1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
|
<chapter xmlns="http://docbook.org/ns/docbook" version="5.0"
xml:id="manual.ext.parallel_mode" xreflabel="Parallel Mode">
<?dbhtml filename="parallel_mode.html"?>
<info><title>Parallel Mode</title>
<keywordset>
<keyword>
C++
</keyword>
<keyword>
library
</keyword>
<keyword>
parallel
</keyword>
</keywordset>
</info>
<para> The libstdc++ parallel mode is an experimental parallel
implementation of many algorithms the C++ Standard Library.
</para>
<para>
Several of the standard algorithms, for instance
<function>std::sort</function>, are made parallel using OpenMP
annotations. These parallel mode constructs and can be invoked by
explicit source declaration or by compiling existing sources with a
specific compiler flag.
</para>
<section xml:id="manual.ext.parallel_mode.intro" xreflabel="Intro"><info><title>Intro</title></info>
<para>The following library components in the include
<filename class="headerfile">numeric</filename> are included in the parallel mode:</para>
<itemizedlist>
<listitem><para><function>std::accumulate</function></para></listitem>
<listitem><para><function>std::adjacent_difference</function></para></listitem>
<listitem><para><function>std::inner_product</function></para></listitem>
<listitem><para><function>std::partial_sum</function></para></listitem>
</itemizedlist>
<para>The following library components in the include
<filename class="headerfile">algorithm</filename> are included in the parallel mode:</para>
<itemizedlist>
<listitem><para><function>std::adjacent_find</function></para></listitem>
<listitem><para><function>std::count</function></para></listitem>
<listitem><para><function>std::count_if</function></para></listitem>
<listitem><para><function>std::equal</function></para></listitem>
<listitem><para><function>std::find</function></para></listitem>
<listitem><para><function>std::find_if</function></para></listitem>
<listitem><para><function>std::find_first_of</function></para></listitem>
<listitem><para><function>std::for_each</function></para></listitem>
<listitem><para><function>std::generate</function></para></listitem>
<listitem><para><function>std::generate_n</function></para></listitem>
<listitem><para><function>std::lexicographical_compare</function></para></listitem>
<listitem><para><function>std::mismatch</function></para></listitem>
<listitem><para><function>std::search</function></para></listitem>
<listitem><para><function>std::search_n</function></para></listitem>
<listitem><para><function>std::transform</function></para></listitem>
<listitem><para><function>std::replace</function></para></listitem>
<listitem><para><function>std::replace_if</function></para></listitem>
<listitem><para><function>std::max_element</function></para></listitem>
<listitem><para><function>std::merge</function></para></listitem>
<listitem><para><function>std::min_element</function></para></listitem>
<listitem><para><function>std::nth_element</function></para></listitem>
<listitem><para><function>std::partial_sort</function></para></listitem>
<listitem><para><function>std::partition</function></para></listitem>
<listitem><para><function>std::random_shuffle</function></para></listitem>
<listitem><para><function>std::set_union</function></para></listitem>
<listitem><para><function>std::set_intersection</function></para></listitem>
<listitem><para><function>std::set_symmetric_difference</function></para></listitem>
<listitem><para><function>std::set_difference</function></para></listitem>
<listitem><para><function>std::sort</function></para></listitem>
<listitem><para><function>std::stable_sort</function></para></listitem>
<listitem><para><function>std::unique_copy</function></para></listitem>
</itemizedlist>
</section>
<section xml:id="manual.ext.parallel_mode.semantics" xreflabel="Semantics"><info><title>Semantics</title></info>
<para> The parallel mode STL algorithms are currently not exception-safe,
i.e. user-defined functors must not throw exceptions.
Also, the order of execution is not guaranteed for some functions, of course.
Therefore, user-defined functors should not have any concurrent side effects.
</para>
<para> Since the current GCC OpenMP implementation does not support
OpenMP parallel regions in concurrent threads,
it is not possible to call parallel STL algorithm in
concurrent threads, either.
It might work with other compilers, though.</para>
</section>
<section xml:id="manual.ext.parallel_mode.using" xreflabel="Using"><info><title>Using</title></info>
<section xml:id="parallel_mode.using.prereq_flags"><info><title>Prerequisite Compiler Flags</title></info>
<para>
Any use of parallel functionality requires additional compiler
and runtime support, in particular support for OpenMP. Adding this support is
not difficult: just compile your application with the compiler
flag <literal>-fopenmp</literal>. This will link
in <code>libgomp</code>, the GNU
OpenMP <link xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="http://gcc.gnu.org/onlinedocs/libgomp">implementation</link>,
whose presence is mandatory.
</para>
<para>
In addition, hardware that supports atomic operations and a compiler
capable of producing atomic operations is mandatory: GCC defaults to no
support for atomic operations on some common hardware
architectures. Activating atomic operations may require explicit
compiler flags on some targets (like sparc and x86), such
as <literal>-march=i686</literal>,
<literal>-march=native</literal> or <literal>-mcpu=v9</literal>. See
the GCC manual for more information.
</para>
</section>
<section xml:id="parallel_mode.using.parallel_mode"><info><title>Using Parallel Mode</title></info>
<para>
To use the libstdc++ parallel mode, compile your application with
the prerequisite flags as detailed above, and in addition
add <constant>-D_GLIBCXX_PARALLEL</constant>. This will convert all
use of the standard (sequential) algorithms to the appropriate parallel
equivalents. Please note that this doesn't necessarily mean that
everything will end up being executed in a parallel manner, but
rather that the heuristics and settings coded into the parallel
versions will be used to determine if all, some, or no algorithms
will be executed using parallel variants.
</para>
<para>Note that the <constant>_GLIBCXX_PARALLEL</constant> define may change the
sizes and behavior of standard class templates such as
<function>std::search</function>, and therefore one can only link code
compiled with parallel mode and code compiled without parallel mode
if no instantiation of a container is passed between the two
translation units. Parallel mode functionality has distinct linkage,
and cannot be confused with normal mode symbols.
</para>
</section>
<section xml:id="parallel_mode.using.specific"><info><title>Using Specific Parallel Components</title></info>
<para>When it is not feasible to recompile your entire application, or
only specific algorithms need to be parallel-aware, individual
parallel algorithms can be made available explicitly. These
parallel algorithms are functionally equivalent to the standard
drop-in algorithms used in parallel mode, but they are available in
a separate namespace as GNU extensions and may be used in programs
compiled with either release mode or with parallel mode.
</para>
<para>An example of using a parallel version
of <function>std::sort</function>, but no other parallel algorithms, is:
</para>
<programlisting>
#include <vector>
#include <parallel/algorithm>
int main()
{
std::vector<int> v(100);
// ...
// Explicitly force a call to parallel sort.
__gnu_parallel::sort(v.begin(), v.end());
return 0;
}
</programlisting>
<para>
Then compile this code with the prerequisite compiler flags
(<literal>-fopenmp</literal> and any necessary architecture-specific
flags for atomic operations.)
</para>
<para> The following table provides the names and headers of all the
parallel algorithms that can be used in a similar manner:
</para>
<table frame="all">
<title>Parallel Algorithms</title>
<tgroup cols="4" align="left" colsep="1" rowsep="1">
<colspec colname="c1"/>
<colspec colname="c2"/>
<colspec colname="c3"/>
<colspec colname="c4"/>
<thead>
<row>
<entry>Algorithm</entry>
<entry>Header</entry>
<entry>Parallel algorithm</entry>
<entry>Parallel header</entry>
</row>
</thead>
<tbody>
<row>
<entry><function>std::accumulate</function></entry>
<entry><filename class="headerfile">numeric</filename></entry>
<entry><function>__gnu_parallel::accumulate</function></entry>
<entry><filename class="headerfile">parallel/numeric</filename></entry>
</row>
<row>
<entry><function>std::adjacent_difference</function></entry>
<entry><filename class="headerfile">numeric</filename></entry>
<entry><function>__gnu_parallel::adjacent_difference</function></entry>
<entry><filename class="headerfile">parallel/numeric</filename></entry>
</row>
<row>
<entry><function>std::inner_product</function></entry>
<entry><filename class="headerfile">numeric</filename></entry>
<entry><function>__gnu_parallel::inner_product</function></entry>
<entry><filename class="headerfile">parallel/numeric</filename></entry>
</row>
<row>
<entry><function>std::partial_sum</function></entry>
<entry><filename class="headerfile">numeric</filename></entry>
<entry><function>__gnu_parallel::partial_sum</function></entry>
<entry><filename class="headerfile">parallel/numeric</filename></entry>
</row>
<row>
<entry><function>std::adjacent_find</function></entry>
<entry><filename class="headerfile">algorithm</filename></entry>
<entry><function>__gnu_parallel::adjacent_find</function></entry>
<entry><filename class="headerfile">parallel/algorithm</filename></entry>
</row>
<row>
<entry><function>std::count</function></entry>
<entry><filename class="headerfile">algorithm</filename></entry>
<entry><function>__gnu_parallel::count</function></entry>
<entry><filename class="headerfile">parallel/algorithm</filename></entry>
</row>
<row>
<entry><function>std::count_if</function></entry>
<entry><filename class="headerfile">algorithm</filename></entry>
<entry><function>__gnu_parallel::count_if</function></entry>
<entry><filename class="headerfile">parallel/algorithm</filename></entry>
</row>
<row>
<entry><function>std::equal</function></entry>
<entry><filename class="headerfile">algorithm</filename></entry>
<entry><function>__gnu_parallel::equal</function></entry>
<entry><filename class="headerfile">parallel/algorithm</filename></entry>
</row>
<row>
<entry><function>std::find</function></entry>
<entry><filename class="headerfile">algorithm</filename></entry>
<entry><function>__gnu_parallel::find</function></entry>
<entry><filename class="headerfile">parallel/algorithm</filename></entry>
</row>
<row>
<entry><function>std::find_if</function></entry>
<entry><filename class="headerfile">algorithm</filename></entry>
<entry><function>__gnu_parallel::find_if</function></entry>
<entry><filename class="headerfile">parallel/algorithm</filename></entry>
</row>
<row>
<entry><function>std::find_first_of</function></entry>
<entry><filename class="headerfile">algorithm</filename></entry>
<entry><function>__gnu_parallel::find_first_of</function></entry>
<entry><filename class="headerfile">parallel/algorithm</filename></entry>
</row>
<row>
<entry><function>std::for_each</function></entry>
<entry><filename class="headerfile">algorithm</filename></entry>
<entry><function>__gnu_parallel::for_each</function></entry>
<entry><filename class="headerfile">parallel/algorithm</filename></entry>
</row>
<row>
<entry><function>std::generate</function></entry>
<entry><filename class="headerfile">algorithm</filename></entry>
<entry><function>__gnu_parallel::generate</function></entry>
<entry><filename class="headerfile">parallel/algorithm</filename></entry>
</row>
<row>
<entry><function>std::generate_n</function></entry>
<entry><filename class="headerfile">algorithm</filename></entry>
<entry><function>__gnu_parallel::generate_n</function></entry>
<entry><filename class="headerfile">parallel/algorithm</filename></entry>
</row>
<row>
<entry><function>std::lexicographical_compare</function></entry>
<entry><filename class="headerfile">algorithm</filename></entry>
<entry><function>__gnu_parallel::lexicographical_compare</function></entry>
<entry><filename class="headerfile">parallel/algorithm</filename></entry>
</row>
<row>
<entry><function>std::mismatch</function></entry>
<entry><filename class="headerfile">algorithm</filename></entry>
<entry><function>__gnu_parallel::mismatch</function></entry>
<entry><filename class="headerfile">parallel/algorithm</filename></entry>
</row>
<row>
<entry><function>std::search</function></entry>
<entry><filename class="headerfile">algorithm</filename></entry>
<entry><function>__gnu_parallel::search</function></entry>
<entry><filename class="headerfile">parallel/algorithm</filename></entry>
</row>
<row>
<entry><function>std::search_n</function></entry>
<entry><filename class="headerfile">algorithm</filename></entry>
<entry><function>__gnu_parallel::search_n</function></entry>
<entry><filename class="headerfile">parallel/algorithm</filename></entry>
</row>
<row>
<entry><function>std::transform</function></entry>
<entry><filename class="headerfile">algorithm</filename></entry>
<entry><function>__gnu_parallel::transform</function></entry>
<entry><filename class="headerfile">parallel/algorithm</filename></entry>
</row>
<row>
<entry><function>std::replace</function></entry>
<entry><filename class="headerfile">algorithm</filename></entry>
<entry><function>__gnu_parallel::replace</function></entry>
<entry><filename class="headerfile">parallel/algorithm</filename></entry>
</row>
<row>
<entry><function>std::replace_if</function></entry>
<entry><filename class="headerfile">algorithm</filename></entry>
<entry><function>__gnu_parallel::replace_if</function></entry>
<entry><filename class="headerfile">parallel/algorithm</filename></entry>
</row>
<row>
<entry><function>std::max_element</function></entry>
<entry><filename class="headerfile">algorithm</filename></entry>
<entry><function>__gnu_parallel::max_element</function></entry>
<entry><filename class="headerfile">parallel/algorithm</filename></entry>
</row>
<row>
<entry><function>std::merge</function></entry>
<entry><filename class="headerfile">algorithm</filename></entry>
<entry><function>__gnu_parallel::merge</function></entry>
<entry><filename class="headerfile">parallel/algorithm</filename></entry>
</row>
<row>
<entry><function>std::min_element</function></entry>
<entry><filename class="headerfile">algorithm</filename></entry>
<entry><function>__gnu_parallel::min_element</function></entry>
<entry><filename class="headerfile">parallel/algorithm</filename></entry>
</row>
<row>
<entry><function>std::nth_element</function></entry>
<entry><filename class="headerfile">algorithm</filename></entry>
<entry><function>__gnu_parallel::nth_element</function></entry>
<entry><filename class="headerfile">parallel/algorithm</filename></entry>
</row>
<row>
<entry><function>std::partial_sort</function></entry>
<entry><filename class="headerfile">algorithm</filename></entry>
<entry><function>__gnu_parallel::partial_sort</function></entry>
<entry><filename class="headerfile">parallel/algorithm</filename></entry>
</row>
<row>
<entry><function>std::partition</function></entry>
<entry><filename class="headerfile">algorithm</filename></entry>
<entry><function>__gnu_parallel::partition</function></entry>
<entry><filename class="headerfile">parallel/algorithm</filename></entry>
</row>
<row>
<entry><function>std::random_shuffle</function></entry>
<entry><filename class="headerfile">algorithm</filename></entry>
<entry><function>__gnu_parallel::random_shuffle</function></entry>
<entry><filename class="headerfile">parallel/algorithm</filename></entry>
</row>
<row>
<entry><function>std::set_union</function></entry>
<entry><filename class="headerfile">algorithm</filename></entry>
<entry><function>__gnu_parallel::set_union</function></entry>
<entry><filename class="headerfile">parallel/algorithm</filename></entry>
</row>
<row>
<entry><function>std::set_intersection</function></entry>
<entry><filename class="headerfile">algorithm</filename></entry>
<entry><function>__gnu_parallel::set_intersection</function></entry>
<entry><filename class="headerfile">parallel/algorithm</filename></entry>
</row>
<row>
<entry><function>std::set_symmetric_difference</function></entry>
<entry><filename class="headerfile">algorithm</filename></entry>
<entry><function>__gnu_parallel::set_symmetric_difference</function></entry>
<entry><filename class="headerfile">parallel/algorithm</filename></entry>
</row>
<row>
<entry><function>std::set_difference</function></entry>
<entry><filename class="headerfile">algorithm</filename></entry>
<entry><function>__gnu_parallel::set_difference</function></entry>
<entry><filename class="headerfile">parallel/algorithm</filename></entry>
</row>
<row>
<entry><function>std::sort</function></entry>
<entry><filename class="headerfile">algorithm</filename></entry>
<entry><function>__gnu_parallel::sort</function></entry>
<entry><filename class="headerfile">parallel/algorithm</filename></entry>
</row>
<row>
<entry><function>std::stable_sort</function></entry>
<entry><filename class="headerfile">algorithm</filename></entry>
<entry><function>__gnu_parallel::stable_sort</function></entry>
<entry><filename class="headerfile">parallel/algorithm</filename></entry>
</row>
<row>
<entry><function>std::unique_copy</function></entry>
<entry><filename class="headerfile">algorithm</filename></entry>
<entry><function>__gnu_parallel::unique_copy</function></entry>
<entry><filename class="headerfile">parallel/algorithm</filename></entry>
</row>
</tbody>
</tgroup>
</table>
</section>
</section>
<section xml:id="manual.ext.parallel_mode.design" xreflabel="Design"><info><title>Design</title></info>
<para>
</para>
<section xml:id="parallel_mode.design.intro" xreflabel="Intro"><info><title>Interface Basics</title></info>
<para>
All parallel algorithms are intended to have signatures that are
equivalent to the ISO C++ algorithms replaced. For instance, the
<function>std::adjacent_find</function> function is declared as:
</para>
<programlisting>
namespace std
{
template<typename _FIter>
_FIter
adjacent_find(_FIter, _FIter);
}
</programlisting>
<para>
Which means that there should be something equivalent for the parallel
version. Indeed, this is the case:
</para>
<programlisting>
namespace std
{
namespace __parallel
{
template<typename _FIter>
_FIter
adjacent_find(_FIter, _FIter);
...
}
}
</programlisting>
<para>But.... why the ellipses?
</para>
<para> The ellipses in the example above represent additional overloads
required for the parallel version of the function. These additional
overloads are used to dispatch calls from the ISO C++ function
signature to the appropriate parallel function (or sequential
function, if no parallel functions are deemed worthy), based on either
compile-time or run-time conditions.
</para>
<para> The available signature options are specific for the different
algorithms/algorithm classes.</para>
<para> The general view of overloads for the parallel algorithms look like this:
</para>
<itemizedlist>
<listitem><para>ISO C++ signature</para></listitem>
<listitem><para>ISO C++ signature + sequential_tag argument</para></listitem>
<listitem><para>ISO C++ signature + algorithm-specific tag type
(several signatures)</para></listitem>
</itemizedlist>
<para> Please note that the implementation may use additional functions
(designated with the <code>_switch</code> suffix) to dispatch from the
ISO C++ signature to the correct parallel version. Also, some of the
algorithms do not have support for run-time conditions, so the last
overload is therefore missing.
</para>
</section>
<section xml:id="parallel_mode.design.tuning" xreflabel="Tuning"><info><title>Configuration and Tuning</title></info>
<section xml:id="parallel_mode.design.tuning.omp" xreflabel="OpenMP Environment"><info><title>Setting up the OpenMP Environment</title></info>
<para>
Several aspects of the overall runtime environment can be manipulated
by standard OpenMP function calls.
</para>
<para>
To specify the number of threads to be used for the algorithms globally,
use the function <function>omp_set_num_threads</function>. An example:
</para>
<programlisting>
#include <stdlib.h>
#include <omp.h>
int main()
{
// Explicitly set number of threads.
const int threads_wanted = 20;
omp_set_dynamic(false);
omp_set_num_threads(threads_wanted);
// Call parallel mode algorithms.
return 0;
}
</programlisting>
<para>
Some algorithms allow the number of threads being set for a particular call,
by augmenting the algorithm variant.
See the next section for further information.
</para>
<para>
Other parts of the runtime environment able to be manipulated include
nested parallelism (<function>omp_set_nested</function>), schedule kind
(<function>omp_set_schedule</function>), and others. See the OpenMP
documentation for more information.
</para>
</section>
<section xml:id="parallel_mode.design.tuning.compile" xreflabel="Compile Switches"><info><title>Compile Time Switches</title></info>
<para>
To force an algorithm to execute sequentially, even though parallelism
is switched on in general via the macro <constant>_GLIBCXX_PARALLEL</constant>,
add <classname>__gnu_parallel::sequential_tag()</classname> to the end
of the algorithm's argument list.
</para>
<para>
Like so:
</para>
<programlisting>
std::sort(v.begin(), v.end(), __gnu_parallel::sequential_tag());
</programlisting>
<para>
Some parallel algorithm variants can be excluded from compilation by
preprocessor defines. See the doxygen documentation on
<code>compiletime_settings.h</code> and <code>features.h</code> for details.
</para>
<para>
For some algorithms, the desired variant can be chosen at compile-time by
appending a tag object. The available options are specific to the particular
algorithm (class).
</para>
<para>
For the "embarrassingly parallel" algorithms, there is only one "tag object
type", the enum _Parallelism.
It takes one of the following values,
<code>__gnu_parallel::parallel_tag</code>,
<code>__gnu_parallel::balanced_tag</code>,
<code>__gnu_parallel::unbalanced_tag</code>,
<code>__gnu_parallel::omp_loop_tag</code>,
<code>__gnu_parallel::omp_loop_static_tag</code>.
This means that the actual parallelization strategy is chosen at run-time.
(Choosing the variants at compile-time will come soon.)
</para>
<para>
For the following algorithms in general, we have
<code>__gnu_parallel::parallel_tag</code> and
<code>__gnu_parallel::default_parallel_tag</code>, in addition to
<code>__gnu_parallel::sequential_tag</code>.
<code>__gnu_parallel::default_parallel_tag</code> chooses the default
algorithm at compiletime, as does omitting the tag.
<code>__gnu_parallel::parallel_tag</code> postpones the decision to runtime
(see next section).
For all tags, the number of threads desired for this call can optionally be
passed to the respective tag's constructor.
</para>
<para>
The <code>multiway_merge</code> algorithm comes with the additional choices,
<code>__gnu_parallel::exact_tag</code> and
<code>__gnu_parallel::sampling_tag</code>.
Exact and sampling are the two available splitting strategies.
</para>
<para>
For the <code>sort</code> and <code>stable_sort</code> algorithms, there are
several additional choices, namely
<code>__gnu_parallel::multiway_mergesort_tag</code>,
<code>__gnu_parallel::multiway_mergesort_exact_tag</code>,
<code>__gnu_parallel::multiway_mergesort_sampling_tag</code>,
<code>__gnu_parallel::quicksort_tag</code>, and
<code>__gnu_parallel::balanced_quicksort_tag</code>.
Multiway mergesort comes with the two splitting strategies for multi-way
merging. The quicksort options cannot be used for <code>stable_sort</code>.
</para>
</section>
<section xml:id="parallel_mode.design.tuning.settings" xreflabel="_Settings"><info><title>Run Time Settings and Defaults</title></info>
<para>
The default parallelization strategy, the choice of specific algorithm
strategy, the minimum threshold limits for individual parallel
algorithms, and aspects of the underlying hardware can be specified as
desired via manipulation
of <classname>__gnu_parallel::_Settings</classname> member data.
</para>
<para>
First off, the choice of parallelization strategy: serial, parallel,
or heuristically deduced. This corresponds
to <code>__gnu_parallel::_Settings::algorithm_strategy</code> and is a
value of enum <type>__gnu_parallel::_AlgorithmStrategy</type>
type. Choices
include: <type>heuristic</type>, <type>force_sequential</type>,
and <type>force_parallel</type>. The default is <type>heuristic</type>.
</para>
<para>
Next, the sub-choices for algorithm variant, if not fixed at compile-time.
Specific algorithms like <function>find</function> or <function>sort</function>
can be implemented in multiple ways: when this is the case,
a <classname>__gnu_parallel::_Settings</classname> member exists to
pick the default strategy. For
example, <code>__gnu_parallel::_Settings::sort_algorithm</code> can
have any values of
enum <type>__gnu_parallel::_SortAlgorithm</type>: <type>MWMS</type>, <type>QS</type>,
or <type>QS_BALANCED</type>.
</para>
<para>
Likewise for setting the minimal threshold for algorithm
parallelization. Parallelism always incurs some overhead. Thus, it is
not helpful to parallelize operations on very small sets of
data. Because of this, measures are taken to avoid parallelizing below
a certain, pre-determined threshold. For each algorithm, a minimum
problem size is encoded as a variable in the
active <classname>__gnu_parallel::_Settings</classname> object. This
threshold variable follows the following naming scheme:
<code>__gnu_parallel::_Settings::[algorithm]_minimal_n</code>. So,
for <function>fill</function>, the threshold variable
is <code>__gnu_parallel::_Settings::fill_minimal_n</code>,
</para>
<para>
Finally, hardware details like L1/L2 cache size can be hardwired
via <code>__gnu_parallel::_Settings::L1_cache_size</code> and friends.
</para>
<para>
</para>
<para>
All these configuration variables can be changed by the user, if
desired.
There exists one global instance of the class <classname>_Settings</classname>,
i. e. it is a singleton. It can be read and written by calling
<code>__gnu_parallel::_Settings::get</code> and
<code>__gnu_parallel::_Settings::set</code>, respectively.
Please note that the first call return a const object, so direct manipulation
is forbidden.
See <link xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="http://gcc.gnu.org/onlinedocs/libstdc++/latest-doxygen/a01005.html">
<filename class="headerfile">settings.h</filename></link>
for complete details.
</para>
<para>
A small example of tuning the default:
</para>
<programlisting>
#include <parallel/algorithm>
#include <parallel/settings.h>
int main()
{
__gnu_parallel::_Settings s;
s.algorithm_strategy = __gnu_parallel::force_parallel;
__gnu_parallel::_Settings::set(s);
// Do work... all algorithms will be parallelized, always.
return 0;
}
</programlisting>
</section>
</section>
<section xml:id="parallel_mode.design.impl" xreflabel="Impl"><info><title>Implementation Namespaces</title></info>
<para> One namespace contain versions of code that are always
explicitly sequential:
<code>__gnu_serial</code>.
</para>
<para> Two namespaces contain the parallel mode:
<code>std::__parallel</code> and <code>__gnu_parallel</code>.
</para>
<para> Parallel implementations of standard components, including
template helpers to select parallelism, are defined in <code>namespace
std::__parallel</code>. For instance, <function>std::transform</function> from <filename class="headerfile">algorithm</filename> has a parallel counterpart in
<function>std::__parallel::transform</function> from <filename class="headerfile">parallel/algorithm</filename>. In addition, these parallel
implementations are injected into <code>namespace
__gnu_parallel</code> with using declarations.
</para>
<para> Support and general infrastructure is in <code>namespace
__gnu_parallel</code>.
</para>
<para> More information, and an organized index of types and functions
related to the parallel mode on a per-namespace basis, can be found in
the generated source documentation.
</para>
</section>
</section>
<section xml:id="manual.ext.parallel_mode.test" xreflabel="Testing"><info><title>Testing</title></info>
<para>
Both the normal conformance and regression tests and the
supplemental performance tests work.
</para>
<para>
To run the conformance and regression tests with the parallel mode
active,
</para>
<screen>
<userinput>make check-parallel</userinput>
</screen>
<para>
The log and summary files for conformance testing are in the
<filename class="directory">testsuite/parallel</filename> directory.
</para>
<para>
To run the performance tests with the parallel mode active,
</para>
<screen>
<userinput>make check-performance-parallel</userinput>
</screen>
<para>
The result file for performance testing are in the
<filename class="directory">testsuite</filename> directory, in the file
<filename>libstdc++_performance.sum</filename>. In addition, the
policy-based containers have their own visualizations, which have
additional software dependencies than the usual bare-boned text
file, and can be generated by using the <code>make
doc-performance</code> rule in the testsuite's Makefile.
</para>
</section>
<bibliography xml:id="parallel_mode.biblio"><info><title>Bibliography</title></info>
<biblioentry>
<citetitle>
Parallelization of Bulk Operations for STL Dictionaries
</citetitle>
<author><personname><firstname>Johannes</firstname><surname>Singler</surname></personname></author>
<author><personname><firstname>Leonor</firstname><surname>Frias</surname></personname></author>
<copyright>
<year>2007</year>
<holder/>
</copyright>
<publisher>
<publishername>
Workshop on Highly Parallel Processing on a Chip (HPPC) 2007. (LNCS)
</publishername>
</publisher>
</biblioentry>
<biblioentry>
<citetitle>
The Multi-Core Standard Template Library
</citetitle>
<author><personname><firstname>Johannes</firstname><surname>Singler</surname></personname></author>
<author><personname><firstname>Peter</firstname><surname>Sanders</surname></personname></author>
<author><personname><firstname>Felix</firstname><surname>Putze</surname></personname></author>
<copyright>
<year>2007</year>
<holder/>
</copyright>
<publisher>
<publishername>
Euro-Par 2007: Parallel Processing. (LNCS 4641)
</publishername>
</publisher>
</biblioentry>
</bibliography>
</chapter>
|