1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
|
// Special functions -*- C++ -*-
// Copyright (C) 2006, 2007, 2008, 2009, 2010
// Free Software Foundation, Inc.
//
// This file is part of the GNU ISO C++ Library. This library is free
// software; you can redistribute it and/or modify it under the
// terms of the GNU General Public License as published by the
// Free Software Foundation; either version 3, or (at your option)
// any later version.
//
// This library is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU General Public License for more details.
//
// Under Section 7 of GPL version 3, you are granted additional
// permissions described in the GCC Runtime Library Exception, version
// 3.1, as published by the Free Software Foundation.
// You should have received a copy of the GNU General Public License and
// a copy of the GCC Runtime Library Exception along with this program;
// see the files COPYING3 and COPYING.RUNTIME respectively. If not, see
// <http://www.gnu.org/licenses/>.
/** @file tr1/exp_integral.tcc
* This is an internal header file, included by other library headers.
* Do not attempt to use it directly. @headername{tr1/cmath}
*/
//
// ISO C++ 14882 TR1: 5.2 Special functions
//
// Written by Edward Smith-Rowland based on:
//
// (1) Handbook of Mathematical Functions,
// Ed. by Milton Abramowitz and Irene A. Stegun,
// Dover Publications, New-York, Section 5, pp. 228-251.
// (2) The Gnu Scientific Library, http://www.gnu.org/software/gsl
// (3) Numerical Recipes in C, by W. H. Press, S. A. Teukolsky,
// W. T. Vetterling, B. P. Flannery, Cambridge University Press (1992),
// 2nd ed, pp. 222-225.
//
#ifndef _GLIBCXX_TR1_EXP_INTEGRAL_TCC
#define _GLIBCXX_TR1_EXP_INTEGRAL_TCC 1
#include "special_function_util.h"
namespace std _GLIBCXX_VISIBILITY(default)
{
namespace tr1
{
// [5.2] Special functions
// Implementation-space details.
namespace __detail
{
_GLIBCXX_BEGIN_NAMESPACE_VERSION
/**
* @brief Return the exponential integral @f$ E_1(x) @f$
* by series summation. This should be good
* for @f$ x < 1 @f$.
*
* The exponential integral is given by
* \f[
* E_1(x) = \int_{1}^{\infty} \frac{e^{-xt}}{t} dt
* \f]
*
* @param __x The argument of the exponential integral function.
* @return The exponential integral.
*/
template<typename _Tp>
_Tp
__expint_E1_series(const _Tp __x)
{
const _Tp __eps = std::numeric_limits<_Tp>::epsilon();
_Tp __term = _Tp(1);
_Tp __esum = _Tp(0);
_Tp __osum = _Tp(0);
const unsigned int __max_iter = 100;
for (unsigned int __i = 1; __i < __max_iter; ++__i)
{
__term *= - __x / __i;
if (std::abs(__term) < __eps)
break;
if (__term >= _Tp(0))
__esum += __term / __i;
else
__osum += __term / __i;
}
return - __esum - __osum
- __numeric_constants<_Tp>::__gamma_e() - std::log(__x);
}
/**
* @brief Return the exponential integral @f$ E_1(x) @f$
* by asymptotic expansion.
*
* The exponential integral is given by
* \f[
* E_1(x) = \int_{1}^\infty \frac{e^{-xt}}{t} dt
* \f]
*
* @param __x The argument of the exponential integral function.
* @return The exponential integral.
*/
template<typename _Tp>
_Tp
__expint_E1_asymp(const _Tp __x)
{
_Tp __term = _Tp(1);
_Tp __esum = _Tp(1);
_Tp __osum = _Tp(0);
const unsigned int __max_iter = 1000;
for (unsigned int __i = 1; __i < __max_iter; ++__i)
{
_Tp __prev = __term;
__term *= - __i / __x;
if (std::abs(__term) > std::abs(__prev))
break;
if (__term >= _Tp(0))
__esum += __term;
else
__osum += __term;
}
return std::exp(- __x) * (__esum + __osum) / __x;
}
/**
* @brief Return the exponential integral @f$ E_n(x) @f$
* by series summation.
*
* The exponential integral is given by
* \f[
* E_n(x) = \int_{1}^\infty \frac{e^{-xt}}{t^n} dt
* \f]
*
* @param __n The order of the exponential integral function.
* @param __x The argument of the exponential integral function.
* @return The exponential integral.
*/
template<typename _Tp>
_Tp
__expint_En_series(const unsigned int __n, const _Tp __x)
{
const unsigned int __max_iter = 100;
const _Tp __eps = std::numeric_limits<_Tp>::epsilon();
const int __nm1 = __n - 1;
_Tp __ans = (__nm1 != 0
? _Tp(1) / __nm1 : -std::log(__x)
- __numeric_constants<_Tp>::__gamma_e());
_Tp __fact = _Tp(1);
for (int __i = 1; __i <= __max_iter; ++__i)
{
__fact *= -__x / _Tp(__i);
_Tp __del;
if ( __i != __nm1 )
__del = -__fact / _Tp(__i - __nm1);
else
{
_Tp __psi = -__numeric_constants<_Tp>::gamma_e();
for (int __ii = 1; __ii <= __nm1; ++__ii)
__psi += _Tp(1) / _Tp(__ii);
__del = __fact * (__psi - std::log(__x));
}
__ans += __del;
if (std::abs(__del) < __eps * std::abs(__ans))
return __ans;
}
std::__throw_runtime_error(__N("Series summation failed "
"in __expint_En_series."));
}
/**
* @brief Return the exponential integral @f$ E_n(x) @f$
* by continued fractions.
*
* The exponential integral is given by
* \f[
* E_n(x) = \int_{1}^\infty \frac{e^{-xt}}{t^n} dt
* \f]
*
* @param __n The order of the exponential integral function.
* @param __x The argument of the exponential integral function.
* @return The exponential integral.
*/
template<typename _Tp>
_Tp
__expint_En_cont_frac(const unsigned int __n, const _Tp __x)
{
const unsigned int __max_iter = 100;
const _Tp __eps = std::numeric_limits<_Tp>::epsilon();
const _Tp __fp_min = std::numeric_limits<_Tp>::min();
const int __nm1 = __n - 1;
_Tp __b = __x + _Tp(__n);
_Tp __c = _Tp(1) / __fp_min;
_Tp __d = _Tp(1) / __b;
_Tp __h = __d;
for ( unsigned int __i = 1; __i <= __max_iter; ++__i )
{
_Tp __a = -_Tp(__i * (__nm1 + __i));
__b += _Tp(2);
__d = _Tp(1) / (__a * __d + __b);
__c = __b + __a / __c;
const _Tp __del = __c * __d;
__h *= __del;
if (std::abs(__del - _Tp(1)) < __eps)
{
const _Tp __ans = __h * std::exp(-__x);
return __ans;
}
}
std::__throw_runtime_error(__N("Continued fraction failed "
"in __expint_En_cont_frac."));
}
/**
* @brief Return the exponential integral @f$ E_n(x) @f$
* by recursion. Use upward recursion for @f$ x < n @f$
* and downward recursion (Miller's algorithm) otherwise.
*
* The exponential integral is given by
* \f[
* E_n(x) = \int_{1}^\infty \frac{e^{-xt}}{t^n} dt
* \f]
*
* @param __n The order of the exponential integral function.
* @param __x The argument of the exponential integral function.
* @return The exponential integral.
*/
template<typename _Tp>
_Tp
__expint_En_recursion(const unsigned int __n, const _Tp __x)
{
_Tp __En;
_Tp __E1 = __expint_E1(__x);
if (__x < _Tp(__n))
{
// Forward recursion is stable only for n < x.
__En = __E1;
for (unsigned int __j = 2; __j < __n; ++__j)
__En = (std::exp(-__x) - __x * __En) / _Tp(__j - 1);
}
else
{
// Backward recursion is stable only for n >= x.
__En = _Tp(1);
const int __N = __n + 20; // TODO: Check this starting number.
_Tp __save = _Tp(0);
for (int __j = __N; __j > 0; --__j)
{
__En = (std::exp(-__x) - __j * __En) / __x;
if (__j == __n)
__save = __En;
}
_Tp __norm = __En / __E1;
__En /= __norm;
}
return __En;
}
/**
* @brief Return the exponential integral @f$ Ei(x) @f$
* by series summation.
*
* The exponential integral is given by
* \f[
* Ei(x) = -\int_{-x}^\infty \frac{e^t}{t} dt
* \f]
*
* @param __x The argument of the exponential integral function.
* @return The exponential integral.
*/
template<typename _Tp>
_Tp
__expint_Ei_series(const _Tp __x)
{
_Tp __term = _Tp(1);
_Tp __sum = _Tp(0);
const unsigned int __max_iter = 1000;
for (unsigned int __i = 1; __i < __max_iter; ++__i)
{
__term *= __x / __i;
__sum += __term / __i;
if (__term < std::numeric_limits<_Tp>::epsilon() * __sum)
break;
}
return __numeric_constants<_Tp>::__gamma_e() + __sum + std::log(__x);
}
/**
* @brief Return the exponential integral @f$ Ei(x) @f$
* by asymptotic expansion.
*
* The exponential integral is given by
* \f[
* Ei(x) = -\int_{-x}^\infty \frac{e^t}{t} dt
* \f]
*
* @param __x The argument of the exponential integral function.
* @return The exponential integral.
*/
template<typename _Tp>
_Tp
__expint_Ei_asymp(const _Tp __x)
{
_Tp __term = _Tp(1);
_Tp __sum = _Tp(1);
const unsigned int __max_iter = 1000;
for (unsigned int __i = 1; __i < __max_iter; ++__i)
{
_Tp __prev = __term;
__term *= __i / __x;
if (__term < std::numeric_limits<_Tp>::epsilon())
break;
if (__term >= __prev)
break;
__sum += __term;
}
return std::exp(__x) * __sum / __x;
}
/**
* @brief Return the exponential integral @f$ Ei(x) @f$.
*
* The exponential integral is given by
* \f[
* Ei(x) = -\int_{-x}^\infty \frac{e^t}{t} dt
* \f]
*
* @param __x The argument of the exponential integral function.
* @return The exponential integral.
*/
template<typename _Tp>
_Tp
__expint_Ei(const _Tp __x)
{
if (__x < _Tp(0))
return -__expint_E1(-__x);
else if (__x < -std::log(std::numeric_limits<_Tp>::epsilon()))
return __expint_Ei_series(__x);
else
return __expint_Ei_asymp(__x);
}
/**
* @brief Return the exponential integral @f$ E_1(x) @f$.
*
* The exponential integral is given by
* \f[
* E_1(x) = \int_{1}^\infty \frac{e^{-xt}}{t} dt
* \f]
*
* @param __x The argument of the exponential integral function.
* @return The exponential integral.
*/
template<typename _Tp>
_Tp
__expint_E1(const _Tp __x)
{
if (__x < _Tp(0))
return -__expint_Ei(-__x);
else if (__x < _Tp(1))
return __expint_E1_series(__x);
else if (__x < _Tp(100)) // TODO: Find a good asymptotic switch point.
return __expint_En_cont_frac(1, __x);
else
return __expint_E1_asymp(__x);
}
/**
* @brief Return the exponential integral @f$ E_n(x) @f$
* for large argument.
*
* The exponential integral is given by
* \f[
* E_n(x) = \int_{1}^\infty \frac{e^{-xt}}{t^n} dt
* \f]
*
* This is something of an extension.
*
* @param __n The order of the exponential integral function.
* @param __x The argument of the exponential integral function.
* @return The exponential integral.
*/
template<typename _Tp>
_Tp
__expint_asymp(const unsigned int __n, const _Tp __x)
{
_Tp __term = _Tp(1);
_Tp __sum = _Tp(1);
for (unsigned int __i = 1; __i <= __n; ++__i)
{
_Tp __prev = __term;
__term *= -(__n - __i + 1) / __x;
if (std::abs(__term) > std::abs(__prev))
break;
__sum += __term;
}
return std::exp(-__x) * __sum / __x;
}
/**
* @brief Return the exponential integral @f$ E_n(x) @f$
* for large order.
*
* The exponential integral is given by
* \f[
* E_n(x) = \int_{1}^\infty \frac{e^{-xt}}{t^n} dt
* \f]
*
* This is something of an extension.
*
* @param __n The order of the exponential integral function.
* @param __x The argument of the exponential integral function.
* @return The exponential integral.
*/
template<typename _Tp>
_Tp
__expint_large_n(const unsigned int __n, const _Tp __x)
{
const _Tp __xpn = __x + __n;
const _Tp __xpn2 = __xpn * __xpn;
_Tp __term = _Tp(1);
_Tp __sum = _Tp(1);
for (unsigned int __i = 1; __i <= __n; ++__i)
{
_Tp __prev = __term;
__term *= (__n - 2 * (__i - 1) * __x) / __xpn2;
if (std::abs(__term) < std::numeric_limits<_Tp>::epsilon())
break;
__sum += __term;
}
return std::exp(-__x) * __sum / __xpn;
}
/**
* @brief Return the exponential integral @f$ E_n(x) @f$.
*
* The exponential integral is given by
* \f[
* E_n(x) = \int_{1}^\infty \frac{e^{-xt}}{t^n} dt
* \f]
* This is something of an extension.
*
* @param __n The order of the exponential integral function.
* @param __x The argument of the exponential integral function.
* @return The exponential integral.
*/
template<typename _Tp>
_Tp
__expint(const unsigned int __n, const _Tp __x)
{
// Return NaN on NaN input.
if (__isnan(__x))
return std::numeric_limits<_Tp>::quiet_NaN();
else if (__n <= 1 && __x == _Tp(0))
return std::numeric_limits<_Tp>::infinity();
else
{
_Tp __E0 = std::exp(__x) / __x;
if (__n == 0)
return __E0;
_Tp __E1 = __expint_E1(__x);
if (__n == 1)
return __E1;
if (__x == _Tp(0))
return _Tp(1) / static_cast<_Tp>(__n - 1);
_Tp __En = __expint_En_recursion(__n, __x);
return __En;
}
}
/**
* @brief Return the exponential integral @f$ Ei(x) @f$.
*
* The exponential integral is given by
* \f[
* Ei(x) = -\int_{-x}^\infty \frac{e^t}{t} dt
* \f]
*
* @param __x The argument of the exponential integral function.
* @return The exponential integral.
*/
template<typename _Tp>
inline _Tp
__expint(const _Tp __x)
{
if (__isnan(__x))
return std::numeric_limits<_Tp>::quiet_NaN();
else
return __expint_Ei(__x);
}
_GLIBCXX_END_NAMESPACE_VERSION
} // namespace std::tr1::__detail
}
}
#endif // _GLIBCXX_TR1_EXP_INTEGRAL_TCC
|