diff options
author | upstream source tree <ports@midipix.org> | 2015-03-15 20:14:05 -0400 |
---|---|---|
committer | upstream source tree <ports@midipix.org> | 2015-03-15 20:14:05 -0400 |
commit | 554fd8c5195424bdbcabf5de30fdc183aba391bd (patch) | |
tree | 976dc5ab7fddf506dadce60ae936f43f58787092 /libgo/go/crypto/rsa | |
download | cbb-gcc-4.6.4-554fd8c5195424bdbcabf5de30fdc183aba391bd.tar.bz2 cbb-gcc-4.6.4-554fd8c5195424bdbcabf5de30fdc183aba391bd.tar.xz |
obtained gcc-4.6.4.tar.bz2 from upstream website;upstream
verified gcc-4.6.4.tar.bz2.sig;
imported gcc-4.6.4 source tree from verified upstream tarball.
downloading a git-generated archive based on the 'upstream' tag
should provide you with a source tree that is binary identical
to the one extracted from the above tarball.
if you have obtained the source via the command 'git clone',
however, do note that line-endings of files in your working
directory might differ from line-endings of the respective
files in the upstream repository.
Diffstat (limited to 'libgo/go/crypto/rsa')
-rw-r--r-- | libgo/go/crypto/rsa/pkcs1v15.go | 273 | ||||
-rw-r--r-- | libgo/go/crypto/rsa/pkcs1v15_test.go | 220 | ||||
-rw-r--r-- | libgo/go/crypto/rsa/rsa.go | 445 | ||||
-rw-r--r-- | libgo/go/crypto/rsa/rsa_test.go | 250 |
4 files changed, 1188 insertions, 0 deletions
diff --git a/libgo/go/crypto/rsa/pkcs1v15.go b/libgo/go/crypto/rsa/pkcs1v15.go new file mode 100644 index 000000000..714046250 --- /dev/null +++ b/libgo/go/crypto/rsa/pkcs1v15.go @@ -0,0 +1,273 @@ +// Copyright 2009 The Go Authors. All rights reserved. +// Use of this source code is governed by a BSD-style +// license that can be found in the LICENSE file. + +package rsa + +import ( + "big" + "crypto/subtle" + "io" + "os" +) + +// This file implements encryption and decryption using PKCS#1 v1.5 padding. + +// EncryptPKCS1v15 encrypts the given message with RSA and the padding scheme from PKCS#1 v1.5. +// The message must be no longer than the length of the public modulus minus 11 bytes. +// WARNING: use of this function to encrypt plaintexts other than session keys +// is dangerous. Use RSA OAEP in new protocols. +func EncryptPKCS1v15(rand io.Reader, pub *PublicKey, msg []byte) (out []byte, err os.Error) { + k := (pub.N.BitLen() + 7) / 8 + if len(msg) > k-11 { + err = MessageTooLongError{} + return + } + + // EM = 0x02 || PS || 0x00 || M + em := make([]byte, k-1) + em[0] = 2 + ps, mm := em[1:len(em)-len(msg)-1], em[len(em)-len(msg):] + err = nonZeroRandomBytes(ps, rand) + if err != nil { + return + } + em[len(em)-len(msg)-1] = 0 + copy(mm, msg) + + m := new(big.Int).SetBytes(em) + c := encrypt(new(big.Int), pub, m) + out = c.Bytes() + return +} + +// DecryptPKCS1v15 decrypts a plaintext using RSA and the padding scheme from PKCS#1 v1.5. +// If rand != nil, it uses RSA blinding to avoid timing side-channel attacks. +func DecryptPKCS1v15(rand io.Reader, priv *PrivateKey, ciphertext []byte) (out []byte, err os.Error) { + valid, out, err := decryptPKCS1v15(rand, priv, ciphertext) + if err == nil && valid == 0 { + err = DecryptionError{} + } + + return +} + +// DecryptPKCS1v15SessionKey decrypts a session key using RSA and the padding scheme from PKCS#1 v1.5. +// If rand != nil, it uses RSA blinding to avoid timing side-channel attacks. +// It returns an error if the ciphertext is the wrong length or if the +// ciphertext is greater than the public modulus. Otherwise, no error is +// returned. If the padding is valid, the resulting plaintext message is copied +// into key. Otherwise, key is unchanged. These alternatives occur in constant +// time. It is intended that the user of this function generate a random +// session key beforehand and continue the protocol with the resulting value. +// This will remove any possibility that an attacker can learn any information +// about the plaintext. +// See ``Chosen Ciphertext Attacks Against Protocols Based on the RSA +// Encryption Standard PKCS #1'', Daniel Bleichenbacher, Advances in Cryptology +// (Crypto '98), +func DecryptPKCS1v15SessionKey(rand io.Reader, priv *PrivateKey, ciphertext []byte, key []byte) (err os.Error) { + k := (priv.N.BitLen() + 7) / 8 + if k-(len(key)+3+8) < 0 { + err = DecryptionError{} + return + } + + valid, msg, err := decryptPKCS1v15(rand, priv, ciphertext) + if err != nil { + return + } + + valid &= subtle.ConstantTimeEq(int32(len(msg)), int32(len(key))) + subtle.ConstantTimeCopy(valid, key, msg) + return +} + +func decryptPKCS1v15(rand io.Reader, priv *PrivateKey, ciphertext []byte) (valid int, msg []byte, err os.Error) { + k := (priv.N.BitLen() + 7) / 8 + if k < 11 { + err = DecryptionError{} + return + } + + c := new(big.Int).SetBytes(ciphertext) + m, err := decrypt(rand, priv, c) + if err != nil { + return + } + + em := leftPad(m.Bytes(), k) + firstByteIsZero := subtle.ConstantTimeByteEq(em[0], 0) + secondByteIsTwo := subtle.ConstantTimeByteEq(em[1], 2) + + // The remainder of the plaintext must be a string of non-zero random + // octets, followed by a 0, followed by the message. + // lookingForIndex: 1 iff we are still looking for the zero. + // index: the offset of the first zero byte. + var lookingForIndex, index int + lookingForIndex = 1 + + for i := 2; i < len(em); i++ { + equals0 := subtle.ConstantTimeByteEq(em[i], 0) + index = subtle.ConstantTimeSelect(lookingForIndex&equals0, i, index) + lookingForIndex = subtle.ConstantTimeSelect(equals0, 0, lookingForIndex) + } + + valid = firstByteIsZero & secondByteIsTwo & (^lookingForIndex & 1) + msg = em[index+1:] + return +} + +// nonZeroRandomBytes fills the given slice with non-zero random octets. +func nonZeroRandomBytes(s []byte, rand io.Reader) (err os.Error) { + _, err = io.ReadFull(rand, s) + if err != nil { + return + } + + for i := 0; i < len(s); i++ { + for s[i] == 0 { + _, err = rand.Read(s[i : i+1]) + if err != nil { + return + } + // In tests, the PRNG may return all zeros so we do + // this to break the loop. + s[i] ^= 0x42 + } + } + + return +} + +// Due to the design of PKCS#1 v1.5, we need to know the exact hash function in +// use. A generic hash.Hash will not do. +type PKCS1v15Hash int + +const ( + HashMD5 PKCS1v15Hash = iota + HashSHA1 + HashSHA256 + HashSHA384 + HashSHA512 + HashMD5SHA1 // combined MD5 and SHA1 hash used for RSA signing in TLS. +) + +// These are ASN1 DER structures: +// DigestInfo ::= SEQUENCE { +// digestAlgorithm AlgorithmIdentifier, +// digest OCTET STRING +// } +// For performance, we don't use the generic ASN1 encoder. Rather, we +// precompute a prefix of the digest value that makes a valid ASN1 DER string +// with the correct contents. +var hashPrefixes = [][]byte{ + // HashMD5 + {0x30, 0x20, 0x30, 0x0c, 0x06, 0x08, 0x2a, 0x86, 0x48, 0x86, 0xf7, 0x0d, 0x02, 0x05, 0x05, 0x00, 0x04, 0x10}, + // HashSHA1 + {0x30, 0x21, 0x30, 0x09, 0x06, 0x05, 0x2b, 0x0e, 0x03, 0x02, 0x1a, 0x05, 0x00, 0x04, 0x14}, + // HashSHA256 + {0x30, 0x31, 0x30, 0x0d, 0x06, 0x09, 0x60, 0x86, 0x48, 0x01, 0x65, 0x03, 0x04, 0x02, 0x01, 0x05, 0x00, 0x04, 0x20}, + // HashSHA384 + {0x30, 0x41, 0x30, 0x0d, 0x06, 0x09, 0x60, 0x86, 0x48, 0x01, 0x65, 0x03, 0x04, 0x02, 0x02, 0x05, 0x00, 0x04, 0x30}, + // HashSHA512 + {0x30, 0x51, 0x30, 0x0d, 0x06, 0x09, 0x60, 0x86, 0x48, 0x01, 0x65, 0x03, 0x04, 0x02, 0x03, 0x05, 0x00, 0x04, 0x40}, + // HashMD5SHA1 + {}, // A special TLS case which doesn't use an ASN1 prefix. +} + +// SignPKCS1v15 calcuates the signature of hashed using RSASSA-PSS-SIGN from RSA PKCS#1 v1.5. +// Note that hashed must be the result of hashing the input message using the +// given hash function. +func SignPKCS1v15(rand io.Reader, priv *PrivateKey, hash PKCS1v15Hash, hashed []byte) (s []byte, err os.Error) { + hashLen, prefix, err := pkcs1v15HashInfo(hash, len(hashed)) + if err != nil { + return + } + + tLen := len(prefix) + hashLen + k := (priv.N.BitLen() + 7) / 8 + if k < tLen+11 { + return nil, MessageTooLongError{} + } + + // EM = 0x00 || 0x01 || PS || 0x00 || T + em := make([]byte, k) + em[1] = 1 + for i := 2; i < k-tLen-1; i++ { + em[i] = 0xff + } + copy(em[k-tLen:k-hashLen], prefix) + copy(em[k-hashLen:k], hashed) + + m := new(big.Int).SetBytes(em) + c, err := decrypt(rand, priv, m) + if err == nil { + s = c.Bytes() + } + return +} + +// VerifyPKCS1v15 verifies an RSA PKCS#1 v1.5 signature. +// hashed is the result of hashing the input message using the given hash +// function and sig is the signature. A valid signature is indicated by +// returning a nil error. +func VerifyPKCS1v15(pub *PublicKey, hash PKCS1v15Hash, hashed []byte, sig []byte) (err os.Error) { + hashLen, prefix, err := pkcs1v15HashInfo(hash, len(hashed)) + if err != nil { + return + } + + tLen := len(prefix) + hashLen + k := (pub.N.BitLen() + 7) / 8 + if k < tLen+11 { + err = VerificationError{} + return + } + + c := new(big.Int).SetBytes(sig) + m := encrypt(new(big.Int), pub, c) + em := leftPad(m.Bytes(), k) + // EM = 0x00 || 0x01 || PS || 0x00 || T + + ok := subtle.ConstantTimeByteEq(em[0], 0) + ok &= subtle.ConstantTimeByteEq(em[1], 1) + ok &= subtle.ConstantTimeCompare(em[k-hashLen:k], hashed) + ok &= subtle.ConstantTimeCompare(em[k-tLen:k-hashLen], prefix) + ok &= subtle.ConstantTimeByteEq(em[k-tLen-1], 0) + + for i := 2; i < k-tLen-1; i++ { + ok &= subtle.ConstantTimeByteEq(em[i], 0xff) + } + + if ok != 1 { + return VerificationError{} + } + + return nil +} + +func pkcs1v15HashInfo(hash PKCS1v15Hash, inLen int) (hashLen int, prefix []byte, err os.Error) { + switch hash { + case HashMD5: + hashLen = 16 + case HashSHA1: + hashLen = 20 + case HashSHA256: + hashLen = 32 + case HashSHA384: + hashLen = 48 + case HashSHA512: + hashLen = 64 + case HashMD5SHA1: + hashLen = 36 + default: + return 0, nil, os.ErrorString("unknown hash function") + } + + if inLen != hashLen { + return 0, nil, os.ErrorString("input must be hashed message") + } + + prefix = hashPrefixes[int(hash)] + return +} diff --git a/libgo/go/crypto/rsa/pkcs1v15_test.go b/libgo/go/crypto/rsa/pkcs1v15_test.go new file mode 100644 index 000000000..bf6306dc2 --- /dev/null +++ b/libgo/go/crypto/rsa/pkcs1v15_test.go @@ -0,0 +1,220 @@ +// Copyright 2009 The Go Authors. All rights reserved. +// Use of this source code is governed by a BSD-style +// license that can be found in the LICENSE file. + +package rsa + +import ( + "big" + "bytes" + "crypto/rand" + "crypto/sha1" + "encoding/base64" + "encoding/hex" + "io" + "testing" + "testing/quick" +) + +func decodeBase64(in string) []byte { + out := make([]byte, base64.StdEncoding.DecodedLen(len(in))) + n, err := base64.StdEncoding.Decode(out, []byte(in)) + if err != nil { + return nil + } + return out[0:n] +} + +type DecryptPKCS1v15Test struct { + in, out string +} + +// These test vectors were generated with `openssl rsautl -pkcs -encrypt` +var decryptPKCS1v15Tests = []DecryptPKCS1v15Test{ + { + "gIcUIoVkD6ATMBk/u/nlCZCCWRKdkfjCgFdo35VpRXLduiKXhNz1XupLLzTXAybEq15juc+EgY5o0DHv/nt3yg==", + "x", + }, + { + "Y7TOCSqofGhkRb+jaVRLzK8xw2cSo1IVES19utzv6hwvx+M8kFsoWQm5DzBeJCZTCVDPkTpavUuEbgp8hnUGDw==", + "testing.", + }, + { + "arReP9DJtEVyV2Dg3dDp4c/PSk1O6lxkoJ8HcFupoRorBZG+7+1fDAwT1olNddFnQMjmkb8vxwmNMoTAT/BFjQ==", + "testing.\n", + }, + { + "WtaBXIoGC54+vH0NH0CHHE+dRDOsMc/6BrfFu2lEqcKL9+uDuWaf+Xj9mrbQCjjZcpQuX733zyok/jsnqe/Ftw==", + "01234567890123456789012345678901234567890123456789012", + }, +} + +func TestDecryptPKCS1v15(t *testing.T) { + for i, test := range decryptPKCS1v15Tests { + out, err := DecryptPKCS1v15(nil, rsaPrivateKey, decodeBase64(test.in)) + if err != nil { + t.Errorf("#%d error decrypting", i) + } + want := []byte(test.out) + if bytes.Compare(out, want) != 0 { + t.Errorf("#%d got:%#v want:%#v", i, out, want) + } + } +} + +func TestEncryptPKCS1v15(t *testing.T) { + random := rand.Reader + k := (rsaPrivateKey.N.BitLen() + 7) / 8 + + tryEncryptDecrypt := func(in []byte, blind bool) bool { + if len(in) > k-11 { + in = in[0 : k-11] + } + + ciphertext, err := EncryptPKCS1v15(random, &rsaPrivateKey.PublicKey, in) + if err != nil { + t.Errorf("error encrypting: %s", err) + return false + } + + var rand io.Reader + if !blind { + rand = nil + } else { + rand = random + } + plaintext, err := DecryptPKCS1v15(rand, rsaPrivateKey, ciphertext) + if err != nil { + t.Errorf("error decrypting: %s", err) + return false + } + + if bytes.Compare(plaintext, in) != 0 { + t.Errorf("output mismatch: %#v %#v", plaintext, in) + return false + } + return true + } + + quick.Check(tryEncryptDecrypt, nil) +} + +// These test vectors were generated with `openssl rsautl -pkcs -encrypt` +var decryptPKCS1v15SessionKeyTests = []DecryptPKCS1v15Test{ + { + "e6ukkae6Gykq0fKzYwULpZehX+UPXYzMoB5mHQUDEiclRbOTqas4Y0E6nwns1BBpdvEJcilhl5zsox/6DtGsYg==", + "1234", + }, + { + "Dtis4uk/q/LQGGqGk97P59K03hkCIVFMEFZRgVWOAAhxgYpCRG0MX2adptt92l67IqMki6iVQyyt0TtX3IdtEw==", + "FAIL", + }, + { + "LIyFyCYCptPxrvTxpol8F3M7ZivlMsf53zs0vHRAv+rDIh2YsHS69ePMoPMe3TkOMZ3NupiL3takPxIs1sK+dw==", + "abcd", + }, + { + "bafnobel46bKy76JzqU/RIVOH0uAYvzUtauKmIidKgM0sMlvobYVAVQPeUQ/oTGjbIZ1v/6Gyi5AO4DtHruGdw==", + "FAIL", + }, +} + +func TestEncryptPKCS1v15SessionKey(t *testing.T) { + for i, test := range decryptPKCS1v15SessionKeyTests { + key := []byte("FAIL") + err := DecryptPKCS1v15SessionKey(nil, rsaPrivateKey, decodeBase64(test.in), key) + if err != nil { + t.Errorf("#%d error decrypting", i) + } + want := []byte(test.out) + if bytes.Compare(key, want) != 0 { + t.Errorf("#%d got:%#v want:%#v", i, key, want) + } + } +} + +func TestNonZeroRandomBytes(t *testing.T) { + random := rand.Reader + + b := make([]byte, 512) + err := nonZeroRandomBytes(b, random) + if err != nil { + t.Errorf("returned error: %s", err) + } + for _, b := range b { + if b == 0 { + t.Errorf("Zero octet found") + return + } + } +} + +type signPKCS1v15Test struct { + in, out string +} + +// These vectors have been tested with +// `openssl rsautl -verify -inkey pk -in signature | hexdump -C` +var signPKCS1v15Tests = []signPKCS1v15Test{ + {"Test.\n", "a4f3fa6ea93bcdd0c57be020c1193ecbfd6f200a3d95c409769b029578fa0e336ad9a347600e40d3ae823b8c7e6bad88cc07c1d54c3a1523cbbb6d58efc362ae"}, +} + +func TestSignPKCS1v15(t *testing.T) { + for i, test := range signPKCS1v15Tests { + h := sha1.New() + h.Write([]byte(test.in)) + digest := h.Sum() + + s, err := SignPKCS1v15(nil, rsaPrivateKey, HashSHA1, digest) + if err != nil { + t.Errorf("#%d %s", i, err) + } + + expected, _ := hex.DecodeString(test.out) + if bytes.Compare(s, expected) != 0 { + t.Errorf("#%d got: %x want: %x", i, s, expected) + } + } +} + +func TestVerifyPKCS1v15(t *testing.T) { + for i, test := range signPKCS1v15Tests { + h := sha1.New() + h.Write([]byte(test.in)) + digest := h.Sum() + + sig, _ := hex.DecodeString(test.out) + + err := VerifyPKCS1v15(&rsaPrivateKey.PublicKey, HashSHA1, digest, sig) + if err != nil { + t.Errorf("#%d %s", i, err) + } + } +} + +func bigFromString(s string) *big.Int { + ret := new(big.Int) + ret.SetString(s, 10) + return ret +} + +// In order to generate new test vectors you'll need the PEM form of this key: +// -----BEGIN RSA PRIVATE KEY----- +// MIIBOgIBAAJBALKZD0nEffqM1ACuak0bijtqE2QrI/KLADv7l3kK3ppMyCuLKoF0 +// fd7Ai2KW5ToIwzFofvJcS/STa6HA5gQenRUCAwEAAQJBAIq9amn00aS0h/CrjXqu +// /ThglAXJmZhOMPVn4eiu7/ROixi9sex436MaVeMqSNf7Ex9a8fRNfWss7Sqd9eWu +// RTUCIQDasvGASLqmjeffBNLTXV2A5g4t+kLVCpsEIZAycV5GswIhANEPLmax0ME/ +// EO+ZJ79TJKN5yiGBRsv5yvx5UiHxajEXAiAhAol5N4EUyq6I9w1rYdhPMGpLfk7A +// IU2snfRJ6Nq2CQIgFrPsWRCkV+gOYcajD17rEqmuLrdIRexpg8N1DOSXoJ8CIGlS +// tAboUGBxTDq3ZroNism3DaMIbKPyYrAqhKov1h5V +// -----END RSA PRIVATE KEY----- + +var rsaPrivateKey = &PrivateKey{ + PublicKey: PublicKey{ + N: bigFromString("9353930466774385905609975137998169297361893554149986716853295022578535724979677252958524466350471210367835187480748268864277464700638583474144061408845077"), + E: 65537, + }, + D: bigFromString("7266398431328116344057699379749222532279343923819063639497049039389899328538543087657733766554155839834519529439851673014800261285757759040931985506583861"), + P: bigFromString("98920366548084643601728869055592650835572950932266967461790948584315647051443"), + Q: bigFromString("94560208308847015747498523884063394671606671904944666360068158221458669711639"), +} diff --git a/libgo/go/crypto/rsa/rsa.go b/libgo/go/crypto/rsa/rsa.go new file mode 100644 index 000000000..c7a8d2053 --- /dev/null +++ b/libgo/go/crypto/rsa/rsa.go @@ -0,0 +1,445 @@ +// Copyright 2009 The Go Authors. All rights reserved. +// Use of this source code is governed by a BSD-style +// license that can be found in the LICENSE file. + +// This package implements RSA encryption as specified in PKCS#1. +package rsa + +// TODO(agl): Add support for PSS padding. + +import ( + "big" + "crypto/subtle" + "hash" + "io" + "os" +) + +var bigZero = big.NewInt(0) +var bigOne = big.NewInt(1) + +// randomPrime returns a number, p, of the given size, such that p is prime +// with high probability. +func randomPrime(rand io.Reader, bits int) (p *big.Int, err os.Error) { + if bits < 1 { + err = os.EINVAL + } + + bytes := make([]byte, (bits+7)/8) + p = new(big.Int) + + for { + _, err = io.ReadFull(rand, bytes) + if err != nil { + return + } + + // Don't let the value be too small. + bytes[0] |= 0x80 + // Make the value odd since an even number this large certainly isn't prime. + bytes[len(bytes)-1] |= 1 + + p.SetBytes(bytes) + if big.ProbablyPrime(p, 20) { + return + } + } + + return +} + +// randomNumber returns a uniform random value in [0, max). +func randomNumber(rand io.Reader, max *big.Int) (n *big.Int, err os.Error) { + k := (max.BitLen() + 7) / 8 + + // r is the number of bits in the used in the most significant byte of + // max. + r := uint(max.BitLen() % 8) + if r == 0 { + r = 8 + } + + bytes := make([]byte, k) + n = new(big.Int) + + for { + _, err = io.ReadFull(rand, bytes) + if err != nil { + return + } + + // Clear bits in the first byte to increase the probability + // that the candidate is < max. + bytes[0] &= uint8(int(1<<r) - 1) + + n.SetBytes(bytes) + if n.Cmp(max) < 0 { + return + } + } + + return +} + +// A PublicKey represents the public part of an RSA key. +type PublicKey struct { + N *big.Int // modulus + E int // public exponent +} + +// A PrivateKey represents an RSA key +type PrivateKey struct { + PublicKey // public part. + D *big.Int // private exponent + P, Q *big.Int // prime factors of N +} + +// Validate performs basic sanity checks on the key. +// It returns nil if the key is valid, or else an os.Error describing a problem. + +func (priv PrivateKey) Validate() os.Error { + // Check that p and q are prime. Note that this is just a sanity + // check. Since the random witnesses chosen by ProbablyPrime are + // deterministic, given the candidate number, it's easy for an attack + // to generate composites that pass this test. + if !big.ProbablyPrime(priv.P, 20) { + return os.ErrorString("P is composite") + } + if !big.ProbablyPrime(priv.Q, 20) { + return os.ErrorString("Q is composite") + } + + // Check that p*q == n. + modulus := new(big.Int).Mul(priv.P, priv.Q) + if modulus.Cmp(priv.N) != 0 { + return os.ErrorString("invalid modulus") + } + // Check that e and totient(p, q) are coprime. + pminus1 := new(big.Int).Sub(priv.P, bigOne) + qminus1 := new(big.Int).Sub(priv.Q, bigOne) + totient := new(big.Int).Mul(pminus1, qminus1) + e := big.NewInt(int64(priv.E)) + gcd := new(big.Int) + x := new(big.Int) + y := new(big.Int) + big.GcdInt(gcd, x, y, totient, e) + if gcd.Cmp(bigOne) != 0 { + return os.ErrorString("invalid public exponent E") + } + // Check that de ≡ 1 (mod totient(p, q)) + de := new(big.Int).Mul(priv.D, e) + de.Mod(de, totient) + if de.Cmp(bigOne) != 0 { + return os.ErrorString("invalid private exponent D") + } + return nil +} + +// GenerateKeyPair generates an RSA keypair of the given bit size. +func GenerateKey(rand io.Reader, bits int) (priv *PrivateKey, err os.Error) { + priv = new(PrivateKey) + // Smaller public exponents lead to faster public key + // operations. Since the exponent must be coprime to + // (p-1)(q-1), the smallest possible value is 3. Some have + // suggested that a larger exponent (often 2**16+1) be used + // since previous implementation bugs[1] were avoided when this + // was the case. However, there are no current reasons not to use + // small exponents. + // [1] http://marc.info/?l=cryptography&m=115694833312008&w=2 + priv.E = 3 + + pminus1 := new(big.Int) + qminus1 := new(big.Int) + totient := new(big.Int) + + for { + p, err := randomPrime(rand, bits/2) + if err != nil { + return nil, err + } + + q, err := randomPrime(rand, bits/2) + if err != nil { + return nil, err + } + + if p.Cmp(q) == 0 { + continue + } + + n := new(big.Int).Mul(p, q) + pminus1.Sub(p, bigOne) + qminus1.Sub(q, bigOne) + totient.Mul(pminus1, qminus1) + + g := new(big.Int) + priv.D = new(big.Int) + y := new(big.Int) + e := big.NewInt(int64(priv.E)) + big.GcdInt(g, priv.D, y, e, totient) + + if g.Cmp(bigOne) == 0 { + priv.D.Add(priv.D, totient) + priv.P = p + priv.Q = q + priv.N = n + + break + } + } + + return +} + +// incCounter increments a four byte, big-endian counter. +func incCounter(c *[4]byte) { + if c[3]++; c[3] != 0 { + return + } + if c[2]++; c[2] != 0 { + return + } + if c[1]++; c[1] != 0 { + return + } + c[0]++ +} + +// mgf1XOR XORs the bytes in out with a mask generated using the MGF1 function +// specified in PKCS#1 v2.1. +func mgf1XOR(out []byte, hash hash.Hash, seed []byte) { + var counter [4]byte + + done := 0 + for done < len(out) { + hash.Write(seed) + hash.Write(counter[0:4]) + digest := hash.Sum() + hash.Reset() + + for i := 0; i < len(digest) && done < len(out); i++ { + out[done] ^= digest[i] + done++ + } + incCounter(&counter) + } +} + +// MessageTooLongError is returned when attempting to encrypt a message which +// is too large for the size of the public key. +type MessageTooLongError struct{} + +func (MessageTooLongError) String() string { + return "message too long for RSA public key size" +} + +func encrypt(c *big.Int, pub *PublicKey, m *big.Int) *big.Int { + e := big.NewInt(int64(pub.E)) + c.Exp(m, e, pub.N) + return c +} + +// EncryptOAEP encrypts the given message with RSA-OAEP. +// The message must be no longer than the length of the public modulus less +// twice the hash length plus 2. +func EncryptOAEP(hash hash.Hash, rand io.Reader, pub *PublicKey, msg []byte, label []byte) (out []byte, err os.Error) { + hash.Reset() + k := (pub.N.BitLen() + 7) / 8 + if len(msg) > k-2*hash.Size()-2 { + err = MessageTooLongError{} + return + } + + hash.Write(label) + lHash := hash.Sum() + hash.Reset() + + em := make([]byte, k) + seed := em[1 : 1+hash.Size()] + db := em[1+hash.Size():] + + copy(db[0:hash.Size()], lHash) + db[len(db)-len(msg)-1] = 1 + copy(db[len(db)-len(msg):], msg) + + _, err = io.ReadFull(rand, seed) + if err != nil { + return + } + + mgf1XOR(db, hash, seed) + mgf1XOR(seed, hash, db) + + m := new(big.Int) + m.SetBytes(em) + c := encrypt(new(big.Int), pub, m) + out = c.Bytes() + return +} + +// A DecryptionError represents a failure to decrypt a message. +// It is deliberately vague to avoid adaptive attacks. +type DecryptionError struct{} + +func (DecryptionError) String() string { return "RSA decryption error" } + +// A VerificationError represents a failure to verify a signature. +// It is deliberately vague to avoid adaptive attacks. +type VerificationError struct{} + +func (VerificationError) String() string { return "RSA verification error" } + +// modInverse returns ia, the inverse of a in the multiplicative group of prime +// order n. It requires that a be a member of the group (i.e. less than n). +func modInverse(a, n *big.Int) (ia *big.Int, ok bool) { + g := new(big.Int) + x := new(big.Int) + y := new(big.Int) + big.GcdInt(g, x, y, a, n) + if g.Cmp(bigOne) != 0 { + // In this case, a and n aren't coprime and we cannot calculate + // the inverse. This happens because the values of n are nearly + // prime (being the product of two primes) rather than truly + // prime. + return + } + + if x.Cmp(bigOne) < 0 { + // 0 is not the multiplicative inverse of any element so, if x + // < 1, then x is negative. + x.Add(x, n) + } + + return x, true +} + +// decrypt performs an RSA decryption, resulting in a plaintext integer. If a +// random source is given, RSA blinding is used. +func decrypt(rand io.Reader, priv *PrivateKey, c *big.Int) (m *big.Int, err os.Error) { + // TODO(agl): can we get away with reusing blinds? + if c.Cmp(priv.N) > 0 { + err = DecryptionError{} + return + } + + var ir *big.Int + if rand != nil { + // Blinding enabled. Blinding involves multiplying c by r^e. + // Then the decryption operation performs (m^e * r^e)^d mod n + // which equals mr mod n. The factor of r can then be removed + // by multipling by the multiplicative inverse of r. + + var r *big.Int + + for { + r, err = randomNumber(rand, priv.N) + if err != nil { + return + } + if r.Cmp(bigZero) == 0 { + r = bigOne + } + var ok bool + ir, ok = modInverse(r, priv.N) + if ok { + break + } + } + bigE := big.NewInt(int64(priv.E)) + rpowe := new(big.Int).Exp(r, bigE, priv.N) + c.Mul(c, rpowe) + c.Mod(c, priv.N) + } + + m = new(big.Int).Exp(c, priv.D, priv.N) + + if ir != nil { + // Unblind. + m.Mul(m, ir) + m.Mod(m, priv.N) + } + + return +} + +// DecryptOAEP decrypts ciphertext using RSA-OAEP. +// If rand != nil, DecryptOAEP uses RSA blinding to avoid timing side-channel attacks. +func DecryptOAEP(hash hash.Hash, rand io.Reader, priv *PrivateKey, ciphertext []byte, label []byte) (msg []byte, err os.Error) { + k := (priv.N.BitLen() + 7) / 8 + if len(ciphertext) > k || + k < hash.Size()*2+2 { + err = DecryptionError{} + return + } + + c := new(big.Int).SetBytes(ciphertext) + + m, err := decrypt(rand, priv, c) + if err != nil { + return + } + + hash.Write(label) + lHash := hash.Sum() + hash.Reset() + + // Converting the plaintext number to bytes will strip any + // leading zeros so we may have to left pad. We do this unconditionally + // to avoid leaking timing information. (Although we still probably + // leak the number of leading zeros. It's not clear that we can do + // anything about this.) + em := leftPad(m.Bytes(), k) + + firstByteIsZero := subtle.ConstantTimeByteEq(em[0], 0) + + seed := em[1 : hash.Size()+1] + db := em[hash.Size()+1:] + + mgf1XOR(seed, hash, db) + mgf1XOR(db, hash, seed) + + lHash2 := db[0:hash.Size()] + + // We have to validate the plaintext in constant time in order to avoid + // attacks like: J. Manger. A Chosen Ciphertext Attack on RSA Optimal + // Asymmetric Encryption Padding (OAEP) as Standardized in PKCS #1 + // v2.0. In J. Kilian, editor, Advances in Cryptology. + lHash2Good := subtle.ConstantTimeCompare(lHash, lHash2) + + // The remainder of the plaintext must be zero or more 0x00, followed + // by 0x01, followed by the message. + // lookingForIndex: 1 iff we are still looking for the 0x01 + // index: the offset of the first 0x01 byte + // invalid: 1 iff we saw a non-zero byte before the 0x01. + var lookingForIndex, index, invalid int + lookingForIndex = 1 + rest := db[hash.Size():] + + for i := 0; i < len(rest); i++ { + equals0 := subtle.ConstantTimeByteEq(rest[i], 0) + equals1 := subtle.ConstantTimeByteEq(rest[i], 1) + index = subtle.ConstantTimeSelect(lookingForIndex&equals1, i, index) + lookingForIndex = subtle.ConstantTimeSelect(equals1, 0, lookingForIndex) + invalid = subtle.ConstantTimeSelect(lookingForIndex&^equals0, 1, invalid) + } + + if firstByteIsZero&lHash2Good&^invalid&^lookingForIndex != 1 { + err = DecryptionError{} + return + } + + msg = rest[index+1:] + return +} + +// leftPad returns a new slice of length size. The contents of input are right +// aligned in the new slice. +func leftPad(input []byte, size int) (out []byte) { + n := len(input) + if n > size { + n = size + } + out = make([]byte, size) + copy(out[len(out)-n:], input) + return +} diff --git a/libgo/go/crypto/rsa/rsa_test.go b/libgo/go/crypto/rsa/rsa_test.go new file mode 100644 index 000000000..df1f17f17 --- /dev/null +++ b/libgo/go/crypto/rsa/rsa_test.go @@ -0,0 +1,250 @@ +// Copyright 2009 The Go Authors. All rights reserved. +// Use of this source code is governed by a BSD-style +// license that can be found in the LICENSE file. + +package rsa + +import ( + "big" + "bytes" + "crypto/rand" + "crypto/sha1" + "testing" +) + +func TestKeyGeneration(t *testing.T) { + random := rand.Reader + + priv, err := GenerateKey(random, 1024) + if err != nil { + t.Errorf("failed to generate key") + } + pub := &priv.PublicKey + m := big.NewInt(42) + c := encrypt(new(big.Int), pub, m) + m2, err := decrypt(nil, priv, c) + if err != nil { + t.Errorf("error while decrypting: %s", err) + } + if m.Cmp(m2) != 0 { + t.Errorf("got:%v, want:%v (%s)", m2, m, priv) + } + + m3, err := decrypt(random, priv, c) + if err != nil { + t.Errorf("error while decrypting (blind): %s", err) + } + if m.Cmp(m3) != 0 { + t.Errorf("(blind) got:%v, want:%v", m3, m) + } +} + +type testEncryptOAEPMessage struct { + in []byte + seed []byte + out []byte +} + +type testEncryptOAEPStruct struct { + modulus string + e int + d string + msgs []testEncryptOAEPMessage +} + +func TestEncryptOAEP(t *testing.T) { + sha1 := sha1.New() + n := new(big.Int) + for i, test := range testEncryptOAEPData { + n.SetString(test.modulus, 16) + public := PublicKey{n, test.e} + + for j, message := range test.msgs { + randomSource := bytes.NewBuffer(message.seed) + out, err := EncryptOAEP(sha1, randomSource, &public, message.in, nil) + if err != nil { + t.Errorf("#%d,%d error: %s", i, j, err) + } + if bytes.Compare(out, message.out) != 0 { + t.Errorf("#%d,%d bad result: %s (want %s)", i, j, out, message.out) + } + } + } +} + +func TestDecryptOAEP(t *testing.T) { + random := rand.Reader + + sha1 := sha1.New() + n := new(big.Int) + d := new(big.Int) + for i, test := range testEncryptOAEPData { + n.SetString(test.modulus, 16) + d.SetString(test.d, 16) + private := PrivateKey{PublicKey{n, test.e}, d, nil, nil} + + for j, message := range test.msgs { + out, err := DecryptOAEP(sha1, nil, &private, message.out, nil) + if err != nil { + t.Errorf("#%d,%d error: %s", i, j, err) + } else if bytes.Compare(out, message.in) != 0 { + t.Errorf("#%d,%d bad result: %#v (want %#v)", i, j, out, message.in) + } + + // Decrypt with blinding. + out, err = DecryptOAEP(sha1, random, &private, message.out, nil) + if err != nil { + t.Errorf("#%d,%d (blind) error: %s", i, j, err) + } else if bytes.Compare(out, message.in) != 0 { + t.Errorf("#%d,%d (blind) bad result: %#v (want %#v)", i, j, out, message.in) + } + } + } +} + +// testEncryptOAEPData contains a subset of the vectors from RSA's "Test vectors for RSA-OAEP". +var testEncryptOAEPData = []testEncryptOAEPStruct{ + // Key 1 + {"a8b3b284af8eb50b387034a860f146c4919f318763cd6c5598c8ae4811a1e0abc4c7e0b082d693a5e7fced675cf4668512772c0cbc64a742c6c630f533c8cc72f62ae833c40bf25842e984bb78bdbf97c0107d55bdb662f5c4e0fab9845cb5148ef7392dd3aaff93ae1e6b667bb3d4247616d4f5ba10d4cfd226de88d39f16fb", + 65537, + "53339cfdb79fc8466a655c7316aca85c55fd8f6dd898fdaf119517ef4f52e8fd8e258df93fee180fa0e4ab29693cd83b152a553d4ac4d1812b8b9fa5af0e7f55fe7304df41570926f3311f15c4d65a732c483116ee3d3d2d0af3549ad9bf7cbfb78ad884f84d5beb04724dc7369b31def37d0cf539e9cfcdd3de653729ead5d1", + []testEncryptOAEPMessage{ + // Example 1.1 + { + []byte{0x66, 0x28, 0x19, 0x4e, 0x12, 0x07, 0x3d, 0xb0, + 0x3b, 0xa9, 0x4c, 0xda, 0x9e, 0xf9, 0x53, 0x23, 0x97, + 0xd5, 0x0d, 0xba, 0x79, 0xb9, 0x87, 0x00, 0x4a, 0xfe, + 0xfe, 0x34, + }, + []byte{0x18, 0xb7, 0x76, 0xea, 0x21, 0x06, 0x9d, 0x69, + 0x77, 0x6a, 0x33, 0xe9, 0x6b, 0xad, 0x48, 0xe1, 0xdd, + 0xa0, 0xa5, 0xef, + }, + []byte{0x35, 0x4f, 0xe6, 0x7b, 0x4a, 0x12, 0x6d, 0x5d, + 0x35, 0xfe, 0x36, 0xc7, 0x77, 0x79, 0x1a, 0x3f, 0x7b, + 0xa1, 0x3d, 0xef, 0x48, 0x4e, 0x2d, 0x39, 0x08, 0xaf, + 0xf7, 0x22, 0xfa, 0xd4, 0x68, 0xfb, 0x21, 0x69, 0x6d, + 0xe9, 0x5d, 0x0b, 0xe9, 0x11, 0xc2, 0xd3, 0x17, 0x4f, + 0x8a, 0xfc, 0xc2, 0x01, 0x03, 0x5f, 0x7b, 0x6d, 0x8e, + 0x69, 0x40, 0x2d, 0xe5, 0x45, 0x16, 0x18, 0xc2, 0x1a, + 0x53, 0x5f, 0xa9, 0xd7, 0xbf, 0xc5, 0xb8, 0xdd, 0x9f, + 0xc2, 0x43, 0xf8, 0xcf, 0x92, 0x7d, 0xb3, 0x13, 0x22, + 0xd6, 0xe8, 0x81, 0xea, 0xa9, 0x1a, 0x99, 0x61, 0x70, + 0xe6, 0x57, 0xa0, 0x5a, 0x26, 0x64, 0x26, 0xd9, 0x8c, + 0x88, 0x00, 0x3f, 0x84, 0x77, 0xc1, 0x22, 0x70, 0x94, + 0xa0, 0xd9, 0xfa, 0x1e, 0x8c, 0x40, 0x24, 0x30, 0x9c, + 0xe1, 0xec, 0xcc, 0xb5, 0x21, 0x00, 0x35, 0xd4, 0x7a, + 0xc7, 0x2e, 0x8a, + }, + }, + // Example 1.2 + { + []byte{0x75, 0x0c, 0x40, 0x47, 0xf5, 0x47, 0xe8, 0xe4, + 0x14, 0x11, 0x85, 0x65, 0x23, 0x29, 0x8a, 0xc9, 0xba, + 0xe2, 0x45, 0xef, 0xaf, 0x13, 0x97, 0xfb, 0xe5, 0x6f, + 0x9d, 0xd5, + }, + []byte{0x0c, 0xc7, 0x42, 0xce, 0x4a, 0x9b, 0x7f, 0x32, + 0xf9, 0x51, 0xbc, 0xb2, 0x51, 0xef, 0xd9, 0x25, 0xfe, + 0x4f, 0xe3, 0x5f, + }, + []byte{0x64, 0x0d, 0xb1, 0xac, 0xc5, 0x8e, 0x05, 0x68, + 0xfe, 0x54, 0x07, 0xe5, 0xf9, 0xb7, 0x01, 0xdf, 0xf8, + 0xc3, 0xc9, 0x1e, 0x71, 0x6c, 0x53, 0x6f, 0xc7, 0xfc, + 0xec, 0x6c, 0xb5, 0xb7, 0x1c, 0x11, 0x65, 0x98, 0x8d, + 0x4a, 0x27, 0x9e, 0x15, 0x77, 0xd7, 0x30, 0xfc, 0x7a, + 0x29, 0x93, 0x2e, 0x3f, 0x00, 0xc8, 0x15, 0x15, 0x23, + 0x6d, 0x8d, 0x8e, 0x31, 0x01, 0x7a, 0x7a, 0x09, 0xdf, + 0x43, 0x52, 0xd9, 0x04, 0xcd, 0xeb, 0x79, 0xaa, 0x58, + 0x3a, 0xdc, 0xc3, 0x1e, 0xa6, 0x98, 0xa4, 0xc0, 0x52, + 0x83, 0xda, 0xba, 0x90, 0x89, 0xbe, 0x54, 0x91, 0xf6, + 0x7c, 0x1a, 0x4e, 0xe4, 0x8d, 0xc7, 0x4b, 0xbb, 0xe6, + 0x64, 0x3a, 0xef, 0x84, 0x66, 0x79, 0xb4, 0xcb, 0x39, + 0x5a, 0x35, 0x2d, 0x5e, 0xd1, 0x15, 0x91, 0x2d, 0xf6, + 0x96, 0xff, 0xe0, 0x70, 0x29, 0x32, 0x94, 0x6d, 0x71, + 0x49, 0x2b, 0x44, + }, + }, + // Example 1.3 + { + []byte{0xd9, 0x4a, 0xe0, 0x83, 0x2e, 0x64, 0x45, 0xce, + 0x42, 0x33, 0x1c, 0xb0, 0x6d, 0x53, 0x1a, 0x82, 0xb1, + 0xdb, 0x4b, 0xaa, 0xd3, 0x0f, 0x74, 0x6d, 0xc9, 0x16, + 0xdf, 0x24, 0xd4, 0xe3, 0xc2, 0x45, 0x1f, 0xff, 0x59, + 0xa6, 0x42, 0x3e, 0xb0, 0xe1, 0xd0, 0x2d, 0x4f, 0xe6, + 0x46, 0xcf, 0x69, 0x9d, 0xfd, 0x81, 0x8c, 0x6e, 0x97, + 0xb0, 0x51, + }, + []byte{0x25, 0x14, 0xdf, 0x46, 0x95, 0x75, 0x5a, 0x67, + 0xb2, 0x88, 0xea, 0xf4, 0x90, 0x5c, 0x36, 0xee, 0xc6, + 0x6f, 0xd2, 0xfd, + }, + []byte{0x42, 0x37, 0x36, 0xed, 0x03, 0x5f, 0x60, 0x26, + 0xaf, 0x27, 0x6c, 0x35, 0xc0, 0xb3, 0x74, 0x1b, 0x36, + 0x5e, 0x5f, 0x76, 0xca, 0x09, 0x1b, 0x4e, 0x8c, 0x29, + 0xe2, 0xf0, 0xbe, 0xfe, 0xe6, 0x03, 0x59, 0x5a, 0xa8, + 0x32, 0x2d, 0x60, 0x2d, 0x2e, 0x62, 0x5e, 0x95, 0xeb, + 0x81, 0xb2, 0xf1, 0xc9, 0x72, 0x4e, 0x82, 0x2e, 0xca, + 0x76, 0xdb, 0x86, 0x18, 0xcf, 0x09, 0xc5, 0x34, 0x35, + 0x03, 0xa4, 0x36, 0x08, 0x35, 0xb5, 0x90, 0x3b, 0xc6, + 0x37, 0xe3, 0x87, 0x9f, 0xb0, 0x5e, 0x0e, 0xf3, 0x26, + 0x85, 0xd5, 0xae, 0xc5, 0x06, 0x7c, 0xd7, 0xcc, 0x96, + 0xfe, 0x4b, 0x26, 0x70, 0xb6, 0xea, 0xc3, 0x06, 0x6b, + 0x1f, 0xcf, 0x56, 0x86, 0xb6, 0x85, 0x89, 0xaa, 0xfb, + 0x7d, 0x62, 0x9b, 0x02, 0xd8, 0xf8, 0x62, 0x5c, 0xa3, + 0x83, 0x36, 0x24, 0xd4, 0x80, 0x0f, 0xb0, 0x81, 0xb1, + 0xcf, 0x94, 0xeb, + }, + }, + }, + }, + // Key 10 + {"ae45ed5601cec6b8cc05f803935c674ddbe0d75c4c09fd7951fc6b0caec313a8df39970c518bffba5ed68f3f0d7f22a4029d413f1ae07e4ebe9e4177ce23e7f5404b569e4ee1bdcf3c1fb03ef113802d4f855eb9b5134b5a7c8085adcae6fa2fa1417ec3763be171b0c62b760ede23c12ad92b980884c641f5a8fac26bdad4a03381a22fe1b754885094c82506d4019a535a286afeb271bb9ba592de18dcf600c2aeeae56e02f7cf79fc14cf3bdc7cd84febbbf950ca90304b2219a7aa063aefa2c3c1980e560cd64afe779585b6107657b957857efde6010988ab7de417fc88d8f384c4e6e72c3f943e0c31c0c4a5cc36f879d8a3ac9d7d59860eaada6b83bb", + 65537, + "056b04216fe5f354ac77250a4b6b0c8525a85c59b0bd80c56450a22d5f438e596a333aa875e291dd43f48cb88b9d5fc0d499f9fcd1c397f9afc070cd9e398c8d19e61db7c7410a6b2675dfbf5d345b804d201add502d5ce2dfcb091ce9997bbebe57306f383e4d588103f036f7e85d1934d152a323e4a8db451d6f4a5b1b0f102cc150e02feee2b88dea4ad4c1baccb24d84072d14e1d24a6771f7408ee30564fb86d4393a34bcf0b788501d193303f13a2284b001f0f649eaf79328d4ac5c430ab4414920a9460ed1b7bc40ec653e876d09abc509ae45b525190116a0c26101848298509c1c3bf3a483e7274054e15e97075036e989f60932807b5257751e79", + []testEncryptOAEPMessage{ + // Example 10.1 + { + []byte{0x8b, 0xba, 0x6b, 0xf8, 0x2a, 0x6c, 0x0f, 0x86, + 0xd5, 0xf1, 0x75, 0x6e, 0x97, 0x95, 0x68, 0x70, 0xb0, + 0x89, 0x53, 0xb0, 0x6b, 0x4e, 0xb2, 0x05, 0xbc, 0x16, + 0x94, 0xee, + }, + []byte{0x47, 0xe1, 0xab, 0x71, 0x19, 0xfe, 0xe5, 0x6c, + 0x95, 0xee, 0x5e, 0xaa, 0xd8, 0x6f, 0x40, 0xd0, 0xaa, + 0x63, 0xbd, 0x33, + }, + []byte{0x53, 0xea, 0x5d, 0xc0, 0x8c, 0xd2, 0x60, 0xfb, + 0x3b, 0x85, 0x85, 0x67, 0x28, 0x7f, 0xa9, 0x15, 0x52, + 0xc3, 0x0b, 0x2f, 0xeb, 0xfb, 0xa2, 0x13, 0xf0, 0xae, + 0x87, 0x70, 0x2d, 0x06, 0x8d, 0x19, 0xba, 0xb0, 0x7f, + 0xe5, 0x74, 0x52, 0x3d, 0xfb, 0x42, 0x13, 0x9d, 0x68, + 0xc3, 0xc5, 0xaf, 0xee, 0xe0, 0xbf, 0xe4, 0xcb, 0x79, + 0x69, 0xcb, 0xf3, 0x82, 0xb8, 0x04, 0xd6, 0xe6, 0x13, + 0x96, 0x14, 0x4e, 0x2d, 0x0e, 0x60, 0x74, 0x1f, 0x89, + 0x93, 0xc3, 0x01, 0x4b, 0x58, 0xb9, 0xb1, 0x95, 0x7a, + 0x8b, 0xab, 0xcd, 0x23, 0xaf, 0x85, 0x4f, 0x4c, 0x35, + 0x6f, 0xb1, 0x66, 0x2a, 0xa7, 0x2b, 0xfc, 0xc7, 0xe5, + 0x86, 0x55, 0x9d, 0xc4, 0x28, 0x0d, 0x16, 0x0c, 0x12, + 0x67, 0x85, 0xa7, 0x23, 0xeb, 0xee, 0xbe, 0xff, 0x71, + 0xf1, 0x15, 0x94, 0x44, 0x0a, 0xae, 0xf8, 0x7d, 0x10, + 0x79, 0x3a, 0x87, 0x74, 0xa2, 0x39, 0xd4, 0xa0, 0x4c, + 0x87, 0xfe, 0x14, 0x67, 0xb9, 0xda, 0xf8, 0x52, 0x08, + 0xec, 0x6c, 0x72, 0x55, 0x79, 0x4a, 0x96, 0xcc, 0x29, + 0x14, 0x2f, 0x9a, 0x8b, 0xd4, 0x18, 0xe3, 0xc1, 0xfd, + 0x67, 0x34, 0x4b, 0x0c, 0xd0, 0x82, 0x9d, 0xf3, 0xb2, + 0xbe, 0xc6, 0x02, 0x53, 0x19, 0x62, 0x93, 0xc6, 0xb3, + 0x4d, 0x3f, 0x75, 0xd3, 0x2f, 0x21, 0x3d, 0xd4, 0x5c, + 0x62, 0x73, 0xd5, 0x05, 0xad, 0xf4, 0xcc, 0xed, 0x10, + 0x57, 0xcb, 0x75, 0x8f, 0xc2, 0x6a, 0xee, 0xfa, 0x44, + 0x12, 0x55, 0xed, 0x4e, 0x64, 0xc1, 0x99, 0xee, 0x07, + 0x5e, 0x7f, 0x16, 0x64, 0x61, 0x82, 0xfd, 0xb4, 0x64, + 0x73, 0x9b, 0x68, 0xab, 0x5d, 0xaf, 0xf0, 0xe6, 0x3e, + 0x95, 0x52, 0x01, 0x68, 0x24, 0xf0, 0x54, 0xbf, 0x4d, + 0x3c, 0x8c, 0x90, 0xa9, 0x7b, 0xb6, 0xb6, 0x55, 0x32, + 0x84, 0xeb, 0x42, 0x9f, 0xcc, + }, + }, + }, + }, +} |