summaryrefslogtreecommitdiff
path: root/libstdc++-v3/doc/html/ext/pb_ds/pq_performance_tests.html
blob: 3a6b269120853e842ba54b16598ee074df67b33e (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
    "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">

<html xmlns="http://www.w3.org/1999/xhtml" xml:lang="en" lang="en">
<head>
<meta name="generator" content="HTML Tidy for Linux/x86 (vers 12 April 2005), see www.w3.org" />
<title>Priority-Queue Performance Tests</title>
<meta http-equiv="Content-Type" content="text/html; charset=us-ascii" />
</head>
<body>
<div id="page">
<h1>Priority-Queue Performance Tests</h1>
<h2><a name="settings" id="settings">Settings</a></h2>
<p>This section describes performance tests and their results.
    In the following, <a href="#gcc"><u>g++</u></a>, <a href="#msvc"><u>msvc++</u></a>, and <a href="#local"><u>local</u></a> (the build used for generating this
    documentation) stand for three different builds:</p>
<div id="gcc_settings_div">
<div class="c1">
<h3><a name="gcc" id="gcc"><u>g++</u></a></h3>
<ul>
<li>CPU speed - cpu MHz : 2660.644</li>
<li>Memory - MemTotal: 484412 kB</li>
<li>Platform -
          Linux-2.6.12-9-386-i686-with-debian-testing-unstable</li>
<li>Compiler - g++ (GCC) 4.0.2 20050808 (prerelease)
          (Ubuntu 4.0.1-4ubuntu9) Copyright (C) 2005 Free Software
          Foundation, Inc. This is free software; see the source
          for copying conditions. There is NO warranty; not even
          for MERCHANTABILITY or FITNESS FOR A PARTICULAR
          PURPOSE.</li>
</ul>
</div>
<div class="c2"></div>
</div>
<div id="msvc_settings_div">
<div class="c1">
<h3><a name="msvc" id="msvc"><u>msvc++</u></a></h3>
<ul>
<li>CPU speed - cpu MHz : 2660.554</li>
<li>Memory - MemTotal: 484412 kB</li>
<li>Platform - Windows XP Pro</li>
<li>Compiler - Microsoft (R) 32-bit C/C++ Optimizing
          Compiler Version 13.10.3077 for 80x86 Copyright (C)
          Microsoft Corporation 1984-2002. All rights
          reserved.</li>
</ul>
</div>
<div class="c2"></div>
</div>
<div id="local_settings_div"><div style = "border-style: dotted; border-width: 1px; border-color: lightgray"><h3><a name = "local"><u>local</u></a></h3><ul>
<li>CPU speed - cpu MHz		: 2250.000</li>
<li>Memory - MemTotal:      2076248 kB</li>
<li>Platform - Linux-2.6.16-1.2133_FC5-i686-with-redhat-5-Bordeaux</li>
<li>Compiler - g++ (GCC) 4.1.1 20060525 (Red Hat 4.1.1-1)
Copyright (C) 2006 Free Software Foundation, Inc.
This is free software; see the source for copying conditions.  There is NO
warranty; not even for MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
</li>
</ul>
</div><div style = "width: 100%; height: 20px"></div></div>
<h2><a name="pq_tests" id="pq_tests">Tests</a></h2>
<ol>
<li><a href="priority_queue_text_push_timing_test.html">Priority Queue
      Text <tt>push</tt> Timing Test</a></li>
<li><a href="priority_queue_text_push_pop_timing_test.html">Priority
      Queue Text <tt>push</tt> and <tt>pop</tt> Timing
      Test</a></li>
<li><a href="priority_queue_random_int_push_timing_test.html">Priority
      Queue Random Integer <tt>push</tt> Timing Test</a></li>
<li><a href="priority_queue_random_int_push_pop_timing_test.html">Priority
      Queue Random Integer <tt>push</tt> and <tt>pop</tt> Timing
      Test</a></li>
<li><a href="priority_queue_text_pop_mem_usage_test.html">Priority Queue
      Text <tt>pop</tt> Memory Use Test</a></li>
<li><a href="priority_queue_text_join_timing_test.html">Priority Queue
      Text <tt>join</tt> Timing Test</a></li>
<li><a href="priority_queue_text_modify_up_timing_test.html">Priority
      Queue Text <tt>modify</tt> Timing Test - I</a></li>
<li><a href="priority_queue_text_modify_down_timing_test.html">Priority
      Queue Text <tt>modify</tt> Timing Test - II</a></li>
</ol>
<h2><a name="pq_observations" id="pq_observations">Observations</a></h2>
<h3><a name="pq_observations_cplx" id="pq_observations_cplx">Underlying Data Structures
    Complexity</a></h3>
<p>The following table shows the complexities of the different
    underlying data structures in terms of orders of growth. It is
    interesting to note that this table implies something about the
    constants of the operations as well (see <a href="#pq_observations_amortized_push_pop">Amortized <tt>push</tt>
    and <tt>pop</tt> operations</a>).</p>
<table class="c1" width="100%" border="1" summary="pq complexities">
<tr>
<td align="left"></td>
<td align="left"><tt>push</tt></td>
<td align="left"><tt>pop</tt></td>
<td align="left"><tt>modify</tt></td>
<td align="left"><tt>erase</tt></td>
<td align="left"><tt>join</tt></td>
</tr>
<tr>
<td align="left">
<p><tt>std::priority_queue</tt></p>
</td>
<td align="left">
<p><i>&Theta;(n)</i> worst</p>
<p><i>&Theta;(log(n))</i> amortized</p>
</td>
<td align="left">
<p class="c1">&Theta;(log(n)) Worst</p>
</td>
<td align="left">
<p><i>Theta;(n log(n))</i> Worst</p>
<p><sub><a href="#std_mod1">[std note 1]</a></sub></p>
</td>
<td align="left">
<p class="c3">&Theta;(n log(n))</p>
<p><sub><a href="#std_mod2">[std note 2]</a></sub></p>
</td>
<td align="left">
<p class="c3">&Theta;(n log(n))</p>
<p><sub><a href="#std_mod1">[std note 1]</a></sub></p>
</td>
</tr>
<tr>
<td align="left">
<p><a href="priority_queue.html"><tt>priority_queue</tt></a></p>
<p>with <tt>Tag</tt> =</p>
<p><a href="pairing_heap_tag.html"><tt>pairing_heap_tag</tt></a></p>
</td>
<td align="left">
<p class="c1">O(1)</p>
</td>
<td align="left">
<p><i>&Theta;(n)</i> worst</p>
<p><i>&Theta;(log(n))</i> amortized</p>
</td>
<td align="left">
<p><i>&Theta;(n)</i> worst</p>
<p><i>&Theta;(log(n))</i> amortized</p>
</td>
<td align="left">
<p><i>&Theta;(n)</i> worst</p>
<p><i>&Theta;(log(n))</i> amortized</p>
</td>
<td align="left">
<p class="c1">O(1)</p>
</td>
</tr>
<tr>
<td align="left">
<p><a href="priority_queue.html"><tt>priority_queue</tt></a></p>
<p>with <tt>Tag</tt> =</p>
<p><a href="binary_heap_tag.html"><tt>binary_heap_tag</tt></a></p>
</td>
<td align="left">
<p><i>&Theta;(n)</i> worst</p>
<p><i>&Theta;(log(n))</i> amortized</p>
</td>
<td align="left">
<p><i>&Theta;(n)</i> worst</p>
<p><i>&Theta;(log(n))</i> amortized</p>
</td>
<td align="left">
<p class="c1">&Theta;(n)</p>
</td>
<td align="left">
<p class="c1">&Theta;(n)</p>
</td>
<td align="left">
<p class="c1">&Theta;(n)</p>
</td>
</tr>
<tr>
<td align="left">
<p><a href="priority_queue.html"><tt>priority_queue</tt></a></p>
<p>with <tt>Tag</tt> =</p>
<p><a href="binomial_heap_tag.html"><tt>binomial_heap_tag</tt></a></p>
</td>
<td align="left">
<p><i>&Theta;(log(n))</i> worst</p>
<p><i>O(1)</i> amortized</p>
</td>
<td align="left">
<p class="c1">&Theta;(log(n))</p>
</td>
<td align="left">
<p class="c1">&Theta;(log(n))</p>
</td>
<td align="left">
<p class="c1">&Theta;(log(n))</p>
</td>
<td align="left">
<p class="c1">&Theta;(log(n))</p>
</td>
</tr>
<tr>
<td align="left">
<p><a href="priority_queue.html"><tt>priority_queue</tt></a></p>
<p>with <tt>Tag</tt> =</p>
<p><a href="rc_binomial_heap_tag.html"><tt>rc_binomial_heap_tag</tt></a></p>
</td>
<td align="left">
<p class="c1">O(1)</p>
</td>
<td align="left">
<p class="c1">&Theta;(log(n))</p>
</td>
<td align="left">
<p class="c1">&Theta;(log(n))</p>
</td>
<td align="left">
<p class="c1">&Theta;(log(n))</p>
</td>
<td align="left">
<p class="c1">&Theta;(log(n))</p>
</td>
</tr>
<tr>
<td align="left">
<p><a href="priority_queue.html"><tt>priority_queue</tt></a></p>
<p>with <tt>Tag</tt> =</p>
<p><a href="thin_heap_tag.html"><tt>thin_heap_tag</tt></a></p>
</td>
<td align="left">
<p class="c1">O(1)</p>
</td>
<td align="left">
<p><i>&Theta;(n)</i> worst</p>
<p><i>&Theta;(log(n))</i> amortized</p>
</td>
<td align="left">
<p><i>&Theta;(log(n))</i> worst</p>
<p><i>O(1)</i> amortized,</p>or

          <p><i>&Theta;(log(n))</i> amortized</p>
<p><sub><a href="#thin_heap_note">[thin_heap_note]</a></sub></p>
</td>
<td align="left">
<p><i>&Theta;(n)</i> worst</p>
<p><i>&Theta;(log(n))</i> amortized</p>
</td>
<td align="left">
<p class="c1">&Theta;(n)</p>
</td>
</tr>
</table>
<p><sub><a name="std_mod1" id="std_mod1">[std note 1]</a> This
    is not a property of the algorithm, but rather due to the fact
    that the STL's priority queue implementation does not support
    iterators (and consequently the ability to access a specific
    value inside it). If the priority queue is adapting an
    <tt>std::vector</tt>, then it is still possible to reduce this
    to <i>&Theta;(n)</i> by adapting over the STL's adapter and
    using the fact that <tt>top</tt> returns a reference to the
    first value; if, however, it is adapting an
    <tt>std::deque</tt>, then this is impossible.</sub></p>
<p><sub><a name="std_mod2" id="std_mod2">[std note 2]</a> As
    with <a href="#std_mod1">[std note 1]</a>, this is not a
    property of the algorithm, but rather the STL's implementation.
    Again, if the priority queue is adapting an
    <tt>std::vector</tt> then it is possible to reduce this to
    <i>&Theta;(n)</i>, but with a very high constant (one must call
    <tt>std::make_heap</tt> which is an expensive linear
    operation); if the priority queue is adapting an
    <tt>std::dequeu</tt>, then this is impossible.</sub></p>
<p><sub><a name="thin_heap_note" id="thin_heap_note">[thin_heap_note]</a> A thin heap has
    <i>&amp;Theta(log(n))</i> worst case <tt>modify</tt> time
    always, but the amortized time depends on the nature of the
    operation: I) if the operation increases the key (in the sense
    of the priority queue's comparison functor), then the amortized
    time is <i>O(1)</i>, but if II) it decreases it, then the
    amortized time is the same as the worst case time. Note that
    for most algorithms, I) is important and II) is not.</sub></p>
<h3><a name="pq_observations_amortized_push_pop" id="pq_observations_amortized_push_pop">Amortized <tt>push</tt>
    and <tt>pop</tt> operations</a></h3>
<p>In many cases, a priority queue is needed primarily for
    sequences of <tt>push</tt> and <tt>pop</tt> operations. All of
    the underlying data structures have the same amortized
    logarithmic complexity, but they differ in terms of
    constants.</p>
<p>The table above shows that the different data structures are
    "constrained" in some respects. In general, if a data structure
    has lower worst-case complexity than another, then it will
    perform slower in the amortized sense. Thus, for example a
    redundant-counter binomial heap (<a href="priority_queue.html"><tt>priority_queue</tt></a> with
    <tt>Tag</tt> = <a href="rc_binomial_heap_tag.html"><tt>rc_binomial_heap_tag</tt></a>)
    has lower worst-case <tt>push</tt> performance than a binomial
    heap (<a href="priority_queue.html"><tt>priority_queue</tt></a>
    with <tt>Tag</tt> = <a href="binomial_heap_tag.html"><tt>binomial_heap_tag</tt></a>),
    and so its amortized <tt>push</tt> performance is slower in
    terms of constants.</p>
<p>As the table shows, the "least constrained" underlying
    data structures are binary heaps and pairing heaps.
    Consequently, it is not surprising that they perform best in
    terms of amortized constants.</p>
<ol>
<li>Pairing heaps seem to perform best for non-primitive
      types (<i>e.g.</i>, <tt>std::string</tt>s), as shown by
      <a href="priority_queue_text_push_timing_test.html">Priority
      Queue Text <tt>push</tt> Timing Test</a> and <a href="priority_queue_text_push_pop_timing_test.html">Priority
      Queue Text <tt>push</tt> and <tt>pop</tt> Timing
      Test</a></li>
<li>binary heaps seem to perform best for primitive types
      (<i>e.g.</i>, <tt><b>int</b></tt>s), as shown by <a href="priority_queue_random_int_push_timing_test.html">Priority
      Queue Random Integer <tt>push</tt> Timing Test</a> and
      <a href="priority_queue_random_int_push_pop_timing_test.html">Priority
      Queue Random Integer <tt>push</tt> and <tt>pop</tt> Timing
      Test</a>.</li>
</ol>
<h3><a name="pq_observations_graph" id="pq_observations_graph">Graph Algorithms</a></h3>
<p>In some graph algorithms, a decrease-key operation is
    required [<a href="references.html#clrs2001">clrs2001</a>];
    this operation is identical to <tt>modify</tt> if a value is
    increased (in the sense of the priority queue's comparison
    functor). The table above and <a href="priority_queue_text_modify_up_timing_test.html">Priority Queue
    Text <tt>modify</tt> Timing Test - I</a> show that a thin heap
    (<a href="priority_queue.html"><tt>priority_queue</tt></a> with
    <tt>Tag</tt> = <a href="thin_heap_tag.html"><tt>thin_heap_tag</tt></a>)
    outperforms a pairing heap (<a href="priority_queue.html"><tt>priority_queue</tt></a> with
    <tt>Tag</tt> =<tt>Tag</tt> = <a href="pairing_heap_tag.html"><tt>pairing_heap_tag</tt></a>),
    but the rest of the tests show otherwise.</p>
<p>This makes it difficult to decide which implementation to
    use in this case. Dijkstra's shortest-path algorithm, for
    example, requires <i>&Theta;(n)</i> <tt>push</tt> and
    <tt>pop</tt> operations (in the number of vertices), but
    <i>O(n<sup>2</sup>)</i> <tt>modify</tt> operations, which can
    be in practice <i>&Theta;(n)</i> as well. It is difficult to
    find an <i>a-priori</i> characterization of graphs in which the
    <u>actual</u> number of <tt>modify</tt> operations will dwarf
    the number of <tt>push</tt> and <tt>pop</tt> operations.</p>
</div>
</body>
</html>