1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
|
// <mutex> -*- C++ -*-
// Copyright (C) 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2010
// Free Software Foundation, Inc.
//
// This file is part of the GNU ISO C++ Library. This library is free
// software; you can redistribute it and/or modify it under the
// terms of the GNU General Public License as published by the
// Free Software Foundation; either version 3, or (at your option)
// any later version.
// This library is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU General Public License for more details.
// Under Section 7 of GPL version 3, you are granted additional
// permissions described in the GCC Runtime Library Exception, version
// 3.1, as published by the Free Software Foundation.
// You should have received a copy of the GNU General Public License and
// a copy of the GCC Runtime Library Exception along with this program;
// see the files COPYING3 and COPYING.RUNTIME respectively. If not, see
// <http://www.gnu.org/licenses/>.
/** @file include/mutex
* This is a Standard C++ Library header.
*/
#ifndef _GLIBCXX_MUTEX
#define _GLIBCXX_MUTEX 1
#pragma GCC system_header
#ifndef __GXX_EXPERIMENTAL_CXX0X__
# include <bits/c++0x_warning.h>
#else
#include <tuple>
#include <chrono>
#include <exception>
#include <type_traits>
#include <functional>
#include <system_error>
#include <bits/functexcept.h>
#include <bits/gthr.h>
#include <bits/move.h> // for std::swap
#if defined(_GLIBCXX_HAS_GTHREADS) && defined(_GLIBCXX_USE_C99_STDINT_TR1)
namespace std _GLIBCXX_VISIBILITY(default)
{
_GLIBCXX_BEGIN_NAMESPACE_VERSION
/**
* @defgroup mutexes Mutexes
* @ingroup concurrency
*
* Classes for mutex support.
* @{
*/
/// mutex
class mutex
{
typedef __gthread_mutex_t __native_type;
__native_type _M_mutex;
public:
typedef __native_type* native_handle_type;
#ifdef __GTHREAD_MUTEX_INIT
constexpr mutex() : _M_mutex(__GTHREAD_MUTEX_INIT) { }
#else
mutex()
{
// XXX EAGAIN, ENOMEM, EPERM, EBUSY(may), EINVAL(may)
__GTHREAD_MUTEX_INIT_FUNCTION(&_M_mutex);
}
~mutex() { __gthread_mutex_destroy(&_M_mutex); }
#endif
mutex(const mutex&) = delete;
mutex& operator=(const mutex&) = delete;
void
lock()
{
int __e = __gthread_mutex_lock(&_M_mutex);
// EINVAL, EAGAIN, EBUSY, EINVAL, EDEADLK(may)
if (__e)
__throw_system_error(__e);
}
bool
try_lock()
{
// XXX EINVAL, EAGAIN, EBUSY
return !__gthread_mutex_trylock(&_M_mutex);
}
void
unlock()
{
// XXX EINVAL, EAGAIN, EPERM
__gthread_mutex_unlock(&_M_mutex);
}
native_handle_type
native_handle()
{ return &_M_mutex; }
};
#ifndef __GTHREAD_RECURSIVE_MUTEX_INIT
// FIXME: gthreads doesn't define __gthread_recursive_mutex_destroy
// so we need to obtain a __gthread_mutex_t to destroy
class __destroy_recursive_mutex
{
template<typename _Mx, typename _Rm>
static void
_S_destroy_win32(_Mx* __mx, _Rm const* __rmx)
{
__mx->counter = __rmx->counter;
__mx->sema = __rmx->sema;
__gthread_mutex_destroy(__mx);
}
public:
// matches a gthr-win32.h recursive mutex
template<typename _Rm>
static typename enable_if<(bool)sizeof(&_Rm::sema), void>::type
_S_destroy(_Rm* __mx)
{
__gthread_mutex_t __tmp;
_S_destroy_win32(&__tmp, __mx);
}
// matches a recursive mutex with a member 'actual'
template<typename _Rm>
static typename enable_if<(bool)sizeof(&_Rm::actual), void>::type
_S_destroy(_Rm* __mx)
{ __gthread_mutex_destroy(&__mx->actual); }
// matches when there's only one mutex type
template<typename _Rm>
static
typename enable_if<is_same<_Rm, __gthread_mutex_t>::value, void>::type
_S_destroy(_Rm* __mx)
{ __gthread_mutex_destroy(__mx); }
};
#endif
/// recursive_mutex
class recursive_mutex
{
typedef __gthread_recursive_mutex_t __native_type;
__native_type _M_mutex;
public:
typedef __native_type* native_handle_type;
#ifdef __GTHREAD_RECURSIVE_MUTEX_INIT
recursive_mutex() : _M_mutex(__GTHREAD_RECURSIVE_MUTEX_INIT) { }
#else
recursive_mutex()
{
// XXX EAGAIN, ENOMEM, EPERM, EBUSY(may), EINVAL(may)
__GTHREAD_RECURSIVE_MUTEX_INIT_FUNCTION(&_M_mutex);
}
~recursive_mutex()
{ __destroy_recursive_mutex::_S_destroy(&_M_mutex); }
#endif
recursive_mutex(const recursive_mutex&) = delete;
recursive_mutex& operator=(const recursive_mutex&) = delete;
void
lock()
{
int __e = __gthread_recursive_mutex_lock(&_M_mutex);
// EINVAL, EAGAIN, EBUSY, EINVAL, EDEADLK(may)
if (__e)
__throw_system_error(__e);
}
bool
try_lock()
{
// XXX EINVAL, EAGAIN, EBUSY
return !__gthread_recursive_mutex_trylock(&_M_mutex);
}
void
unlock()
{
// XXX EINVAL, EAGAIN, EBUSY
__gthread_recursive_mutex_unlock(&_M_mutex);
}
native_handle_type
native_handle()
{ return &_M_mutex; }
};
/// timed_mutex
class timed_mutex
{
typedef __gthread_mutex_t __native_type;
#ifdef _GLIBCXX_USE_CLOCK_MONOTONIC
typedef chrono::monotonic_clock __clock_t;
#else
typedef chrono::high_resolution_clock __clock_t;
#endif
__native_type _M_mutex;
public:
typedef __native_type* native_handle_type;
#ifdef __GTHREAD_MUTEX_INIT
timed_mutex() : _M_mutex(__GTHREAD_MUTEX_INIT) { }
#else
timed_mutex()
{
__GTHREAD_MUTEX_INIT_FUNCTION(&_M_mutex);
}
~timed_mutex() { __gthread_mutex_destroy(&_M_mutex); }
#endif
timed_mutex(const timed_mutex&) = delete;
timed_mutex& operator=(const timed_mutex&) = delete;
void
lock()
{
int __e = __gthread_mutex_lock(&_M_mutex);
// EINVAL, EAGAIN, EBUSY, EINVAL, EDEADLK(may)
if (__e)
__throw_system_error(__e);
}
bool
try_lock()
{
// XXX EINVAL, EAGAIN, EBUSY
return !__gthread_mutex_trylock(&_M_mutex);
}
template <class _Rep, class _Period>
bool
try_lock_for(const chrono::duration<_Rep, _Period>& __rtime)
{ return __try_lock_for_impl(__rtime); }
template <class _Clock, class _Duration>
bool
try_lock_until(const chrono::time_point<_Clock, _Duration>& __atime)
{
chrono::time_point<_Clock, chrono::seconds> __s =
chrono::time_point_cast<chrono::seconds>(__atime);
chrono::nanoseconds __ns =
chrono::duration_cast<chrono::nanoseconds>(__atime - __s);
__gthread_time_t __ts = {
static_cast<std::time_t>(__s.time_since_epoch().count()),
static_cast<long>(__ns.count())
};
return !__gthread_mutex_timedlock(&_M_mutex, &__ts);
}
void
unlock()
{
// XXX EINVAL, EAGAIN, EBUSY
__gthread_mutex_unlock(&_M_mutex);
}
native_handle_type
native_handle()
{ return &_M_mutex; }
private:
template<typename _Rep, typename _Period>
typename enable_if<
ratio_less_equal<__clock_t::period, _Period>::value, bool>::type
__try_lock_for_impl(const chrono::duration<_Rep, _Period>& __rtime)
{
__clock_t::time_point __atime = __clock_t::now()
+ chrono::duration_cast<__clock_t::duration>(__rtime);
return try_lock_until(__atime);
}
template <typename _Rep, typename _Period>
typename enable_if<
!ratio_less_equal<__clock_t::period, _Period>::value, bool>::type
__try_lock_for_impl(const chrono::duration<_Rep, _Period>& __rtime)
{
__clock_t::time_point __atime = __clock_t::now()
+ ++chrono::duration_cast<__clock_t::duration>(__rtime);
return try_lock_until(__atime);
}
};
/// recursive_timed_mutex
class recursive_timed_mutex
{
typedef __gthread_recursive_mutex_t __native_type;
#ifdef _GLIBCXX_USE_CLOCK_MONOTONIC
typedef chrono::monotonic_clock __clock_t;
#else
typedef chrono::high_resolution_clock __clock_t;
#endif
__native_type _M_mutex;
public:
typedef __native_type* native_handle_type;
#ifdef __GTHREAD_RECURSIVE_MUTEX_INIT
recursive_timed_mutex() : _M_mutex(__GTHREAD_RECURSIVE_MUTEX_INIT) { }
#else
recursive_timed_mutex()
{
// XXX EAGAIN, ENOMEM, EPERM, EBUSY(may), EINVAL(may)
__GTHREAD_RECURSIVE_MUTEX_INIT_FUNCTION(&_M_mutex);
}
~recursive_timed_mutex()
{ __destroy_recursive_mutex::_S_destroy(&_M_mutex); }
#endif
recursive_timed_mutex(const recursive_timed_mutex&) = delete;
recursive_timed_mutex& operator=(const recursive_timed_mutex&) = delete;
void
lock()
{
int __e = __gthread_recursive_mutex_lock(&_M_mutex);
// EINVAL, EAGAIN, EBUSY, EINVAL, EDEADLK(may)
if (__e)
__throw_system_error(__e);
}
bool
try_lock()
{
// XXX EINVAL, EAGAIN, EBUSY
return !__gthread_recursive_mutex_trylock(&_M_mutex);
}
template <class _Rep, class _Period>
bool
try_lock_for(const chrono::duration<_Rep, _Period>& __rtime)
{ return __try_lock_for_impl(__rtime); }
template <class _Clock, class _Duration>
bool
try_lock_until(const chrono::time_point<_Clock, _Duration>& __atime)
{
chrono::time_point<_Clock, chrono::seconds> __s =
chrono::time_point_cast<chrono::seconds>(__atime);
chrono::nanoseconds __ns =
chrono::duration_cast<chrono::nanoseconds>(__atime - __s);
__gthread_time_t __ts = {
static_cast<std::time_t>(__s.time_since_epoch().count()),
static_cast<long>(__ns.count())
};
return !__gthread_recursive_mutex_timedlock(&_M_mutex, &__ts);
}
void
unlock()
{
// XXX EINVAL, EAGAIN, EBUSY
__gthread_recursive_mutex_unlock(&_M_mutex);
}
native_handle_type
native_handle()
{ return &_M_mutex; }
private:
template<typename _Rep, typename _Period>
typename enable_if<
ratio_less_equal<__clock_t::period, _Period>::value, bool>::type
__try_lock_for_impl(const chrono::duration<_Rep, _Period>& __rtime)
{
__clock_t::time_point __atime = __clock_t::now()
+ chrono::duration_cast<__clock_t::duration>(__rtime);
return try_lock_until(__atime);
}
template <typename _Rep, typename _Period>
typename enable_if<
!ratio_less_equal<__clock_t::period, _Period>::value, bool>::type
__try_lock_for_impl(const chrono::duration<_Rep, _Period>& __rtime)
{
__clock_t::time_point __atime = __clock_t::now()
+ ++chrono::duration_cast<__clock_t::duration>(__rtime);
return try_lock_until(__atime);
}
};
/// Do not acquire ownership of the mutex.
struct defer_lock_t { };
/// Try to acquire ownership of the mutex without blocking.
struct try_to_lock_t { };
/// Assume the calling thread has already obtained mutex ownership
/// and manage it.
struct adopt_lock_t { };
constexpr defer_lock_t defer_lock { };
constexpr try_to_lock_t try_to_lock { };
constexpr adopt_lock_t adopt_lock { };
/// @brief Scoped lock idiom.
// Acquire the mutex here with a constructor call, then release with
// the destructor call in accordance with RAII style.
template<typename _Mutex>
class lock_guard
{
public:
typedef _Mutex mutex_type;
explicit lock_guard(mutex_type& __m) : _M_device(__m)
{ _M_device.lock(); }
lock_guard(mutex_type& __m, adopt_lock_t) : _M_device(__m)
{ } // calling thread owns mutex
~lock_guard()
{ _M_device.unlock(); }
lock_guard(const lock_guard&) = delete;
lock_guard& operator=(const lock_guard&) = delete;
private:
mutex_type& _M_device;
};
/// unique_lock
template<typename _Mutex>
class unique_lock
{
public:
typedef _Mutex mutex_type;
unique_lock()
: _M_device(0), _M_owns(false)
{ }
explicit unique_lock(mutex_type& __m)
: _M_device(&__m), _M_owns(false)
{
lock();
_M_owns = true;
}
unique_lock(mutex_type& __m, defer_lock_t)
: _M_device(&__m), _M_owns(false)
{ }
unique_lock(mutex_type& __m, try_to_lock_t)
: _M_device(&__m), _M_owns(_M_device->try_lock())
{ }
unique_lock(mutex_type& __m, adopt_lock_t)
: _M_device(&__m), _M_owns(true)
{
// XXX calling thread owns mutex
}
template<typename _Clock, typename _Duration>
unique_lock(mutex_type& __m,
const chrono::time_point<_Clock, _Duration>& __atime)
: _M_device(&__m), _M_owns(_M_device->try_lock_until(__atime))
{ }
template<typename _Rep, typename _Period>
unique_lock(mutex_type& __m,
const chrono::duration<_Rep, _Period>& __rtime)
: _M_device(&__m), _M_owns(_M_device->try_lock_for(__rtime))
{ }
~unique_lock()
{
if (_M_owns)
unlock();
}
unique_lock(const unique_lock&) = delete;
unique_lock& operator=(const unique_lock&) = delete;
unique_lock(unique_lock&& __u)
: _M_device(__u._M_device), _M_owns(__u._M_owns)
{
__u._M_device = 0;
__u._M_owns = false;
}
unique_lock& operator=(unique_lock&& __u)
{
if(_M_owns)
unlock();
unique_lock(std::move(__u)).swap(*this);
__u._M_device = 0;
__u._M_owns = false;
return *this;
}
void
lock()
{
if (!_M_device)
__throw_system_error(int(errc::operation_not_permitted));
else if (_M_owns)
__throw_system_error(int(errc::resource_deadlock_would_occur));
else
{
_M_device->lock();
_M_owns = true;
}
}
bool
try_lock()
{
if (!_M_device)
__throw_system_error(int(errc::operation_not_permitted));
else if (_M_owns)
__throw_system_error(int(errc::resource_deadlock_would_occur));
else
{
_M_owns = _M_device->try_lock();
return _M_owns;
}
}
template<typename _Clock, typename _Duration>
bool
try_lock_until(const chrono::time_point<_Clock, _Duration>& __atime)
{
if (!_M_device)
__throw_system_error(int(errc::operation_not_permitted));
else if (_M_owns)
__throw_system_error(int(errc::resource_deadlock_would_occur));
else
{
_M_owns = _M_device->try_lock_until(__atime);
return _M_owns;
}
}
template<typename _Rep, typename _Period>
bool
try_lock_for(const chrono::duration<_Rep, _Period>& __rtime)
{
if (!_M_device)
__throw_system_error(int(errc::operation_not_permitted));
else if (_M_owns)
__throw_system_error(int(errc::resource_deadlock_would_occur));
else
{
_M_owns = _M_device->try_lock_for(__rtime);
return _M_owns;
}
}
void
unlock()
{
if (!_M_owns)
__throw_system_error(int(errc::operation_not_permitted));
else if (_M_device)
{
_M_device->unlock();
_M_owns = false;
}
}
void
swap(unique_lock& __u)
{
std::swap(_M_device, __u._M_device);
std::swap(_M_owns, __u._M_owns);
}
mutex_type*
release()
{
mutex_type* __ret = _M_device;
_M_device = 0;
_M_owns = false;
return __ret;
}
bool
owns_lock() const
{ return _M_owns; }
explicit operator bool() const
{ return owns_lock(); }
mutex_type*
mutex() const
{ return _M_device; }
private:
mutex_type* _M_device;
bool _M_owns; // XXX use atomic_bool
};
template<typename _Mutex>
inline void
swap(unique_lock<_Mutex>& __x, unique_lock<_Mutex>& __y)
{ __x.swap(__y); }
template<int _Idx>
struct __unlock_impl
{
template<typename... _Lock>
static void
__do_unlock(tuple<_Lock&...>& __locks)
{
std::get<_Idx>(__locks).unlock();
__unlock_impl<_Idx - 1>::__do_unlock(__locks);
}
};
template<>
struct __unlock_impl<-1>
{
template<typename... _Lock>
static void
__do_unlock(tuple<_Lock&...>&)
{ }
};
template<typename _Lock>
unique_lock<_Lock>
__try_to_lock(_Lock& __l)
{ return unique_lock<_Lock>(__l, try_to_lock); }
template<int _Idx, bool _Continue = true>
struct __try_lock_impl
{
template<typename... _Lock>
static void
__do_try_lock(tuple<_Lock&...>& __locks, int& __idx)
{
__idx = _Idx;
auto __lock = __try_to_lock(std::get<_Idx>(__locks));
if (__lock.owns_lock())
{
__try_lock_impl<_Idx + 1, _Idx + 2 < sizeof...(_Lock)>::
__do_try_lock(__locks, __idx);
if (__idx == -1)
__lock.release();
}
}
};
template<int _Idx>
struct __try_lock_impl<_Idx, false>
{
template<typename... _Lock>
static void
__do_try_lock(tuple<_Lock&...>& __locks, int& __idx)
{
__idx = _Idx;
auto __lock = __try_to_lock(std::get<_Idx>(__locks));
if (__lock.owns_lock())
{
__idx = -1;
__lock.release();
}
}
};
/** @brief Generic try_lock.
* @param __l1 Meets Mutex requirements (try_lock() may throw).
* @param __l2 Meets Mutex requirements (try_lock() may throw).
* @param __l3 Meets Mutex requirements (try_lock() may throw).
* @return Returns -1 if all try_lock() calls return true. Otherwise returns
* a 0-based index corresponding to the argument that returned false.
* @post Either all arguments are locked, or none will be.
*
* Sequentially calls try_lock() on each argument.
*/
template<typename _Lock1, typename _Lock2, typename... _Lock3>
int
try_lock(_Lock1& __l1, _Lock2& __l2, _Lock3&... __l3)
{
int __idx;
auto __locks = std::tie(__l1, __l2, __l3...);
__try
{ __try_lock_impl<0>::__do_try_lock(__locks, __idx); }
__catch(...)
{ }
return __idx;
}
/** @brief Generic lock.
* @param __l1 Meets Mutex requirements (try_lock() may throw).
* @param __l2 Meets Mutex requirements (try_lock() may throw).
* @param __l3 Meets Mutex requirements (try_lock() may throw).
* @throw An exception thrown by an argument's lock() or try_lock() member.
* @post All arguments are locked.
*
* All arguments are locked via a sequence of calls to lock(), try_lock()
* and unlock(). If the call exits via an exception any locks that were
* obtained will be released.
*/
template<typename _L1, typename _L2, typename ..._L3>
void
lock(_L1& __l1, _L2& __l2, _L3&... __l3)
{
while (true)
{
unique_lock<_L1> __first(__l1);
int __idx;
auto __locks = std::tie(__l2, __l3...);
__try_lock_impl<0, sizeof...(_L3)>::__do_try_lock(__locks, __idx);
if (__idx == -1)
{
__first.release();
return;
}
}
}
/// once_flag
struct once_flag
{
private:
typedef __gthread_once_t __native_type;
__native_type _M_once;
public:
constexpr once_flag() : _M_once(__GTHREAD_ONCE_INIT) { }
once_flag(const once_flag&) = delete;
once_flag& operator=(const once_flag&) = delete;
template<typename _Callable, typename... _Args>
friend void
call_once(once_flag& __once, _Callable&& __f, _Args&&... __args);
};
#ifdef _GLIBCXX_HAVE_TLS
extern __thread void* __once_callable;
extern __thread void (*__once_call)();
template<typename _Callable>
inline void
__once_call_impl()
{
(*(_Callable*)__once_callable)();
}
#else
extern function<void()> __once_functor;
extern void
__set_once_functor_lock_ptr(unique_lock<mutex>*);
extern mutex&
__get_once_mutex();
#endif
extern "C" void __once_proxy();
/// call_once
template<typename _Callable, typename... _Args>
void
call_once(once_flag& __once, _Callable&& __f, _Args&&... __args)
{
#ifdef _GLIBCXX_HAVE_TLS
auto __bound_functor = std::bind<void>(std::forward<_Callable>(__f),
std::forward<_Args>(__args)...);
__once_callable = &__bound_functor;
__once_call = &__once_call_impl<decltype(__bound_functor)>;
#else
unique_lock<mutex> __functor_lock(__get_once_mutex());
__once_functor = std::bind<void>(std::forward<_Callable>(__f),
std::forward<_Args>(__args)...);
__set_once_functor_lock_ptr(&__functor_lock);
#endif
int __e = __gthread_once(&(__once._M_once), &__once_proxy);
#ifndef _GLIBCXX_HAVE_TLS
if (__functor_lock)
__set_once_functor_lock_ptr(0);
#endif
if (__e)
__throw_system_error(__e);
}
// @} group mutexes
_GLIBCXX_END_NAMESPACE_VERSION
} // namespace
#endif // _GLIBCXX_HAS_GTHREADS && _GLIBCXX_USE_C99_STDINT_TR1
#endif // __GXX_EXPERIMENTAL_CXX0X__
#endif // _GLIBCXX_MUTEX
|