summaryrefslogtreecommitdiff
path: root/gcc/testsuite/ada/acats/tests/cxg/cxg2008.a
diff options
context:
space:
mode:
authorupstream source tree <ports@midipix.org>2015-03-15 20:14:05 -0400
committerupstream source tree <ports@midipix.org>2015-03-15 20:14:05 -0400
commit554fd8c5195424bdbcabf5de30fdc183aba391bd (patch)
tree976dc5ab7fddf506dadce60ae936f43f58787092 /gcc/testsuite/ada/acats/tests/cxg/cxg2008.a
downloadcbb-gcc-4.6.4-554fd8c5195424bdbcabf5de30fdc183aba391bd.tar.bz2
cbb-gcc-4.6.4-554fd8c5195424bdbcabf5de30fdc183aba391bd.tar.xz
obtained gcc-4.6.4.tar.bz2 from upstream website;upstream
verified gcc-4.6.4.tar.bz2.sig; imported gcc-4.6.4 source tree from verified upstream tarball. downloading a git-generated archive based on the 'upstream' tag should provide you with a source tree that is binary identical to the one extracted from the above tarball. if you have obtained the source via the command 'git clone', however, do note that line-endings of files in your working directory might differ from line-endings of the respective files in the upstream repository.
Diffstat (limited to 'gcc/testsuite/ada/acats/tests/cxg/cxg2008.a')
-rw-r--r--gcc/testsuite/ada/acats/tests/cxg/cxg2008.a948
1 files changed, 948 insertions, 0 deletions
diff --git a/gcc/testsuite/ada/acats/tests/cxg/cxg2008.a b/gcc/testsuite/ada/acats/tests/cxg/cxg2008.a
new file mode 100644
index 000000000..58cf367f6
--- /dev/null
+++ b/gcc/testsuite/ada/acats/tests/cxg/cxg2008.a
@@ -0,0 +1,948 @@
+-- CXG2008.A
+--
+-- Grant of Unlimited Rights
+--
+-- Under contracts F33600-87-D-0337, F33600-84-D-0280, MDA903-79-C-0687,
+-- F08630-91-C-0015, and DCA100-97-D-0025, the U.S. Government obtained
+-- unlimited rights in the software and documentation contained herein.
+-- Unlimited rights are defined in DFAR 252.227-7013(a)(19). By making
+-- this public release, the Government intends to confer upon all
+-- recipients unlimited rights equal to those held by the Government.
+-- These rights include rights to use, duplicate, release or disclose the
+-- released technical data and computer software in whole or in part, in
+-- any manner and for any purpose whatsoever, and to have or permit others
+-- to do so.
+--
+-- DISCLAIMER
+--
+-- ALL MATERIALS OR INFORMATION HEREIN RELEASED, MADE AVAILABLE OR
+-- DISCLOSED ARE AS IS. THE GOVERNMENT MAKES NO EXPRESS OR IMPLIED
+-- WARRANTY AS TO ANY MATTER WHATSOEVER, INCLUDING THE CONDITIONS OF THE
+-- SOFTWARE, DOCUMENTATION OR OTHER INFORMATION RELEASED, MADE AVAILABLE
+-- OR DISCLOSED, OR THE OWNERSHIP, MERCHANTABILITY, OR FITNESS FOR A
+-- PARTICULAR PURPOSE OF SAID MATERIAL.
+--*
+--
+-- OBJECTIVE:
+-- Check that the complex multiplication and division
+-- operations return results that are within the allowed
+-- error bound.
+-- Check that all the required pure Numerics packages are pure.
+--
+-- TEST DESCRIPTION:
+-- This test contains three test packages that are almost
+-- identical. The first two packages differ only in the
+-- floating point type that is being tested. The first
+-- and third package differ only in whether the generic
+-- complex types package or the pre-instantiated
+-- package is used.
+-- The test package is not generic so that the arguments
+-- and expected results for some of the test values
+-- can be expressed as universal real instead of being
+-- computed at runtime.
+--
+-- SPECIAL REQUIREMENTS
+-- The Strict Mode for the numerical accuracy must be
+-- selected. The method by which this mode is selected
+-- is implementation dependent.
+--
+-- APPLICABILITY CRITERIA:
+-- This test applies only to implementations supporting the
+-- Numerics Annex.
+-- This test only applies to the Strict Mode for numerical
+-- accuracy.
+--
+--
+-- CHANGE HISTORY:
+-- 24 FEB 96 SAIC Initial release for 2.1
+-- 03 JUN 98 EDS Correct the test program's incorrect assumption
+-- that Constraint_Error must be raised by complex
+-- division by zero, which is contrary to the
+-- allowance given by the Ada 95 standard G.1.1(40).
+-- 13 MAR 01 RLB Replaced commented out Pure check on non-generic
+-- packages, as required by Defect Report
+-- 8652/0020 and as reflected in Technical
+-- Corrigendum 1.
+--!
+
+------------------------------------------------------------------------------
+-- Check that the required pure packages are pure by withing them from a
+-- pure package. The non-generic versions of those packages are required to
+-- be pure by Defect Report 8652/0020, Technical Corrigendum 1 [A.5.1(9/1) and
+-- G.1.1(25/1)].
+with Ada.Numerics.Generic_Elementary_Functions;
+with Ada.Numerics.Elementary_Functions;
+with Ada.Numerics.Generic_Complex_Types;
+with Ada.Numerics.Complex_Types;
+with Ada.Numerics.Generic_Complex_Elementary_Functions;
+with Ada.Numerics.Complex_Elementary_Functions;
+package CXG2008_0 is
+ pragma Pure;
+ -- CRC Standard Mathematical Tables; 23rd Edition; pg 738
+ Sqrt2 : constant :=
+ 1.41421_35623_73095_04880_16887_24209_69807_85696_71875_37695;
+ Sqrt3 : constant :=
+ 1.73205_08075_68877_29352_74463_41505_87236_69428_05253_81039;
+end CXG2008_0;
+
+------------------------------------------------------------------------------
+
+with System;
+with Report;
+with Ada.Numerics.Generic_Complex_Types;
+with Ada.Numerics.Complex_Types;
+with CXG2008_0; use CXG2008_0;
+procedure CXG2008 is
+ Verbose : constant Boolean := False;
+
+ package Float_Check is
+ subtype Real is Float;
+ procedure Do_Test;
+ end Float_Check;
+
+ package body Float_Check is
+ package Complex_Types is new
+ Ada.Numerics.Generic_Complex_Types (Real);
+ use Complex_Types;
+
+ -- keep track if an accuracy failure has occurred so the test
+ -- can be short-circuited to avoid thousands of error messages.
+ Failure_Detected : Boolean := False;
+
+ Mult_MBE : constant Real := 5.0;
+ Divide_MBE : constant Real := 13.0;
+
+
+ procedure Check (Actual, Expected : Complex;
+ Test_Name : String;
+ MBE : Real) is
+ Rel_Error : Real;
+ Abs_Error : Real;
+ Max_Error : Real;
+ begin
+ -- In the case where the expected result is very small or 0
+ -- we compute the maximum error as a multiple of Model_Epsilon instead
+ -- of Model_Epsilon and Expected.
+ Rel_Error := MBE * abs Expected.Re * Real'Model_Epsilon;
+ Abs_Error := MBE * Real'Model_Epsilon;
+ if Rel_Error > Abs_Error then
+ Max_Error := Rel_Error;
+ else
+ Max_Error := Abs_Error;
+ end if;
+
+ if abs (Actual.Re - Expected.Re) > Max_Error then
+ Failure_Detected := True;
+ Report.Failed (Test_Name &
+ " actual.re: " & Real'Image (Actual.Re) &
+ " expected.re: " & Real'Image (Expected.Re) &
+ " difference.re " &
+ Real'Image (Actual.Re - Expected.Re) &
+ " mre:" & Real'Image (Max_Error) );
+ elsif Verbose then
+ if Actual = Expected then
+ Report.Comment (Test_Name & " exact result for real part");
+ else
+ Report.Comment (Test_Name & " passed for real part");
+ end if;
+ end if;
+
+ Rel_Error := MBE * abs Expected.Im * Real'Model_Epsilon;
+ if Rel_Error > Abs_Error then
+ Max_Error := Rel_Error;
+ else
+ Max_Error := Abs_Error;
+ end if;
+ if abs (Actual.Im - Expected.Im) > Max_Error then
+ Failure_Detected := True;
+ Report.Failed (Test_Name &
+ " actual.im: " & Real'Image (Actual.Im) &
+ " expected.im: " & Real'Image (Expected.Im) &
+ " difference.im " &
+ Real'Image (Actual.Im - Expected.Im) &
+ " mre:" & Real'Image (Max_Error) );
+ elsif Verbose then
+ if Actual = Expected then
+ Report.Comment (Test_Name & " exact result for imaginary part");
+ else
+ Report.Comment (Test_Name & " passed for imaginary part");
+ end if;
+ end if;
+ end Check;
+
+
+ procedure Special_Values is
+ begin
+
+ --- test 1 ---
+ declare
+ T : constant := (Real'Machine_EMax - 1) / 2;
+ Big : constant := (1.0 * Real'Machine_Radix) ** (2 * T);
+ Expected : Complex := (0.0, 0.0);
+ X : Complex := (0.0, 0.0);
+ Y : Complex := (Big, Big);
+ Z : Complex;
+ begin
+ Z := X * Y;
+ Check (Z, Expected, "test 1a -- (0+0i) * (big+big*i)",
+ Mult_MBE);
+ Z := Y * X;
+ Check (Z, Expected, "test 1b -- (big+big*i) * (0+0i)",
+ Mult_MBE);
+ exception
+ when Constraint_Error =>
+ Report.Failed ("Constraint_Error raised in test 1");
+ when others =>
+ Report.Failed ("exception in test 1");
+ end;
+
+ --- test 2 ---
+ declare
+ T : constant := Real'Model_EMin + 1;
+ Tiny : constant := (1.0 * Real'Machine_Radix) ** T;
+ U : Complex := (Tiny, Tiny);
+ X : Complex := (0.0, 0.0);
+ Expected : Complex := (0.0, 0.0);
+ Z : Complex;
+ begin
+ Z := U * X;
+ Check (Z, Expected, "test 2 -- (tiny,tiny) * (0,0)",
+ Mult_MBE);
+ exception
+ when Constraint_Error =>
+ Report.Failed ("Constraint_Error raised in test 2");
+ when others =>
+ Report.Failed ("exception in test 2");
+ end;
+
+ --- test 3 ---
+ declare
+ T : constant := (Real'Machine_EMax - 1) / 2;
+ Big : constant := (1.0 * Real'Machine_Radix) ** (2 * T);
+ B : Complex := (Big, Big);
+ X : Complex := (0.0, 0.0);
+ Z : Complex;
+ begin
+ if Real'Machine_Overflows then
+ Z := B / X;
+ Report.Failed ("test 3 - Constraint_Error not raised");
+ Check (Z, Z, "not executed - optimizer thwarting", 0.0);
+ end if;
+ exception
+ when Constraint_Error => null; -- expected
+ when others =>
+ Report.Failed ("exception in test 3");
+ end;
+
+ --- test 4 ---
+ declare
+ T : constant := Real'Model_EMin + 1;
+ Tiny : constant := (1.0 * Real'Machine_Radix) ** T;
+ U : Complex := (Tiny, Tiny);
+ X : Complex := (0.0, 0.0);
+ Z : Complex;
+ begin
+ if Real'Machine_Overflows then
+ Z := U / X;
+ Report.Failed ("test 4 - Constraint_Error not raised");
+ Check (Z, Z, "not executed - optimizer thwarting", 0.0);
+ end if;
+ exception
+ when Constraint_Error => null; -- expected
+ when others =>
+ Report.Failed ("exception in test 4");
+ end;
+
+
+ --- test 5 ---
+ declare
+ X : Complex := (Sqrt2, Sqrt2);
+ Z : Complex;
+ Expected : constant Complex := (0.0, 4.0);
+ begin
+ Z := X * X;
+ Check (Z, Expected, "test 5 -- (sqrt2,sqrt2) * (sqrt2,sqrt2)",
+ Mult_MBE);
+ exception
+ when Constraint_Error =>
+ Report.Failed ("Constraint_Error raised in test 5");
+ when others =>
+ Report.Failed ("exception in test 5");
+ end;
+
+ --- test 6 ---
+ declare
+ X : Complex := Sqrt3 - Sqrt3 * i;
+ Z : Complex;
+ Expected : constant Complex := (0.0, -6.0);
+ begin
+ Z := X * X;
+ Check (Z, Expected, "test 6 -- (sqrt3,-sqrt3) * (sqrt3,-sqrt3)",
+ Mult_MBE);
+ exception
+ when Constraint_Error =>
+ Report.Failed ("Constraint_Error raised in test 6");
+ when others =>
+ Report.Failed ("exception in test 6");
+ end;
+
+ --- test 7 ---
+ declare
+ X : Complex := Sqrt2 + Sqrt2 * i;
+ Y : Complex := Sqrt2 - Sqrt2 * i;
+ Z : Complex;
+ Expected : constant Complex := 0.0 + i;
+ begin
+ Z := X / Y;
+ Check (Z, Expected, "test 7 -- (sqrt2,sqrt2) / (sqrt2,-sqrt2)",
+ Divide_MBE);
+ exception
+ when Constraint_Error =>
+ Report.Failed ("Constraint_Error raised in test 7");
+ when others =>
+ Report.Failed ("exception in test 7");
+ end;
+ end Special_Values;
+
+
+ procedure Do_Mult_Div (X, Y : Complex) is
+ Z : Complex;
+ Args : constant String :=
+ "X=(" & Real'Image (X.Re) & "," & Real'Image (X.Im) & ") " &
+ "Y=(" & Real'Image (Y.Re) & "," & Real'Image (Y.Im) & ") " ;
+ begin
+ Z := (X * X) / X;
+ Check (Z, X, "X*X/X " & Args, Mult_MBE + Divide_MBE);
+ Z := (X * Y) / X;
+ Check (Z, Y, "X*Y/X " & Args, Mult_MBE + Divide_MBE);
+ Z := (X * Y) / Y;
+ Check (Z, X, "X*Y/Y " & Args, Mult_MBE + Divide_MBE);
+ exception
+ when Constraint_Error =>
+ Report.Failed ("Constraint_Error in Do_Mult_Div for " & Args);
+ when others =>
+ Report.Failed ("exception in Do_Mult_Div for " & Args);
+ end Do_Mult_Div;
+
+ -- select complex values X and Y where the real and imaginary
+ -- parts are selected from the ranges (1/radix..1) and
+ -- (1..radix). This translates into quite a few combinations.
+ procedure Mult_Div_Check is
+ Samples : constant := 17;
+ Radix : constant Real := Real(Real'Machine_Radix);
+ Inv_Radix : constant Real := 1.0 / Real(Real'Machine_Radix);
+ Low_Sample : Real; -- (1/radix .. 1)
+ High_Sample : Real; -- (1 .. radix)
+ Sample : array (1..2) of Real;
+ X, Y : Complex;
+ begin
+ for I in 1 .. Samples loop
+ Low_Sample := (1.0 - Inv_Radix) / Real (Samples) * Real (I) +
+ Inv_Radix;
+ Sample (1) := Low_Sample;
+ for J in 1 .. Samples loop
+ High_Sample := (Radix - 1.0) / Real (Samples) * Real (I) +
+ Radix;
+ Sample (2) := High_Sample;
+ for K in 1 .. 2 loop
+ for L in 1 .. 2 loop
+ X := Complex'(Sample (K), Sample (L));
+ Y := Complex'(Sample (L), Sample (K));
+ Do_Mult_Div (X, Y);
+ if Failure_Detected then
+ return; -- minimize flood of error messages
+ end if;
+ end loop;
+ end loop;
+ end loop; -- J
+ end loop; -- I
+ end Mult_Div_Check;
+
+
+ procedure Do_Test is
+ begin
+ Special_Values;
+ Mult_Div_Check;
+ end Do_Test;
+ end Float_Check;
+
+ -----------------------------------------------------------------------
+ -----------------------------------------------------------------------
+ -- check the floating point type with the most digits
+
+ package A_Long_Float_Check is
+ type A_Long_Float is digits System.Max_Digits;
+ subtype Real is A_Long_Float;
+ procedure Do_Test;
+ end A_Long_Float_Check;
+
+ package body A_Long_Float_Check is
+
+ package Complex_Types is new
+ Ada.Numerics.Generic_Complex_Types (Real);
+ use Complex_Types;
+
+ -- keep track if an accuracy failure has occurred so the test
+ -- can be short-circuited to avoid thousands of error messages.
+ Failure_Detected : Boolean := False;
+
+ Mult_MBE : constant Real := 5.0;
+ Divide_MBE : constant Real := 13.0;
+
+
+ procedure Check (Actual, Expected : Complex;
+ Test_Name : String;
+ MBE : Real) is
+ Rel_Error : Real;
+ Abs_Error : Real;
+ Max_Error : Real;
+ begin
+ -- In the case where the expected result is very small or 0
+ -- we compute the maximum error as a multiple of Model_Epsilon instead
+ -- of Model_Epsilon and Expected.
+ Rel_Error := MBE * abs Expected.Re * Real'Model_Epsilon;
+ Abs_Error := MBE * Real'Model_Epsilon;
+ if Rel_Error > Abs_Error then
+ Max_Error := Rel_Error;
+ else
+ Max_Error := Abs_Error;
+ end if;
+
+ if abs (Actual.Re - Expected.Re) > Max_Error then
+ Failure_Detected := True;
+ Report.Failed (Test_Name &
+ " actual.re: " & Real'Image (Actual.Re) &
+ " expected.re: " & Real'Image (Expected.Re) &
+ " difference.re " &
+ Real'Image (Actual.Re - Expected.Re) &
+ " mre:" & Real'Image (Max_Error) );
+ elsif Verbose then
+ if Actual = Expected then
+ Report.Comment (Test_Name & " exact result for real part");
+ else
+ Report.Comment (Test_Name & " passed for real part");
+ end if;
+ end if;
+
+ Rel_Error := MBE * abs Expected.Im * Real'Model_Epsilon;
+ if Rel_Error > Abs_Error then
+ Max_Error := Rel_Error;
+ else
+ Max_Error := Abs_Error;
+ end if;
+ if abs (Actual.Im - Expected.Im) > Max_Error then
+ Failure_Detected := True;
+ Report.Failed (Test_Name &
+ " actual.im: " & Real'Image (Actual.Im) &
+ " expected.im: " & Real'Image (Expected.Im) &
+ " difference.im " &
+ Real'Image (Actual.Im - Expected.Im) &
+ " mre:" & Real'Image (Max_Error) );
+ elsif Verbose then
+ if Actual = Expected then
+ Report.Comment (Test_Name & " exact result for imaginary part");
+ else
+ Report.Comment (Test_Name & " passed for imaginary part");
+ end if;
+ end if;
+ end Check;
+
+
+ procedure Special_Values is
+ begin
+
+ --- test 1 ---
+ declare
+ T : constant := (Real'Machine_EMax - 1) / 2;
+ Big : constant := (1.0 * Real'Machine_Radix) ** (2 * T);
+ Expected : Complex := (0.0, 0.0);
+ X : Complex := (0.0, 0.0);
+ Y : Complex := (Big, Big);
+ Z : Complex;
+ begin
+ Z := X * Y;
+ Check (Z, Expected, "test 1a -- (0+0i) * (big+big*i)",
+ Mult_MBE);
+ Z := Y * X;
+ Check (Z, Expected, "test 1b -- (big+big*i) * (0+0i)",
+ Mult_MBE);
+ exception
+ when Constraint_Error =>
+ Report.Failed ("Constraint_Error raised in test 1");
+ when others =>
+ Report.Failed ("exception in test 1");
+ end;
+
+ --- test 2 ---
+ declare
+ T : constant := Real'Model_EMin + 1;
+ Tiny : constant := (1.0 * Real'Machine_Radix) ** T;
+ U : Complex := (Tiny, Tiny);
+ X : Complex := (0.0, 0.0);
+ Expected : Complex := (0.0, 0.0);
+ Z : Complex;
+ begin
+ Z := U * X;
+ Check (Z, Expected, "test 2 -- (tiny,tiny) * (0,0)",
+ Mult_MBE);
+ exception
+ when Constraint_Error =>
+ Report.Failed ("Constraint_Error raised in test 2");
+ when others =>
+ Report.Failed ("exception in test 2");
+ end;
+
+ --- test 3 ---
+ declare
+ T : constant := (Real'Machine_EMax - 1) / 2;
+ Big : constant := (1.0 * Real'Machine_Radix) ** (2 * T);
+ B : Complex := (Big, Big);
+ X : Complex := (0.0, 0.0);
+ Z : Complex;
+ begin
+ if Real'Machine_Overflows then
+ Z := B / X;
+ Report.Failed ("test 3 - Constraint_Error not raised");
+ Check (Z, Z, "not executed - optimizer thwarting", 0.0);
+ end if;
+ exception
+ when Constraint_Error => null; -- expected
+ when others =>
+ Report.Failed ("exception in test 3");
+ end;
+
+ --- test 4 ---
+ declare
+ T : constant := Real'Model_EMin + 1;
+ Tiny : constant := (1.0 * Real'Machine_Radix) ** T;
+ U : Complex := (Tiny, Tiny);
+ X : Complex := (0.0, 0.0);
+ Z : Complex;
+ begin
+ if Real'Machine_Overflows then
+ Z := U / X;
+ Report.Failed ("test 4 - Constraint_Error not raised");
+ Check (Z, Z, "not executed - optimizer thwarting", 0.0);
+ end if;
+ exception
+ when Constraint_Error => null; -- expected
+ when others =>
+ Report.Failed ("exception in test 4");
+ end;
+
+
+ --- test 5 ---
+ declare
+ X : Complex := (Sqrt2, Sqrt2);
+ Z : Complex;
+ Expected : constant Complex := (0.0, 4.0);
+ begin
+ Z := X * X;
+ Check (Z, Expected, "test 5 -- (sqrt2,sqrt2) * (sqrt2,sqrt2)",
+ Mult_MBE);
+ exception
+ when Constraint_Error =>
+ Report.Failed ("Constraint_Error raised in test 5");
+ when others =>
+ Report.Failed ("exception in test 5");
+ end;
+
+ --- test 6 ---
+ declare
+ X : Complex := Sqrt3 - Sqrt3 * i;
+ Z : Complex;
+ Expected : constant Complex := (0.0, -6.0);
+ begin
+ Z := X * X;
+ Check (Z, Expected, "test 6 -- (sqrt3,-sqrt3) * (sqrt3,-sqrt3)",
+ Mult_MBE);
+ exception
+ when Constraint_Error =>
+ Report.Failed ("Constraint_Error raised in test 6");
+ when others =>
+ Report.Failed ("exception in test 6");
+ end;
+
+ --- test 7 ---
+ declare
+ X : Complex := Sqrt2 + Sqrt2 * i;
+ Y : Complex := Sqrt2 - Sqrt2 * i;
+ Z : Complex;
+ Expected : constant Complex := 0.0 + i;
+ begin
+ Z := X / Y;
+ Check (Z, Expected, "test 7 -- (sqrt2,sqrt2) / (sqrt2,-sqrt2)",
+ Divide_MBE);
+ exception
+ when Constraint_Error =>
+ Report.Failed ("Constraint_Error raised in test 7");
+ when others =>
+ Report.Failed ("exception in test 7");
+ end;
+ end Special_Values;
+
+
+ procedure Do_Mult_Div (X, Y : Complex) is
+ Z : Complex;
+ Args : constant String :=
+ "X=(" & Real'Image (X.Re) & "," & Real'Image (X.Im) & ") " &
+ "Y=(" & Real'Image (Y.Re) & "," & Real'Image (Y.Im) & ") " ;
+ begin
+ Z := (X * X) / X;
+ Check (Z, X, "X*X/X " & Args, Mult_MBE + Divide_MBE);
+ Z := (X * Y) / X;
+ Check (Z, Y, "X*Y/X " & Args, Mult_MBE + Divide_MBE);
+ Z := (X * Y) / Y;
+ Check (Z, X, "X*Y/Y " & Args, Mult_MBE + Divide_MBE);
+ exception
+ when Constraint_Error =>
+ Report.Failed ("Constraint_Error in Do_Mult_Div for " & Args);
+ when others =>
+ Report.Failed ("exception in Do_Mult_Div for " & Args);
+ end Do_Mult_Div;
+
+ -- select complex values X and Y where the real and imaginary
+ -- parts are selected from the ranges (1/radix..1) and
+ -- (1..radix). This translates into quite a few combinations.
+ procedure Mult_Div_Check is
+ Samples : constant := 17;
+ Radix : constant Real := Real(Real'Machine_Radix);
+ Inv_Radix : constant Real := 1.0 / Real(Real'Machine_Radix);
+ Low_Sample : Real; -- (1/radix .. 1)
+ High_Sample : Real; -- (1 .. radix)
+ Sample : array (1..2) of Real;
+ X, Y : Complex;
+ begin
+ for I in 1 .. Samples loop
+ Low_Sample := (1.0 - Inv_Radix) / Real (Samples) * Real (I) +
+ Inv_Radix;
+ Sample (1) := Low_Sample;
+ for J in 1 .. Samples loop
+ High_Sample := (Radix - 1.0) / Real (Samples) * Real (I) +
+ Radix;
+ Sample (2) := High_Sample;
+ for K in 1 .. 2 loop
+ for L in 1 .. 2 loop
+ X := Complex'(Sample (K), Sample (L));
+ Y := Complex'(Sample (L), Sample (K));
+ Do_Mult_Div (X, Y);
+ if Failure_Detected then
+ return; -- minimize flood of error messages
+ end if;
+ end loop;
+ end loop;
+ end loop; -- J
+ end loop; -- I
+ end Mult_Div_Check;
+
+
+ procedure Do_Test is
+ begin
+ Special_Values;
+ Mult_Div_Check;
+ end Do_Test;
+ end A_Long_Float_Check;
+
+ -----------------------------------------------------------------------
+ -----------------------------------------------------------------------
+
+ package Non_Generic_Check is
+ subtype Real is Float;
+ procedure Do_Test;
+ end Non_Generic_Check;
+
+ package body Non_Generic_Check is
+
+ use Ada.Numerics.Complex_Types;
+
+ -- keep track if an accuracy failure has occurred so the test
+ -- can be short-circuited to avoid thousands of error messages.
+ Failure_Detected : Boolean := False;
+
+ Mult_MBE : constant Real := 5.0;
+ Divide_MBE : constant Real := 13.0;
+
+
+ procedure Check (Actual, Expected : Complex;
+ Test_Name : String;
+ MBE : Real) is
+ Rel_Error : Real;
+ Abs_Error : Real;
+ Max_Error : Real;
+ begin
+ -- In the case where the expected result is very small or 0
+ -- we compute the maximum error as a multiple of Model_Epsilon instead
+ -- of Model_Epsilon and Expected.
+ Rel_Error := MBE * abs Expected.Re * Real'Model_Epsilon;
+ Abs_Error := MBE * Real'Model_Epsilon;
+ if Rel_Error > Abs_Error then
+ Max_Error := Rel_Error;
+ else
+ Max_Error := Abs_Error;
+ end if;
+
+ if abs (Actual.Re - Expected.Re) > Max_Error then
+ Failure_Detected := True;
+ Report.Failed (Test_Name &
+ " actual.re: " & Real'Image (Actual.Re) &
+ " expected.re: " & Real'Image (Expected.Re) &
+ " difference.re " &
+ Real'Image (Actual.Re - Expected.Re) &
+ " mre:" & Real'Image (Max_Error) );
+ elsif Verbose then
+ if Actual = Expected then
+ Report.Comment (Test_Name & " exact result for real part");
+ else
+ Report.Comment (Test_Name & " passed for real part");
+ end if;
+ end if;
+
+ Rel_Error := MBE * abs Expected.Im * Real'Model_Epsilon;
+ if Rel_Error > Abs_Error then
+ Max_Error := Rel_Error;
+ else
+ Max_Error := Abs_Error;
+ end if;
+ if abs (Actual.Im - Expected.Im) > Max_Error then
+ Failure_Detected := True;
+ Report.Failed (Test_Name &
+ " actual.im: " & Real'Image (Actual.Im) &
+ " expected.im: " & Real'Image (Expected.Im) &
+ " difference.im " &
+ Real'Image (Actual.Im - Expected.Im) &
+ " mre:" & Real'Image (Max_Error) );
+ elsif Verbose then
+ if Actual = Expected then
+ Report.Comment (Test_Name & " exact result for imaginary part");
+ else
+ Report.Comment (Test_Name & " passed for imaginary part");
+ end if;
+ end if;
+ end Check;
+
+
+ procedure Special_Values is
+ begin
+
+ --- test 1 ---
+ declare
+ T : constant := (Real'Machine_EMax - 1) / 2;
+ Big : constant := (1.0 * Real'Machine_Radix) ** (2 * T);
+ Expected : Complex := (0.0, 0.0);
+ X : Complex := (0.0, 0.0);
+ Y : Complex := (Big, Big);
+ Z : Complex;
+ begin
+ Z := X * Y;
+ Check (Z, Expected, "test 1a -- (0+0i) * (big+big*i)",
+ Mult_MBE);
+ Z := Y * X;
+ Check (Z, Expected, "test 1b -- (big+big*i) * (0+0i)",
+ Mult_MBE);
+ exception
+ when Constraint_Error =>
+ Report.Failed ("Constraint_Error raised in test 1");
+ when others =>
+ Report.Failed ("exception in test 1");
+ end;
+
+ --- test 2 ---
+ declare
+ T : constant := Real'Model_EMin + 1;
+ Tiny : constant := (1.0 * Real'Machine_Radix) ** T;
+ U : Complex := (Tiny, Tiny);
+ X : Complex := (0.0, 0.0);
+ Expected : Complex := (0.0, 0.0);
+ Z : Complex;
+ begin
+ Z := U * X;
+ Check (Z, Expected, "test 2 -- (tiny,tiny) * (0,0)",
+ Mult_MBE);
+ exception
+ when Constraint_Error =>
+ Report.Failed ("Constraint_Error raised in test 2");
+ when others =>
+ Report.Failed ("exception in test 2");
+ end;
+
+ --- test 3 ---
+ declare
+ T : constant := (Real'Machine_EMax - 1) / 2;
+ Big : constant := (1.0 * Real'Machine_Radix) ** (2 * T);
+ B : Complex := (Big, Big);
+ X : Complex := (0.0, 0.0);
+ Z : Complex;
+ begin
+ if Real'Machine_Overflows then
+ Z := B / X;
+ Report.Failed ("test 3 - Constraint_Error not raised");
+ Check (Z, Z, "not executed - optimizer thwarting", 0.0);
+ end if;
+ exception
+ when Constraint_Error => null; -- expected
+ when others =>
+ Report.Failed ("exception in test 3");
+ end;
+
+ --- test 4 ---
+ declare
+ T : constant := Real'Model_EMin + 1;
+ Tiny : constant := (1.0 * Real'Machine_Radix) ** T;
+ U : Complex := (Tiny, Tiny);
+ X : Complex := (0.0, 0.0);
+ Z : Complex;
+ begin
+ if Real'Machine_Overflows then
+ Z := U / X;
+ Report.Failed ("test 4 - Constraint_Error not raised");
+ Check (Z, Z, "not executed - optimizer thwarting", 0.0);
+ end if;
+ exception
+ when Constraint_Error => null; -- expected
+ when others =>
+ Report.Failed ("exception in test 4");
+ end;
+
+
+ --- test 5 ---
+ declare
+ X : Complex := (Sqrt2, Sqrt2);
+ Z : Complex;
+ Expected : constant Complex := (0.0, 4.0);
+ begin
+ Z := X * X;
+ Check (Z, Expected, "test 5 -- (sqrt2,sqrt2) * (sqrt2,sqrt2)",
+ Mult_MBE);
+ exception
+ when Constraint_Error =>
+ Report.Failed ("Constraint_Error raised in test 5");
+ when others =>
+ Report.Failed ("exception in test 5");
+ end;
+
+ --- test 6 ---
+ declare
+ X : Complex := Sqrt3 - Sqrt3 * i;
+ Z : Complex;
+ Expected : constant Complex := (0.0, -6.0);
+ begin
+ Z := X * X;
+ Check (Z, Expected, "test 6 -- (sqrt3,-sqrt3) * (sqrt3,-sqrt3)",
+ Mult_MBE);
+ exception
+ when Constraint_Error =>
+ Report.Failed ("Constraint_Error raised in test 6");
+ when others =>
+ Report.Failed ("exception in test 6");
+ end;
+
+ --- test 7 ---
+ declare
+ X : Complex := Sqrt2 + Sqrt2 * i;
+ Y : Complex := Sqrt2 - Sqrt2 * i;
+ Z : Complex;
+ Expected : constant Complex := 0.0 + i;
+ begin
+ Z := X / Y;
+ Check (Z, Expected, "test 7 -- (sqrt2,sqrt2) / (sqrt2,-sqrt2)",
+ Divide_MBE);
+ exception
+ when Constraint_Error =>
+ Report.Failed ("Constraint_Error raised in test 7");
+ when others =>
+ Report.Failed ("exception in test 7");
+ end;
+ end Special_Values;
+
+
+ procedure Do_Mult_Div (X, Y : Complex) is
+ Z : Complex;
+ Args : constant String :=
+ "X=(" & Real'Image (X.Re) & "," & Real'Image (X.Im) & ") " &
+ "Y=(" & Real'Image (Y.Re) & "," & Real'Image (Y.Im) & ") " ;
+ begin
+ Z := (X * X) / X;
+ Check (Z, X, "X*X/X " & Args, Mult_MBE + Divide_MBE);
+ Z := (X * Y) / X;
+ Check (Z, Y, "X*Y/X " & Args, Mult_MBE + Divide_MBE);
+ Z := (X * Y) / Y;
+ Check (Z, X, "X*Y/Y " & Args, Mult_MBE + Divide_MBE);
+ exception
+ when Constraint_Error =>
+ Report.Failed ("Constraint_Error in Do_Mult_Div for " & Args);
+ when others =>
+ Report.Failed ("exception in Do_Mult_Div for " & Args);
+ end Do_Mult_Div;
+
+ -- select complex values X and Y where the real and imaginary
+ -- parts are selected from the ranges (1/radix..1) and
+ -- (1..radix). This translates into quite a few combinations.
+ procedure Mult_Div_Check is
+ Samples : constant := 17;
+ Radix : constant Real := Real(Real'Machine_Radix);
+ Inv_Radix : constant Real := 1.0 / Real(Real'Machine_Radix);
+ Low_Sample : Real; -- (1/radix .. 1)
+ High_Sample : Real; -- (1 .. radix)
+ Sample : array (1..2) of Real;
+ X, Y : Complex;
+ begin
+ for I in 1 .. Samples loop
+ Low_Sample := (1.0 - Inv_Radix) / Real (Samples) * Real (I) +
+ Inv_Radix;
+ Sample (1) := Low_Sample;
+ for J in 1 .. Samples loop
+ High_Sample := (Radix - 1.0) / Real (Samples) * Real (I) +
+ Radix;
+ Sample (2) := High_Sample;
+ for K in 1 .. 2 loop
+ for L in 1 .. 2 loop
+ X := Complex'(Sample (K), Sample (L));
+ Y := Complex'(Sample (L), Sample (K));
+ Do_Mult_Div (X, Y);
+ if Failure_Detected then
+ return; -- minimize flood of error messages
+ end if;
+ end loop;
+ end loop;
+ end loop; -- J
+ end loop; -- I
+ end Mult_Div_Check;
+
+
+ procedure Do_Test is
+ begin
+ Special_Values;
+ Mult_Div_Check;
+ end Do_Test;
+ end Non_Generic_Check;
+
+ -----------------------------------------------------------------------
+ -----------------------------------------------------------------------
+
+begin
+ Report.Test ("CXG2008",
+ "Check the accuracy of the complex multiplication and" &
+ " division operators");
+
+ if Verbose then
+ Report.Comment ("checking Standard.Float");
+ end if;
+
+ Float_Check.Do_Test;
+
+ if Verbose then
+ Report.Comment ("checking a digits" &
+ Integer'Image (System.Max_Digits) &
+ " floating point type");
+ end if;
+
+ A_Long_Float_Check.Do_Test;
+
+ if Verbose then
+ Report.Comment ("checking non-generic package");
+ end if;
+
+ Non_Generic_Check.Do_Test;
+
+ Report.Result;
+end CXG2008;