summaryrefslogtreecommitdiff
path: root/libstdc++-v3/include/bits/stl_map.h
blob: a1bef8b6adeccf0c6ecdb246e2e8cd6feec6edad (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
// Map implementation -*- C++ -*-

// Copyright (C) 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2010,
// 2011 Free Software Foundation, Inc.
//
// This file is part of the GNU ISO C++ Library.  This library is free
// software; you can redistribute it and/or modify it under the
// terms of the GNU General Public License as published by the
// Free Software Foundation; either version 3, or (at your option)
// any later version.

// This library is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
// GNU General Public License for more details.

// Under Section 7 of GPL version 3, you are granted additional
// permissions described in the GCC Runtime Library Exception, version
// 3.1, as published by the Free Software Foundation.

// You should have received a copy of the GNU General Public License and
// a copy of the GCC Runtime Library Exception along with this program;
// see the files COPYING3 and COPYING.RUNTIME respectively.  If not, see
// <http://www.gnu.org/licenses/>.

/*
 *
 * Copyright (c) 1994
 * Hewlett-Packard Company
 *
 * Permission to use, copy, modify, distribute and sell this software
 * and its documentation for any purpose is hereby granted without fee,
 * provided that the above copyright notice appear in all copies and
 * that both that copyright notice and this permission notice appear
 * in supporting documentation.  Hewlett-Packard Company makes no
 * representations about the suitability of this software for any
 * purpose.  It is provided "as is" without express or implied warranty.
 *
 *
 * Copyright (c) 1996,1997
 * Silicon Graphics Computer Systems, Inc.
 *
 * Permission to use, copy, modify, distribute and sell this software
 * and its documentation for any purpose is hereby granted without fee,
 * provided that the above copyright notice appear in all copies and
 * that both that copyright notice and this permission notice appear
 * in supporting documentation.  Silicon Graphics makes no
 * representations about the suitability of this software for any
 * purpose.  It is provided "as is" without express or implied warranty.
 */

/** @file bits/stl_map.h
 *  This is an internal header file, included by other library headers.
 *  Do not attempt to use it directly. @headername{map}
 */

#ifndef _STL_MAP_H
#define _STL_MAP_H 1

#include <bits/functexcept.h>
#include <bits/concept_check.h>
#include <initializer_list>

namespace std _GLIBCXX_VISIBILITY(default)
{
_GLIBCXX_BEGIN_NAMESPACE_CONTAINER

  /**
   *  @brief A standard container made up of (key,value) pairs, which can be
   *  retrieved based on a key, in logarithmic time.
   *
   *  @ingroup associative_containers
   *
   *  Meets the requirements of a <a href="tables.html#65">container</a>, a
   *  <a href="tables.html#66">reversible container</a>, and an
   *  <a href="tables.html#69">associative container</a> (using unique keys).
   *  For a @c map<Key,T> the key_type is Key, the mapped_type is T, and the
   *  value_type is std::pair<const Key,T>.
   *
   *  Maps support bidirectional iterators.
   *
   *  The private tree data is declared exactly the same way for map and
   *  multimap; the distinction is made entirely in how the tree functions are
   *  called (*_unique versus *_equal, same as the standard).
  */
  template <typename _Key, typename _Tp, typename _Compare = std::less<_Key>,
            typename _Alloc = std::allocator<std::pair<const _Key, _Tp> > >
    class map
    {
    public:
      typedef _Key                                          key_type;
      typedef _Tp                                           mapped_type;
      typedef std::pair<const _Key, _Tp>                    value_type;
      typedef _Compare                                      key_compare;
      typedef _Alloc                                        allocator_type;

    private:
      // concept requirements
      typedef typename _Alloc::value_type                   _Alloc_value_type;
      __glibcxx_class_requires(_Tp, _SGIAssignableConcept)
      __glibcxx_class_requires4(_Compare, bool, _Key, _Key,
				_BinaryFunctionConcept)
      __glibcxx_class_requires2(value_type, _Alloc_value_type, _SameTypeConcept)

    public:
      class value_compare
      : public std::binary_function<value_type, value_type, bool>
      {
	friend class map<_Key, _Tp, _Compare, _Alloc>;
      protected:
	_Compare comp;

	value_compare(_Compare __c)
	: comp(__c) { }

      public:
	bool operator()(const value_type& __x, const value_type& __y) const
	{ return comp(__x.first, __y.first); }
      };

    private:
      /// This turns a red-black tree into a [multi]map. 
      typedef typename _Alloc::template rebind<value_type>::other 
        _Pair_alloc_type;

      typedef _Rb_tree<key_type, value_type, _Select1st<value_type>,
		       key_compare, _Pair_alloc_type> _Rep_type;

      /// The actual tree structure.
      _Rep_type _M_t;

    public:
      // many of these are specified differently in ISO, but the following are
      // "functionally equivalent"
      typedef typename _Pair_alloc_type::pointer         pointer;
      typedef typename _Pair_alloc_type::const_pointer   const_pointer;
      typedef typename _Pair_alloc_type::reference       reference;
      typedef typename _Pair_alloc_type::const_reference const_reference;
      typedef typename _Rep_type::iterator               iterator;
      typedef typename _Rep_type::const_iterator         const_iterator;
      typedef typename _Rep_type::size_type              size_type;
      typedef typename _Rep_type::difference_type        difference_type;
      typedef typename _Rep_type::reverse_iterator       reverse_iterator;
      typedef typename _Rep_type::const_reverse_iterator const_reverse_iterator;

      // [23.3.1.1] construct/copy/destroy
      // (get_allocator() is normally listed in this section, but seems to have
      // been accidentally omitted in the printed standard)
      /**
       *  @brief  Default constructor creates no elements.
       */
      map()
      : _M_t() { }

      /**
       *  @brief  Creates a %map with no elements.
       *  @param  comp  A comparison object.
       *  @param  a  An allocator object.
       */
      explicit
      map(const _Compare& __comp,
	  const allocator_type& __a = allocator_type())
      : _M_t(__comp, __a) { }

      /**
       *  @brief  %Map copy constructor.
       *  @param  x  A %map of identical element and allocator types.
       *
       *  The newly-created %map uses a copy of the allocation object
       *  used by @a x.
       */
      map(const map& __x)
      : _M_t(__x._M_t) { }

#ifdef __GXX_EXPERIMENTAL_CXX0X__
      /**
       *  @brief  %Map move constructor.
       *  @param  x  A %map of identical element and allocator types.
       *
       *  The newly-created %map contains the exact contents of @a x.
       *  The contents of @a x are a valid, but unspecified %map.
       */
      map(map&& __x)
      : _M_t(std::move(__x._M_t)) { }

      /**
       *  @brief  Builds a %map from an initializer_list.
       *  @param  l  An initializer_list.
       *  @param  comp  A comparison object.
       *  @param  a  An allocator object.
       *
       *  Create a %map consisting of copies of the elements in the
       *  initializer_list @a l.
       *  This is linear in N if the range is already sorted, and NlogN
       *  otherwise (where N is @a l.size()).
       */
      map(initializer_list<value_type> __l,
	  const _Compare& __c = _Compare(),
	  const allocator_type& __a = allocator_type())
      : _M_t(__c, __a)
      { _M_t._M_insert_unique(__l.begin(), __l.end()); }
#endif

      /**
       *  @brief  Builds a %map from a range.
       *  @param  first  An input iterator.
       *  @param  last  An input iterator.
       *
       *  Create a %map consisting of copies of the elements from [first,last).
       *  This is linear in N if the range is already sorted, and NlogN
       *  otherwise (where N is distance(first,last)).
       */
      template<typename _InputIterator>
        map(_InputIterator __first, _InputIterator __last)
	: _M_t()
        { _M_t._M_insert_unique(__first, __last); }

      /**
       *  @brief  Builds a %map from a range.
       *  @param  first  An input iterator.
       *  @param  last  An input iterator.
       *  @param  comp  A comparison functor.
       *  @param  a  An allocator object.
       *
       *  Create a %map consisting of copies of the elements from [first,last).
       *  This is linear in N if the range is already sorted, and NlogN
       *  otherwise (where N is distance(first,last)).
       */
      template<typename _InputIterator>
        map(_InputIterator __first, _InputIterator __last,
	    const _Compare& __comp,
	    const allocator_type& __a = allocator_type())
	: _M_t(__comp, __a)
        { _M_t._M_insert_unique(__first, __last); }

      // FIXME There is no dtor declared, but we should have something
      // generated by Doxygen.  I don't know what tags to add to this
      // paragraph to make that happen:
      /**
       *  The dtor only erases the elements, and note that if the elements
       *  themselves are pointers, the pointed-to memory is not touched in any
       *  way.  Managing the pointer is the user's responsibility.
       */

      /**
       *  @brief  %Map assignment operator.
       *  @param  x  A %map of identical element and allocator types.
       *
       *  All the elements of @a x are copied, but unlike the copy constructor,
       *  the allocator object is not copied.
       */
      map&
      operator=(const map& __x)
      {
	_M_t = __x._M_t;
	return *this;
      }

#ifdef __GXX_EXPERIMENTAL_CXX0X__
      /**
       *  @brief  %Map move assignment operator.
       *  @param  x  A %map of identical element and allocator types.
       *
       *  The contents of @a x are moved into this map (without copying).
       *  @a x is a valid, but unspecified %map.
       */
      map&
      operator=(map&& __x)
      {
	// NB: DR 1204.
	// NB: DR 675.
	this->clear();
	this->swap(__x);
	return *this;
      }

      /**
       *  @brief  %Map list assignment operator.
       *  @param  l  An initializer_list.
       *
       *  This function fills a %map with copies of the elements in the
       *  initializer list @a l.
       *
       *  Note that the assignment completely changes the %map and
       *  that the resulting %map's size is the same as the number
       *  of elements assigned.  Old data may be lost.
       */
      map&
      operator=(initializer_list<value_type> __l)
      {
	this->clear();
	this->insert(__l.begin(), __l.end());
	return *this;
      }
#endif

      /// Get a copy of the memory allocation object.
      allocator_type
      get_allocator() const
      { return _M_t.get_allocator(); }

      // iterators
      /**
       *  Returns a read/write iterator that points to the first pair in the
       *  %map.
       *  Iteration is done in ascending order according to the keys.
       */
      iterator
      begin()
      { return _M_t.begin(); }

      /**
       *  Returns a read-only (constant) iterator that points to the first pair
       *  in the %map.  Iteration is done in ascending order according to the
       *  keys.
       */
      const_iterator
      begin() const
      { return _M_t.begin(); }

      /**
       *  Returns a read/write iterator that points one past the last
       *  pair in the %map.  Iteration is done in ascending order
       *  according to the keys.
       */
      iterator
      end()
      { return _M_t.end(); }

      /**
       *  Returns a read-only (constant) iterator that points one past the last
       *  pair in the %map.  Iteration is done in ascending order according to
       *  the keys.
       */
      const_iterator
      end() const
      { return _M_t.end(); }

      /**
       *  Returns a read/write reverse iterator that points to the last pair in
       *  the %map.  Iteration is done in descending order according to the
       *  keys.
       */
      reverse_iterator
      rbegin()
      { return _M_t.rbegin(); }

      /**
       *  Returns a read-only (constant) reverse iterator that points to the
       *  last pair in the %map.  Iteration is done in descending order
       *  according to the keys.
       */
      const_reverse_iterator
      rbegin() const
      { return _M_t.rbegin(); }

      /**
       *  Returns a read/write reverse iterator that points to one before the
       *  first pair in the %map.  Iteration is done in descending order
       *  according to the keys.
       */
      reverse_iterator
      rend()
      { return _M_t.rend(); }

      /**
       *  Returns a read-only (constant) reverse iterator that points to one
       *  before the first pair in the %map.  Iteration is done in descending
       *  order according to the keys.
       */
      const_reverse_iterator
      rend() const
      { return _M_t.rend(); }

#ifdef __GXX_EXPERIMENTAL_CXX0X__
      /**
       *  Returns a read-only (constant) iterator that points to the first pair
       *  in the %map.  Iteration is done in ascending order according to the
       *  keys.
       */
      const_iterator
      cbegin() const
      { return _M_t.begin(); }

      /**
       *  Returns a read-only (constant) iterator that points one past the last
       *  pair in the %map.  Iteration is done in ascending order according to
       *  the keys.
       */
      const_iterator
      cend() const
      { return _M_t.end(); }

      /**
       *  Returns a read-only (constant) reverse iterator that points to the
       *  last pair in the %map.  Iteration is done in descending order
       *  according to the keys.
       */
      const_reverse_iterator
      crbegin() const
      { return _M_t.rbegin(); }

      /**
       *  Returns a read-only (constant) reverse iterator that points to one
       *  before the first pair in the %map.  Iteration is done in descending
       *  order according to the keys.
       */
      const_reverse_iterator
      crend() const
      { return _M_t.rend(); }
#endif

      // capacity
      /** Returns true if the %map is empty.  (Thus begin() would equal
       *  end().)
      */
      bool
      empty() const
      { return _M_t.empty(); }

      /** Returns the size of the %map.  */
      size_type
      size() const
      { return _M_t.size(); }

      /** Returns the maximum size of the %map.  */
      size_type
      max_size() const
      { return _M_t.max_size(); }

      // [23.3.1.2] element access
      /**
       *  @brief  Subscript ( @c [] ) access to %map data.
       *  @param  k  The key for which data should be retrieved.
       *  @return  A reference to the data of the (key,data) %pair.
       *
       *  Allows for easy lookup with the subscript ( @c [] )
       *  operator.  Returns data associated with the key specified in
       *  subscript.  If the key does not exist, a pair with that key
       *  is created using default values, which is then returned.
       *
       *  Lookup requires logarithmic time.
       */
      mapped_type&
      operator[](const key_type& __k)
      {
	// concept requirements
	__glibcxx_function_requires(_DefaultConstructibleConcept<mapped_type>)

	iterator __i = lower_bound(__k);
	// __i->first is greater than or equivalent to __k.
	if (__i == end() || key_comp()(__k, (*__i).first))
          __i = insert(__i, value_type(__k, mapped_type()));
	return (*__i).second;
      }

#ifdef __GXX_EXPERIMENTAL_CXX0X__
      mapped_type&
      operator[](key_type&& __k)
      {
	// concept requirements
	__glibcxx_function_requires(_DefaultConstructibleConcept<mapped_type>)

	iterator __i = lower_bound(__k);
	// __i->first is greater than or equivalent to __k.
	if (__i == end() || key_comp()(__k, (*__i).first))
          __i = insert(__i, std::make_pair(std::move(__k), mapped_type()));
	return (*__i).second;
      }
#endif

      // _GLIBCXX_RESOLVE_LIB_DEFECTS
      // DR 464. Suggestion for new member functions in standard containers.
      /**
       *  @brief  Access to %map data.
       *  @param  k  The key for which data should be retrieved.
       *  @return  A reference to the data whose key is equivalent to @a k, if
       *           such a data is present in the %map.
       *  @throw  std::out_of_range  If no such data is present.
       */
      mapped_type&
      at(const key_type& __k)
      {
	iterator __i = lower_bound(__k);
	if (__i == end() || key_comp()(__k, (*__i).first))
	  __throw_out_of_range(__N("map::at"));
	return (*__i).second;
      }

      const mapped_type&
      at(const key_type& __k) const
      {
	const_iterator __i = lower_bound(__k);
	if (__i == end() || key_comp()(__k, (*__i).first))
	  __throw_out_of_range(__N("map::at"));
	return (*__i).second;
      }

      // modifiers
      /**
       *  @brief Attempts to insert a std::pair into the %map.

       *  @param  x  Pair to be inserted (see std::make_pair for easy creation 
       *	     of pairs).

       *  @return  A pair, of which the first element is an iterator that 
       *           points to the possibly inserted pair, and the second is 
       *           a bool that is true if the pair was actually inserted.
       *
       *  This function attempts to insert a (key, value) %pair into the %map.
       *  A %map relies on unique keys and thus a %pair is only inserted if its
       *  first element (the key) is not already present in the %map.
       *
       *  Insertion requires logarithmic time.
       */
      std::pair<iterator, bool>
      insert(const value_type& __x)
      { return _M_t._M_insert_unique(__x); }

#ifdef __GXX_EXPERIMENTAL_CXX0X__
      template<typename _Pair, typename = typename
	       std::enable_if<std::is_convertible<_Pair,
						  value_type>::value>::type>
        std::pair<iterator, bool>
        insert(_Pair&& __x)
        { return _M_t._M_insert_unique(std::forward<_Pair>(__x)); }
#endif

#ifdef __GXX_EXPERIMENTAL_CXX0X__
      /**
       *  @brief Attempts to insert a list of std::pairs into the %map.
       *  @param  list  A std::initializer_list<value_type> of pairs to be
       *                inserted.
       *
       *  Complexity similar to that of the range constructor.
       */
      void
      insert(std::initializer_list<value_type> __list)
      { insert(__list.begin(), __list.end()); }
#endif

      /**
       *  @brief Attempts to insert a std::pair into the %map.
       *  @param  position  An iterator that serves as a hint as to where the
       *                    pair should be inserted.
       *  @param  x  Pair to be inserted (see std::make_pair for easy creation
       *             of pairs).
       *  @return  An iterator that points to the element with key of @a x (may
       *           or may not be the %pair passed in).
       *

       *  This function is not concerned about whether the insertion
       *  took place, and thus does not return a boolean like the
       *  single-argument insert() does.  Note that the first
       *  parameter is only a hint and can potentially improve the
       *  performance of the insertion process.  A bad hint would
       *  cause no gains in efficiency.
       *
       *  See
       *  http://gcc.gnu.org/onlinedocs/libstdc++/manual/bk01pt07ch17.html
       *  for more on @a hinting.
       *
       *  Insertion requires logarithmic time (if the hint is not taken).
       */
      iterator
#ifdef __GXX_EXPERIMENTAL_CXX0X__
      insert(const_iterator __position, const value_type& __x)
#else
      insert(iterator __position, const value_type& __x)
#endif
      { return _M_t._M_insert_unique_(__position, __x); }

#ifdef __GXX_EXPERIMENTAL_CXX0X__
      template<typename _Pair, typename = typename
	       std::enable_if<std::is_convertible<_Pair,
						  value_type>::value>::type>
        iterator
        insert(const_iterator __position, _Pair&& __x)
        { return _M_t._M_insert_unique_(__position,
					std::forward<_Pair>(__x)); }
#endif

      /**
       *  @brief Template function that attempts to insert a range of elements.
       *  @param  first  Iterator pointing to the start of the range to be
       *                 inserted.
       *  @param  last  Iterator pointing to the end of the range.
       *
       *  Complexity similar to that of the range constructor.
       */
      template<typename _InputIterator>
        void
        insert(_InputIterator __first, _InputIterator __last)
        { _M_t._M_insert_unique(__first, __last); }

#ifdef __GXX_EXPERIMENTAL_CXX0X__
      // _GLIBCXX_RESOLVE_LIB_DEFECTS
      // DR 130. Associative erase should return an iterator.
      /**
       *  @brief Erases an element from a %map.
       *  @param  position  An iterator pointing to the element to be erased.
       *  @return An iterator pointing to the element immediately following
       *          @a position prior to the element being erased. If no such 
       *          element exists, end() is returned.
       *
       *  This function erases an element, pointed to by the given
       *  iterator, from a %map.  Note that this function only erases
       *  the element, and that if the element is itself a pointer,
       *  the pointed-to memory is not touched in any way.  Managing
       *  the pointer is the user's responsibility.
       */
      iterator
      erase(const_iterator __position)
      { return _M_t.erase(__position); }

      // LWG 2059.
      iterator
      erase(iterator __position)
      { return _M_t.erase(__position); }
#else
      /**
       *  @brief Erases an element from a %map.
       *  @param  position  An iterator pointing to the element to be erased.
       *
       *  This function erases an element, pointed to by the given
       *  iterator, from a %map.  Note that this function only erases
       *  the element, and that if the element is itself a pointer,
       *  the pointed-to memory is not touched in any way.  Managing
       *  the pointer is the user's responsibility.
       */
      void
      erase(iterator __position)
      { _M_t.erase(__position); }
#endif

      /**
       *  @brief Erases elements according to the provided key.
       *  @param  x  Key of element to be erased.
       *  @return  The number of elements erased.
       *
       *  This function erases all the elements located by the given key from
       *  a %map.
       *  Note that this function only erases the element, and that if
       *  the element is itself a pointer, the pointed-to memory is not touched
       *  in any way.  Managing the pointer is the user's responsibility.
       */
      size_type
      erase(const key_type& __x)
      { return _M_t.erase(__x); }

#ifdef __GXX_EXPERIMENTAL_CXX0X__
      // _GLIBCXX_RESOLVE_LIB_DEFECTS
      // DR 130. Associative erase should return an iterator.
      /**
       *  @brief Erases a [first,last) range of elements from a %map.
       *  @param  first  Iterator pointing to the start of the range to be
       *                 erased.
       *  @param  last  Iterator pointing to the end of the range to be erased.
       *  @return The iterator @a last.
       *
       *  This function erases a sequence of elements from a %map.
       *  Note that this function only erases the element, and that if
       *  the element is itself a pointer, the pointed-to memory is not touched
       *  in any way.  Managing the pointer is the user's responsibility.
       */
      iterator
      erase(const_iterator __first, const_iterator __last)
      { return _M_t.erase(__first, __last); }
#else
      /**
       *  @brief Erases a [first,last) range of elements from a %map.
       *  @param  first  Iterator pointing to the start of the range to be
       *                 erased.
       *  @param  last  Iterator pointing to the end of the range to be erased.
       *
       *  This function erases a sequence of elements from a %map.
       *  Note that this function only erases the element, and that if
       *  the element is itself a pointer, the pointed-to memory is not touched
       *  in any way.  Managing the pointer is the user's responsibility.
       */
      void
      erase(iterator __first, iterator __last)
      { _M_t.erase(__first, __last); }
#endif

      /**
       *  @brief  Swaps data with another %map.
       *  @param  x  A %map of the same element and allocator types.
       *
       *  This exchanges the elements between two maps in constant
       *  time.  (It is only swapping a pointer, an integer, and an
       *  instance of the @c Compare type (which itself is often
       *  stateless and empty), so it should be quite fast.)  Note
       *  that the global std::swap() function is specialized such
       *  that std::swap(m1,m2) will feed to this function.
       */
      void
      swap(map& __x)
      { _M_t.swap(__x._M_t); }

      /**
       *  Erases all elements in a %map.  Note that this function only
       *  erases the elements, and that if the elements themselves are
       *  pointers, the pointed-to memory is not touched in any way.
       *  Managing the pointer is the user's responsibility.
       */
      void
      clear()
      { _M_t.clear(); }

      // observers
      /**
       *  Returns the key comparison object out of which the %map was
       *  constructed.
       */
      key_compare
      key_comp() const
      { return _M_t.key_comp(); }

      /**
       *  Returns a value comparison object, built from the key comparison
       *  object out of which the %map was constructed.
       */
      value_compare
      value_comp() const
      { return value_compare(_M_t.key_comp()); }

      // [23.3.1.3] map operations
      /**
       *  @brief Tries to locate an element in a %map.
       *  @param  x  Key of (key, value) %pair to be located.
       *  @return  Iterator pointing to sought-after element, or end() if not
       *           found.
       *
       *  This function takes a key and tries to locate the element with which
       *  the key matches.  If successful the function returns an iterator
       *  pointing to the sought after %pair.  If unsuccessful it returns the
       *  past-the-end ( @c end() ) iterator.
       */
      iterator
      find(const key_type& __x)
      { return _M_t.find(__x); }

      /**
       *  @brief Tries to locate an element in a %map.
       *  @param  x  Key of (key, value) %pair to be located.
       *  @return  Read-only (constant) iterator pointing to sought-after
       *           element, or end() if not found.
       *
       *  This function takes a key and tries to locate the element with which
       *  the key matches.  If successful the function returns a constant
       *  iterator pointing to the sought after %pair. If unsuccessful it
       *  returns the past-the-end ( @c end() ) iterator.
       */
      const_iterator
      find(const key_type& __x) const
      { return _M_t.find(__x); }

      /**
       *  @brief  Finds the number of elements with given key.
       *  @param  x  Key of (key, value) pairs to be located.
       *  @return  Number of elements with specified key.
       *
       *  This function only makes sense for multimaps; for map the result will
       *  either be 0 (not present) or 1 (present).
       */
      size_type
      count(const key_type& __x) const
      { return _M_t.find(__x) == _M_t.end() ? 0 : 1; }

      /**
       *  @brief Finds the beginning of a subsequence matching given key.
       *  @param  x  Key of (key, value) pair to be located.
       *  @return  Iterator pointing to first element equal to or greater
       *           than key, or end().
       *
       *  This function returns the first element of a subsequence of elements
       *  that matches the given key.  If unsuccessful it returns an iterator
       *  pointing to the first element that has a greater value than given key
       *  or end() if no such element exists.
       */
      iterator
      lower_bound(const key_type& __x)
      { return _M_t.lower_bound(__x); }

      /**
       *  @brief Finds the beginning of a subsequence matching given key.
       *  @param  x  Key of (key, value) pair to be located.
       *  @return  Read-only (constant) iterator pointing to first element
       *           equal to or greater than key, or end().
       *
       *  This function returns the first element of a subsequence of elements
       *  that matches the given key.  If unsuccessful it returns an iterator
       *  pointing to the first element that has a greater value than given key
       *  or end() if no such element exists.
       */
      const_iterator
      lower_bound(const key_type& __x) const
      { return _M_t.lower_bound(__x); }

      /**
       *  @brief Finds the end of a subsequence matching given key.
       *  @param  x  Key of (key, value) pair to be located.
       *  @return Iterator pointing to the first element
       *          greater than key, or end().
       */
      iterator
      upper_bound(const key_type& __x)
      { return _M_t.upper_bound(__x); }

      /**
       *  @brief Finds the end of a subsequence matching given key.
       *  @param  x  Key of (key, value) pair to be located.
       *  @return  Read-only (constant) iterator pointing to first iterator
       *           greater than key, or end().
       */
      const_iterator
      upper_bound(const key_type& __x) const
      { return _M_t.upper_bound(__x); }

      /**
       *  @brief Finds a subsequence matching given key.
       *  @param  x  Key of (key, value) pairs to be located.
       *  @return  Pair of iterators that possibly points to the subsequence
       *           matching given key.
       *
       *  This function is equivalent to
       *  @code
       *    std::make_pair(c.lower_bound(val),
       *                   c.upper_bound(val))
       *  @endcode
       *  (but is faster than making the calls separately).
       *
       *  This function probably only makes sense for multimaps.
       */
      std::pair<iterator, iterator>
      equal_range(const key_type& __x)
      { return _M_t.equal_range(__x); }

      /**
       *  @brief Finds a subsequence matching given key.
       *  @param  x  Key of (key, value) pairs to be located.
       *  @return  Pair of read-only (constant) iterators that possibly points
       *           to the subsequence matching given key.
       *
       *  This function is equivalent to
       *  @code
       *    std::make_pair(c.lower_bound(val),
       *                   c.upper_bound(val))
       *  @endcode
       *  (but is faster than making the calls separately).
       *
       *  This function probably only makes sense for multimaps.
       */
      std::pair<const_iterator, const_iterator>
      equal_range(const key_type& __x) const
      { return _M_t.equal_range(__x); }

      template<typename _K1, typename _T1, typename _C1, typename _A1>
        friend bool
        operator==(const map<_K1, _T1, _C1, _A1>&,
		   const map<_K1, _T1, _C1, _A1>&);

      template<typename _K1, typename _T1, typename _C1, typename _A1>
        friend bool
        operator<(const map<_K1, _T1, _C1, _A1>&,
		  const map<_K1, _T1, _C1, _A1>&);
    };

  /**
   *  @brief  Map equality comparison.
   *  @param  x  A %map.
   *  @param  y  A %map of the same type as @a x.
   *  @return  True iff the size and elements of the maps are equal.
   *
   *  This is an equivalence relation.  It is linear in the size of the
   *  maps.  Maps are considered equivalent if their sizes are equal,
   *  and if corresponding elements compare equal.
  */
  template<typename _Key, typename _Tp, typename _Compare, typename _Alloc>
    inline bool
    operator==(const map<_Key, _Tp, _Compare, _Alloc>& __x,
               const map<_Key, _Tp, _Compare, _Alloc>& __y)
    { return __x._M_t == __y._M_t; }

  /**
   *  @brief  Map ordering relation.
   *  @param  x  A %map.
   *  @param  y  A %map of the same type as @a x.
   *  @return  True iff @a x is lexicographically less than @a y.
   *
   *  This is a total ordering relation.  It is linear in the size of the
   *  maps.  The elements must be comparable with @c <.
   *
   *  See std::lexicographical_compare() for how the determination is made.
  */
  template<typename _Key, typename _Tp, typename _Compare, typename _Alloc>
    inline bool
    operator<(const map<_Key, _Tp, _Compare, _Alloc>& __x,
              const map<_Key, _Tp, _Compare, _Alloc>& __y)
    { return __x._M_t < __y._M_t; }

  /// Based on operator==
  template<typename _Key, typename _Tp, typename _Compare, typename _Alloc>
    inline bool
    operator!=(const map<_Key, _Tp, _Compare, _Alloc>& __x,
               const map<_Key, _Tp, _Compare, _Alloc>& __y)
    { return !(__x == __y); }

  /// Based on operator<
  template<typename _Key, typename _Tp, typename _Compare, typename _Alloc>
    inline bool
    operator>(const map<_Key, _Tp, _Compare, _Alloc>& __x,
              const map<_Key, _Tp, _Compare, _Alloc>& __y)
    { return __y < __x; }

  /// Based on operator<
  template<typename _Key, typename _Tp, typename _Compare, typename _Alloc>
    inline bool
    operator<=(const map<_Key, _Tp, _Compare, _Alloc>& __x,
               const map<_Key, _Tp, _Compare, _Alloc>& __y)
    { return !(__y < __x); }

  /// Based on operator<
  template<typename _Key, typename _Tp, typename _Compare, typename _Alloc>
    inline bool
    operator>=(const map<_Key, _Tp, _Compare, _Alloc>& __x,
               const map<_Key, _Tp, _Compare, _Alloc>& __y)
    { return !(__x < __y); }

  /// See std::map::swap().
  template<typename _Key, typename _Tp, typename _Compare, typename _Alloc>
    inline void
    swap(map<_Key, _Tp, _Compare, _Alloc>& __x,
	 map<_Key, _Tp, _Compare, _Alloc>& __y)
    { __x.swap(__y); }

_GLIBCXX_END_NAMESPACE_CONTAINER
} // namespace std

#endif /* _STL_MAP_H */