><meta http-equiv="Content-Type" content="text/html;charset=iso-8859-1">
<title>Tables</title>
</head>
<body bgcolor="#ffffff">
<h1>Tables</h1>
<p>Most of the requirements on containers are presented in the ISO standard
in the form of tables. In order to avoid massive duplication of effort
while documenting all the classes, we follow the standard's lead and
present the base information here. Individual classes will only document
their departures from these tables (removed functions, additional functions,
changes, etc).
</p>
<p>We will not try to duplicate all of the surrounding text (footnotes,
explanations, etc.) from the standard, because that would also entail a
duplication of effort. Some of the surrounding text has been paraphrased
here for clarity. If you are uncertain about the meaning or interpretation
of these notes, consult a good textbook, and/or purchase your own copy of
the standard (it's cheap, see our FAQ).
</p>
<p>The table numbers are the same as those used in the standard. Tables can
be jumped to using their number, e.g., "tables.html#67". Only
Tables 65 through 69 are presented. Some of the active Defect Reports
are also noted or incorporated.
</p>
<hr />
<a name="65"><p>
<table cellpadding="3" cellspacing="5" align="center" rules="rows" border="3"
cols="5" title="Table 65">
<caption><h2>Table 65 --- Container Requirements</h2></caption>
<tr><th colspan="5">
Anything calling itself a container must meet these minimum requirements.
</th></tr>
<tr>
<td><strong>expression</strong></td>
<td><strong>result type</strong></td>
<td><strong>operational semantics</strong></td>
<td><strong>notes, pre-/post-conditions, assertions</strong></td>
<td><strong>complexity</strong></td>
</tr>
<tr>
<td>X::value_type</td>
<td>T</td>
<td> </td>
<td>T is Assignable</td>
<td>compile time</td>
</tr>
<tr>
<td>X::reference</td>
<td>lvalue of T</td>
<td> </td>
<td> </td>
<td>compile time</td>
</tr>
<tr>
<td>X::const_reference</td>
<td>const lvalue of T</td>
<td> </td>
<td> </td>
<td>compile time</td>
</tr>
<tr>
<td>X::iterator</td>
<td>iterator type pointing to T</td>
<td> </td>
<td>Any iterator category except output iterator.
Convertible to X::const_iterator.</td>
<td>compile time</td>
</tr>
<tr>
<td>X::const_iterator</td>
<td>iterator type pointing to const T</td>
<td> </td>
<td>Any iterator category except output iterator.</td>
<td>compile time</td>
</tr>
<tr>
<td>X::difference_type</td>
<td>signed integral type</td>
<td> </td>
<td>identical to the difference type of X::iterator and X::const_iterator</td>
<td>compile time</td>
</tr>
<tr>
<td>X::size_type</td>
<td>unsigned integral type</td>
<td> </td>
<td>size_type can represent any non-negative value of difference_type</td>
<td>compile time</td>
</tr>
<tr>
<td>X u;</td>
<td> </td>
<td> </td>
<td>post: u.size() == 0</td>
<td>constant</td>
</tr>
<tr>
<td>X();</td>
<td> </td>
<td> </td>
<td>X().size == 0</td>
<td>constant</td>
</tr>
<tr>
<td>X(a);</td>
<td> </td>
<td> </td>
<td>a == X(a)</td>
<td>linear</td>
</tr>
<tr>
<td>X u(a);<br />X u = a;</td>
<td> </td>
<td> </td>
<td>post: u == a. Equivalent to: X u; u = a;</td>
<td>linear</td>
</tr>
<tr>
<td>(&a)->~X();</td>
<td>void</td>
<td> </td>
<td>dtor is applied to every element of a; all the memory is deallocated</td>
<td>linear</td>
</tr>
<tr>
<td>a.begin()</td>
<td>iterator; const_iterator for constant a</td>
<td> </td>
<td> </td>
<td>constant</td>
</tr>
<tr>
<td>a.end()</td>
<td>iterator; const_iterator for constant a</td>
<td> </td>
<td> </td>
<td>constant</td>
</tr>
<tr>
<td>a == b</td>
<td>convertible to bool</td>
<td> </td>
<td>== is an equivalence relation. a.size()==b.size() &&
equal(a.begin(),a.end(),b.begin())</td>
<td>linear</td>
</tr>
<tr>
<td>a != b</td>
<td>convertible to bool</td>
<td> </td>
<td>equivalent to !(a==b)</td>
<td>linear</td>
</tr>
<tr>
<td>a.swap(b)</td>
<td>void</td>
<td> </td>
<td>swap(a,b)</td>
<td>may or may not have constant complexity</td>
</tr>
<tr>
<td>r = a</td>
<td>X&</td>
<td> </td>
<td>r == a</td>
<td>linear</td>
</tr>
<!-- a fifth column, "operation semantics," magically appears in the table
at this point... wtf? -->
<tr>
<td>a.size()</td>
<td>size_type</td>
<td>a.end() - a.begin()</td>
<td> </td>
<td>may or may not have constant complexity</td>
</tr>
<tr>
<td>a.max_size()</td>
<td>size_type</td>
<td>size() of the largest possible container</td>
<td> </td>
<td>may or may not have constant complexity</td>
</tr>
<tr>
<td>a.empty()</td>
<td>convertible to bool</td>
<td>a.size() == 0</td>
<td> </td>
<td>constant</td>
</tr>
<tr>
<td>a < b</td>
<td>convertible to bool</td>
<td>lexographical_compare( a.begin, a.end(), b.begin(), b.end())</td>
<td>pre: < is defined for T and is a total ordering relation</td>
<td>linear</td>
</tr>
<tr>
<td>a > b</td>
<td>convertible to bool</td>
<td>b < a</td>
<td> </td>
<td>linear</td>
</tr>
<tr>
<td>a <= b</td>
<td>convertible to bool</td>
<td>!(a > b)</td>
<td> </td>
<td>linear</td>
</tr>
<tr>
<td>a >= b</td>
<td>convertible to bool</td>
<td>!(a < b)</td>
<td> </td>
<td>linear</td>
</tr>
</table title="Table 65"></p></a>
<a name="66"><p>
<table cellpadding="3" cellspacing="5" align="center" rules="rows" border="3"
cols="4" title="Table 66">
<caption><h2>Table 66 --- Reversible Container Requirements</h2></caption>
<tr><th colspan="4">
If a container's iterator is bidirectional or random-access, then the
container also meets these requirements.
Deque, list, vector, map, multimap, set, and multiset are such containers.
</th></tr>
<tr>
<td><strong>expression</strong></td>
<td><strong>result type</strong></td>
<td><strong>notes, pre-/post-conditions, assertions</strong></td>
<td><strong>complexity</strong></td>
</tr>
<tr>
<td>X::reverse_iterator</td>
<td>iterator type pointing to T</td>
<td>reverse_iterator<iterator></td>
<td>compile time</td>
</tr>
<tr>
<td>X::const_reverse_iterator</td>
<td>iterator type pointing to const T</td>
<td>reverse_iterator<const_iterator></td>
<td>compile time</td>
</tr>
<tr>
<td>a.rbegin()</td>
<td>reverse_iterator; const_reverse_iterator for constant a</td>
<td>reverse_iterator(end())</td>
<td>constant</td>
</tr>
<tr>
<td>a.rend()</td>
<td>reverse_iterator; const_reverse_iterator for constant a</td>
<td>reverse_iterator(begin())</td>
<td>constant</td>
</tr>
</table title="Table 66"></p></a>
<a name="67"><p>
<table cellpadding="3" cellspacing="5" align="center" rules="rows" border="3"
cols="3" title="Table 67">
<caption><h2>Table 67 --- Sequence Requirements</h2></caption>
<tr><th colspan="3">
These are in addition to the requirements of <a href="#65">containers</a>.
Deque, list, and vector are such containers.
</th></tr>
<tr>
<td><strong>expression</strong></td>
<td><strong>result type</strong></td>
<td><strong>notes, pre-/post-conditions, assertions</strong></td>
</tr>
<tr>
<td>X(n,t)<br />X a(n,t)</td>
<td> </td>
<td>constructs a sequence with n copies of t<br />post: size() == n</td>
</tr>
<tr>
<td>X(i,j)<br />X a(i,j)</td>
<td> </td>
<td>constructs a sequence equal to the range [i,j)<br />
post: size() == distance(i,j)</td>
</tr>
<tr>
<td>a.insert(p,t)</td>
<td>iterator (points to the inserted copy of t)</td>
<td>inserts a copy of t before p</td>
</tr>
<tr>
<td>a.insert(p,n,t)</td>
<td>void</td>
<td>inserts n copies of t before p</td>
</tr>
<tr>
<td>a.insert(p,i,j)</td>
<td>void</td>
<td>inserts copies of elements in [i,j) before p<br />
pre: i, j are not iterators into a</td>
</tr>
<tr>
<td>a.erase(q)</td>
<td>iterator (points to the element following q (prior to erasure))</td>
<td>erases the element pointed to by q</td>
</tr>
<tr>
<td>a.erase(q1,q1)</td>
<td>iterator (points to the element pointed to by q2 (prior to erasure))</td>
<td>erases the elements in the range [q1,q2)</td>
</tr>
<tr>
<td>a.clear()</td>
<td>void</td>
<td>erase(begin(),end())<br />post: size() == 0</td>
</tr>
</table title="Table 67"></p></a>
<a name="68"><p>
<table cellpadding="3" cellspacing="5" align="center" rules="rows" border="3"
cols="4" title="Table 68">
<caption><h2>Table 68 --- Optional Sequence Operations</h2></caption>
<tr><th colspan="4">
These operations are only included in containers when the operation can be
done in constant time.
</th></tr>
<tr>
<td><strong>expression</strong></td>
<td><strong>result type</strong></td>
<td><strong>operational semantics</strong></td>
<td><strong>container</strong></td>
</tr>
<tr>
<td>a.front()</td>
<td>reference; const_reference for constant a</td>
<td>*a.begin()</td>
<td>vector, list, deque</td>
</tr>
<tr>
<td>a.back()</td>
<td>reference; const_reference for constant a</td>
<td>*--a.end()</td>
<td>vector, list, deque</td>
</tr>
<tr>
<td>a.push_front(x)</td>
<td>void</td>
<td>a.insert(a.begin(),x)</td>
<td>list, deque</td>
</tr>
<tr>
<td>a.push_back(x)</td>
<td>void</td>
<td>a.insert(a.end(),x)</td>
<td>vector, list, deque</td>
</tr>
<tr>
<td>a.pop_front()</td>
<td>void</td>
<td>a.erase(a.begin())</td>
<td>list, deque</td>
</tr>
<tr>
<td>a.pop_back()</td>
<td>void</td>
<td>a.erase(--a.end())</td>
<td>vector, list, deque</td>
</tr>
<tr>
<td>a[n]</td>
<td>reference; const_reference for constant a</td>
<td>*(a.begin() + n)</td>
<td>vector, deque</td>
</tr>
<tr>
<td>a.at(n)</td>
<td>reference; const_reference for constant a</td>
<td>*(a.begin() + n)<br />throws out_of_range if n>=a.size()</td>
<td>vector, deque</td>
</tr>
</table title="Table 68"></p></a>
<a name="69"><p>
<table cellpadding="3" cellspacing="5" align="center" rules="rows" border="3"
cols="4" title="Table 69">
<caption><h2>Table 69 --- Associative Container Requirements</h2></caption>
<tr><th colspan="4">
These are in addition to the requirements of <a href="#65">containers</a>.
Map, multimap, set, and multiset are such containers. An associative
container supports <em>unique keys</em> (and is written as
<code>a_uniq</code> instead of <code>a</code>) if it may contain at most
one element for each key. Otherwise it supports <em>equivalent keys</em>
(and is written <code>a_eq</code>). Examples of the former are set and map,
examples of the latter are multiset and multimap.
</th></tr>
<tr>
<td><strong>expression</strong></td>
<td><strong>result type</strong></td>
<td><strong>notes, pre-/post-conditions, assertions</strong></td>
<td><strong>complexity</strong></td>
</tr>
<tr>
<td>X::key_type</td>
<td>Key</td>
<td>Key is Assignable</td>
<td>compile time</td>
</tr>
<tr>
<td>X::key_compare</td>
<td>Compare</td>
<td>defaults to less<key_type></td>
<td>compile time</td>
</tr>
<tr>
<td>X::value_compare</td>
<td>a binary predicate type</td>
<td>same as key_compare for set and multiset; an ordering relation on
pairs induced by the first component (Key) for map and multimap</td>
<td>compile time</td>
</tr>
<tr>
<td>X(c)<br />X a(c)</td>
<td> </td>
<td>constructs an empty container which uses c as a comparison object</td>
<td>constant</td>
</tr>
<tr>
<td>X()<br />X a</td>
<td> </td>
<td>constructs an empty container using Compare() as a comparison object</td>
<td>constant</td>
</tr>
<tr>
<td>X(i,j,c)<br />X a(i,j,c)</td>
<td> </td>
<td>constructs an empty container and inserts elements from the range [i,j)
into it; uses c as a comparison object</td>
<td>NlogN in general where N is distance(i,j); linear if [i,j) is
sorted with value_comp()</td>
</tr>
<tr>
<td>X(i,j)<br />X a(i,j)</td>
<td> </td>
<td>same as previous, but uses Compare() as a comparison object</td>
<td>same as previous</td>
</tr>
<tr>
<td>a.key_comp()</td>
<td>X::key_compare</td>
<td>returns the comparison object out of which a was constructed</td>
<td>constant</td>
</tr>
<tr>
<td>a.value_comp()</td>
<td>X::value_compare</td>
<td>returns an object constructed out of the comparison object</td>
<td>constant</td>
</tr>
<tr>
<td>a_uniq.insert(t)</td>
<td>pair<iterator,bool></td>
<td>"Inserts t if and only if there is no element in the container with
key equivalent to the key of t. The bool component of the returned pair
is true -iff- the insertion took place, and the iterator component of
the pair points to the element with key equivalent to the key of
t."</td> <!-- DR 316 -->
<td>logarithmic</td>
</tr>
<tr>
<td>a_eq.insert(t)</td>
<td>iterator</td>
<td>inserts t, returns the iterator pointing to the inserted element</td>
<td>logarithmic</td>
</tr>
<tr>
<td>a.insert(p,t)</td>
<td>iterator</td>
<td>possibly inserts t (depending on whether a_uniq or a_eq); returns iterator
pointing to the element with key equivalent to the key of t; iterator p
is a hint pointing to where the insert should start to search</td>
<td>logarithmic in general, amortized constant if t is inserted right
after p<br />
<strong>[but see DR 233 and <a href="
http://gcc.gnu.org/onlinedocs/libstdc++/23_containers/howto.html#4">our
specific notes</a>]</strong></td>
</tr>
<tr>
<td>a.insert(i,j)</td>
<td>void</td>
<td>pre: i, j are not iterators into a. possibly inserts each element from
the range [i,j) (depending on whether a_uniq or a_eq)</td>
<td>Nlog(size()+N) where N is distance(i,j) in general</td> <!-- DR 264 -->
</tr>
<tr>
<td>a.erase(k)</td>
<td>size_type</td>
<td>erases all elements with key equivalent to k; returns number of erased
elements</td>
<td>log(size()) + count(k)</td>
</tr>
<tr>
<td>a.erase(q)</td>
<td>void</td>
<td>erases the element pointed to by q</td>
<td>amortized constant</td>
</tr>
<tr>
<td>a.erase(q1,q2)</td>
<td>void</td>
<td>erases all the elements in the range [q1,q2)</td>
<td>log(size()) + distance(q1,q2)</td>
</tr>
<tr>
<td>a.clear()</td>
<td>void</td>
<td>erases everything; post: size() == 0</td>
<td>linear</td> <!-- DR 224 -->
</tr>
<tr>
<td>a.find(k)</td>
<td>iterator; const_iterator for constant a</td>
<td>returns iterator pointing to element with key equivalent to k, or
a.end() if no such element found</td>
<td>logarithmic</td>
</tr>
<tr>
<td>a.count(k)</td>
<td>size_type</td>
<td>returns number of elements with key equivalent to k</td>
<td>log(size()) + count(k)</td>
</tr>
<tr>
<td>a.lower_bound(k)</td>
<td>iterator; const_iterator for constant a</td>
<td>returns iterator pointing to the first element with key not less than k</td>
<td>logarithmic</td>
</tr>
<tr>
<td>a.upper_bound(k)</td>
<td>iterator; const_iterator for constant a</td>
<td>returns iterator pointing to the first element with key greater than k</td>
<td>logarithmic</td>
</tr>
<tr>
<td>a.equal_range(k)</td>
<td>pair<iterator,iterator>;
pair<const_iterator, const_iterator> for constant a</td>
<td>equivalent to make_pair(a.lower_bound(k), a.upper_bound(k))</td>
<td>logarithmic</td>
</tr>
</table title="Table 69"></p></a>
<hr />
<p class="smallertext"><em>
See <a href="mainpage.html">mainpage.html</a> for copying conditions.
See <a href="http://gcc.gnu.org/libstdc++/">the libstdc++ homepage</a>
for more information.
</em></p>
</body>
</html>
|