diff options
author | upstream source tree <ports@midipix.org> | 2015-03-15 20:14:05 -0400 |
---|---|---|
committer | upstream source tree <ports@midipix.org> | 2015-03-15 20:14:05 -0400 |
commit | 554fd8c5195424bdbcabf5de30fdc183aba391bd (patch) | |
tree | 976dc5ab7fddf506dadce60ae936f43f58787092 /libgo/go/reflect | |
download | cbb-gcc-4.6.4-554fd8c5195424bdbcabf5de30fdc183aba391bd.tar.bz2 cbb-gcc-4.6.4-554fd8c5195424bdbcabf5de30fdc183aba391bd.tar.xz |
obtained gcc-4.6.4.tar.bz2 from upstream website;upstream
verified gcc-4.6.4.tar.bz2.sig;
imported gcc-4.6.4 source tree from verified upstream tarball.
downloading a git-generated archive based on the 'upstream' tag
should provide you with a source tree that is binary identical
to the one extracted from the above tarball.
if you have obtained the source via the command 'git clone',
however, do note that line-endings of files in your working
directory might differ from line-endings of the respective
files in the upstream repository.
Diffstat (limited to 'libgo/go/reflect')
-rw-r--r-- | libgo/go/reflect/all_test.go | 1392 | ||||
-rw-r--r-- | libgo/go/reflect/deepequal.go | 135 | ||||
-rw-r--r-- | libgo/go/reflect/tostring_test.go | 96 | ||||
-rw-r--r-- | libgo/go/reflect/type.go | 743 | ||||
-rw-r--r-- | libgo/go/reflect/value.go | 1242 |
5 files changed, 3608 insertions, 0 deletions
diff --git a/libgo/go/reflect/all_test.go b/libgo/go/reflect/all_test.go new file mode 100644 index 000000000..320f44203 --- /dev/null +++ b/libgo/go/reflect/all_test.go @@ -0,0 +1,1392 @@ +// Copyright 2009 The Go Authors. All rights reserved. +// Use of this source code is governed by a BSD-style +// license that can be found in the LICENSE file. + +package reflect_test + +import ( + "container/vector" + "fmt" + "io" + "os" + . "reflect" + "testing" + "unsafe" +) + +type integer int +type T struct { + a int + b float64 + c string + d *int +} + +type pair struct { + i interface{} + s string +} + +func isDigit(c uint8) bool { return '0' <= c && c <= '9' } + +func assert(t *testing.T, s, want string) { + if s != want { + t.Errorf("have %#q want %#q", s, want) + } +} + +func typestring(i interface{}) string { return Typeof(i).String() } + +var typeTests = []pair{ + {struct{ x int }{}, "int"}, + {struct{ x int8 }{}, "int8"}, + {struct{ x int16 }{}, "int16"}, + {struct{ x int32 }{}, "int32"}, + {struct{ x int64 }{}, "int64"}, + {struct{ x uint }{}, "uint"}, + {struct{ x uint8 }{}, "uint8"}, + {struct{ x uint16 }{}, "uint16"}, + {struct{ x uint32 }{}, "uint32"}, + {struct{ x uint64 }{}, "uint64"}, + {struct{ x float32 }{}, "float32"}, + {struct{ x float64 }{}, "float64"}, + {struct{ x int8 }{}, "int8"}, + {struct{ x (**int8) }{}, "**int8"}, + {struct{ x (**integer) }{}, "**reflect_test.integer"}, + {struct{ x ([32]int32) }{}, "[32]int32"}, + {struct{ x ([]int8) }{}, "[]int8"}, + {struct{ x (map[string]int32) }{}, "map[string] int32"}, + {struct{ x (chan<- string) }{}, "chan<- string"}, + {struct { + x struct { + c chan *int32 + d float32 + } + }{}, + "struct { c chan *int32; d float32 }", + }, + {struct{ x (func(a int8, b int32)) }{}, "func(int8, int32)"}, + {struct { + x struct { + c func(chan *integer, *int8) + } + }{}, + "struct { c func(chan *reflect_test.integer, *int8) }", + }, + {struct { + x struct { + a int8 + b int32 + } + }{}, + "struct { a int8; b int32 }", + }, + {struct { + x struct { + a int8 + b int8 + c int32 + } + }{}, + "struct { a int8; b int8; c int32 }", + }, + {struct { + x struct { + a int8 + b int8 + c int8 + d int32 + } + }{}, + "struct { a int8; b int8; c int8; d int32 }", + }, + {struct { + x struct { + a int8 + b int8 + c int8 + d int8 + e int32 + } + }{}, + "struct { a int8; b int8; c int8; d int8; e int32 }", + }, + {struct { + x struct { + a int8 + b int8 + c int8 + d int8 + e int8 + f int32 + } + }{}, + "struct { a int8; b int8; c int8; d int8; e int8; f int32 }", + }, + {struct { + x struct { + a int8 "hi there" + } + }{}, + `struct { a int8 "hi there" }`, + }, + {struct { + x struct { + a int8 "hi \x00there\t\n\"\\" + } + }{}, + `struct { a int8 "hi \x00there\t\n\"\\" }`, + }, + {struct { + x struct { + f func(args ...int) + } + }{}, + "struct { f func(...int) }", + }, + {struct { + x (interface { + a(func(func(int) int) func(func(int)) int) + b() + }) + }{}, + "interface { a(func(func(int) int) func(func(int)) int); b() }", + }, +} + +var valueTests = []pair{ + {(int8)(0), "8"}, + {(int16)(0), "16"}, + {(int32)(0), "32"}, + {(int64)(0), "64"}, + {(uint8)(0), "8"}, + {(uint16)(0), "16"}, + {(uint32)(0), "32"}, + {(uint64)(0), "64"}, + {(float32)(0), "256.25"}, + {(float64)(0), "512.125"}, + {(string)(""), "stringy cheese"}, + {(bool)(false), "true"}, + {(*int8)(nil), "*int8(0)"}, + {(**int8)(nil), "**int8(0)"}, + {[5]int32{}, "[5]int32{0, 0, 0, 0, 0}"}, + {(**integer)(nil), "**reflect_test.integer(0)"}, + {(map[string]int32)(nil), "map[string] int32{<can't iterate on maps>}"}, + {(chan<- string)(nil), "chan<- string"}, + {struct { + c chan *int32 + d float32 + }{}, + "struct { c chan *int32; d float32 }{chan *int32, 0}", + }, + {(func(a int8, b int32))(nil), "func(int8, int32)(0)"}, + {struct{ c func(chan *integer, *int8) }{}, + "struct { c func(chan *reflect_test.integer, *int8) }{func(chan *reflect_test.integer, *int8)(0)}", + }, + {struct { + a int8 + b int32 + }{}, + "struct { a int8; b int32 }{0, 0}", + }, + {struct { + a int8 + b int8 + c int32 + }{}, + "struct { a int8; b int8; c int32 }{0, 0, 0}", + }, +} + +func testType(t *testing.T, i int, typ Type, want string) { + s := typ.String() + if s != want { + t.Errorf("#%d: have %#q, want %#q", i, s, want) + } +} + +func TestTypes(t *testing.T) { + for i, tt := range typeTests { + testType(t, i, NewValue(tt.i).(*StructValue).Field(0).Type(), tt.s) + } +} + +func TestSet(t *testing.T) { + for i, tt := range valueTests { + v := NewValue(tt.i) + switch v := v.(type) { + case *IntValue: + switch v.Type().Kind() { + case Int: + v.Set(132) + case Int8: + v.Set(8) + case Int16: + v.Set(16) + case Int32: + v.Set(32) + case Int64: + v.Set(64) + } + case *UintValue: + switch v.Type().Kind() { + case Uint: + v.Set(132) + case Uint8: + v.Set(8) + case Uint16: + v.Set(16) + case Uint32: + v.Set(32) + case Uint64: + v.Set(64) + } + case *FloatValue: + switch v.Type().Kind() { + case Float32: + v.Set(256.25) + case Float64: + v.Set(512.125) + } + case *ComplexValue: + switch v.Type().Kind() { + case Complex64: + v.Set(532.125 + 10i) + case Complex128: + v.Set(564.25 + 1i) + } + case *StringValue: + v.Set("stringy cheese") + case *BoolValue: + v.Set(true) + } + s := valueToString(v) + if s != tt.s { + t.Errorf("#%d: have %#q, want %#q", i, s, tt.s) + } + } +} + +func TestSetValue(t *testing.T) { + for i, tt := range valueTests { + v := NewValue(tt.i) + switch v := v.(type) { + case *IntValue: + switch v.Type().Kind() { + case Int: + v.SetValue(NewValue(int(132))) + case Int8: + v.SetValue(NewValue(int8(8))) + case Int16: + v.SetValue(NewValue(int16(16))) + case Int32: + v.SetValue(NewValue(int32(32))) + case Int64: + v.SetValue(NewValue(int64(64))) + } + case *UintValue: + switch v.Type().Kind() { + case Uint: + v.SetValue(NewValue(uint(132))) + case Uint8: + v.SetValue(NewValue(uint8(8))) + case Uint16: + v.SetValue(NewValue(uint16(16))) + case Uint32: + v.SetValue(NewValue(uint32(32))) + case Uint64: + v.SetValue(NewValue(uint64(64))) + } + case *FloatValue: + switch v.Type().Kind() { + case Float32: + v.SetValue(NewValue(float32(256.25))) + case Float64: + v.SetValue(NewValue(512.125)) + } + case *ComplexValue: + switch v.Type().Kind() { + case Complex64: + v.SetValue(NewValue(complex64(532.125 + 10i))) + case Complex128: + v.SetValue(NewValue(complex128(564.25 + 1i))) + } + + case *StringValue: + v.SetValue(NewValue("stringy cheese")) + case *BoolValue: + v.SetValue(NewValue(true)) + } + s := valueToString(v) + if s != tt.s { + t.Errorf("#%d: have %#q, want %#q", i, s, tt.s) + } + } +} + +var _i = 7 + +var valueToStringTests = []pair{ + {123, "123"}, + {123.5, "123.5"}, + {byte(123), "123"}, + {"abc", "abc"}, + {T{123, 456.75, "hello", &_i}, "reflect_test.T{123, 456.75, hello, *int(&7)}"}, + {new(chan *T), "*chan *reflect_test.T(&chan *reflect_test.T)"}, + {[10]int{1, 2, 3, 4, 5, 6, 7, 8, 9, 10}, "[10]int{1, 2, 3, 4, 5, 6, 7, 8, 9, 10}"}, + {&[10]int{1, 2, 3, 4, 5, 6, 7, 8, 9, 10}, "*[10]int(&[10]int{1, 2, 3, 4, 5, 6, 7, 8, 9, 10})"}, + {[]int{1, 2, 3, 4, 5, 6, 7, 8, 9, 10}, "[]int{1, 2, 3, 4, 5, 6, 7, 8, 9, 10}"}, + {&[]int{1, 2, 3, 4, 5, 6, 7, 8, 9, 10}, "*[]int(&[]int{1, 2, 3, 4, 5, 6, 7, 8, 9, 10})"}, +} + +func TestValueToString(t *testing.T) { + for i, test := range valueToStringTests { + s := valueToString(NewValue(test.i)) + if s != test.s { + t.Errorf("#%d: have %#q, want %#q", i, s, test.s) + } + } +} + +func TestArrayElemSet(t *testing.T) { + v := NewValue([10]int{1, 2, 3, 4, 5, 6, 7, 8, 9, 10}) + v.(*ArrayValue).Elem(4).(*IntValue).Set(123) + s := valueToString(v) + const want = "[10]int{1, 2, 3, 4, 123, 6, 7, 8, 9, 10}" + if s != want { + t.Errorf("[10]int: have %#q want %#q", s, want) + } + + v = NewValue([]int{1, 2, 3, 4, 5, 6, 7, 8, 9, 10}) + v.(*SliceValue).Elem(4).(*IntValue).Set(123) + s = valueToString(v) + const want1 = "[]int{1, 2, 3, 4, 123, 6, 7, 8, 9, 10}" + if s != want1 { + t.Errorf("[]int: have %#q want %#q", s, want1) + } +} + +func TestPtrPointTo(t *testing.T) { + var ip *int32 + var i int32 = 1234 + vip := NewValue(&ip) + vi := NewValue(i) + vip.(*PtrValue).Elem().(*PtrValue).PointTo(vi) + if *ip != 1234 { + t.Errorf("got %d, want 1234", *ip) + } + + ip = nil + vp := NewValue(ip).(*PtrValue) + vp.PointTo(vp.Elem()) + if ip != nil { + t.Errorf("got non-nil (%p), want nil", ip) + } +} + +func TestPtrSetNil(t *testing.T) { + var i int32 = 1234 + ip := &i + vip := NewValue(&ip) + vip.(*PtrValue).Elem().(*PtrValue).Set(nil) + if ip != nil { + t.Errorf("got non-nil (%d), want nil", *ip) + } +} + +func TestMapSetNil(t *testing.T) { + m := make(map[string]int) + vm := NewValue(&m) + vm.(*PtrValue).Elem().(*MapValue).Set(nil) + if m != nil { + t.Errorf("got non-nil (%p), want nil", m) + } +} + + +func TestAll(t *testing.T) { + testType(t, 1, Typeof((int8)(0)), "int8") + testType(t, 2, Typeof((*int8)(nil)).(*PtrType).Elem(), "int8") + + typ := Typeof((*struct { + c chan *int32 + d float32 + })(nil)) + testType(t, 3, typ, "*struct { c chan *int32; d float32 }") + etyp := typ.(*PtrType).Elem() + testType(t, 4, etyp, "struct { c chan *int32; d float32 }") + styp := etyp.(*StructType) + f := styp.Field(0) + testType(t, 5, f.Type, "chan *int32") + + f, present := styp.FieldByName("d") + if !present { + t.Errorf("FieldByName says present field is absent") + } + testType(t, 6, f.Type, "float32") + + f, present = styp.FieldByName("absent") + if present { + t.Errorf("FieldByName says absent field is present") + } + + typ = Typeof([32]int32{}) + testType(t, 7, typ, "[32]int32") + testType(t, 8, typ.(*ArrayType).Elem(), "int32") + + typ = Typeof((map[string]*int32)(nil)) + testType(t, 9, typ, "map[string] *int32") + mtyp := typ.(*MapType) + testType(t, 10, mtyp.Key(), "string") + testType(t, 11, mtyp.Elem(), "*int32") + + typ = Typeof((chan<- string)(nil)) + testType(t, 12, typ, "chan<- string") + testType(t, 13, typ.(*ChanType).Elem(), "string") + + // make sure tag strings are not part of element type + typ = Typeof(struct { + d []uint32 "TAG" + }{}).(*StructType).Field(0).Type + testType(t, 14, typ, "[]uint32") +} + +func TestInterfaceGet(t *testing.T) { + var inter struct { + e interface{} + } + inter.e = 123.456 + v1 := NewValue(&inter) + v2 := v1.(*PtrValue).Elem().(*StructValue).Field(0) + assert(t, v2.Type().String(), "interface { }") + i2 := v2.(*InterfaceValue).Interface() + v3 := NewValue(i2) + assert(t, v3.Type().String(), "float64") +} + +func TestInterfaceValue(t *testing.T) { + var inter struct { + e interface{} + } + inter.e = 123.456 + v1 := NewValue(&inter) + v2 := v1.(*PtrValue).Elem().(*StructValue).Field(0) + assert(t, v2.Type().String(), "interface { }") + v3 := v2.(*InterfaceValue).Elem() + assert(t, v3.Type().String(), "float64") + + i3 := v2.Interface() + if _, ok := i3.(float64); !ok { + t.Error("v2.Interface() did not return float64, got ", Typeof(i3)) + } +} + +func TestFunctionValue(t *testing.T) { + v := NewValue(func() {}) + if v.Interface() != v.Interface() { + t.Fatalf("TestFunction != itself") + } + assert(t, v.Type().String(), "func()") +} + +var appendTests = []struct { + orig, extra []int +}{ + {make([]int, 2, 4), []int{22}}, + {make([]int, 2, 4), []int{22, 33, 44}}, +} + +func TestAppend(t *testing.T) { + for i, test := range appendTests { + origLen, extraLen := len(test.orig), len(test.extra) + want := append(test.orig, test.extra...) + // Convert extra from []int to []Value. + e0 := make([]Value, len(test.extra)) + for j, e := range test.extra { + e0[j] = NewValue(e) + } + // Convert extra from []int to *SliceValue. + e1 := NewValue(test.extra).(*SliceValue) + // Test Append. + a0 := NewValue(test.orig).(*SliceValue) + have0 := Append(a0, e0...).Interface().([]int) + if !DeepEqual(have0, want) { + t.Errorf("Append #%d: have %v, want %v", i, have0, want) + } + // Check that the orig and extra slices were not modified. + if len(test.orig) != origLen { + t.Errorf("Append #%d origLen: have %v, want %v", i, len(test.orig), origLen) + } + if len(test.extra) != extraLen { + t.Errorf("Append #%d extraLen: have %v, want %v", i, len(test.extra), extraLen) + } + // Test AppendSlice. + a1 := NewValue(test.orig).(*SliceValue) + have1 := AppendSlice(a1, e1).Interface().([]int) + if !DeepEqual(have1, want) { + t.Errorf("AppendSlice #%d: have %v, want %v", i, have1, want) + } + // Check that the orig and extra slices were not modified. + if len(test.orig) != origLen { + t.Errorf("AppendSlice #%d origLen: have %v, want %v", i, len(test.orig), origLen) + } + if len(test.extra) != extraLen { + t.Errorf("AppendSlice #%d extraLen: have %v, want %v", i, len(test.extra), extraLen) + } + } +} + +func TestCopy(t *testing.T) { + a := []int{1, 2, 3, 4, 10, 9, 8, 7} + b := []int{11, 22, 33, 44, 1010, 99, 88, 77, 66, 55, 44} + c := []int{11, 22, 33, 44, 1010, 99, 88, 77, 66, 55, 44} + for i := 0; i < len(b); i++ { + if b[i] != c[i] { + t.Fatalf("b != c before test") + } + } + aa := NewValue(a).(*SliceValue) + ab := NewValue(b).(*SliceValue) + for tocopy := 1; tocopy <= 7; tocopy++ { + aa.SetLen(tocopy) + Copy(ab, aa) + aa.SetLen(8) + for i := 0; i < tocopy; i++ { + if a[i] != b[i] { + t.Errorf("(i) tocopy=%d a[%d]=%d, b[%d]=%d", + tocopy, i, a[i], i, b[i]) + } + } + for i := tocopy; i < len(b); i++ { + if b[i] != c[i] { + if i < len(a) { + t.Errorf("(ii) tocopy=%d a[%d]=%d, b[%d]=%d, c[%d]=%d", + tocopy, i, a[i], i, b[i], i, c[i]) + } else { + t.Errorf("(iii) tocopy=%d b[%d]=%d, c[%d]=%d", + tocopy, i, b[i], i, c[i]) + } + } else { + t.Logf("tocopy=%d elem %d is okay\n", tocopy, i) + } + } + } +} + +func TestBigUnnamedStruct(t *testing.T) { + b := struct{ a, b, c, d int64 }{1, 2, 3, 4} + v := NewValue(b) + b1 := v.Interface().(struct { + a, b, c, d int64 + }) + if b1.a != b.a || b1.b != b.b || b1.c != b.c || b1.d != b.d { + t.Errorf("NewValue(%v).Interface().(*Big) = %v", b, b1) + } +} + +type big struct { + a, b, c, d, e int64 +} + +func TestBigStruct(t *testing.T) { + b := big{1, 2, 3, 4, 5} + v := NewValue(b) + b1 := v.Interface().(big) + if b1.a != b.a || b1.b != b.b || b1.c != b.c || b1.d != b.d || b1.e != b.e { + t.Errorf("NewValue(%v).Interface().(big) = %v", b, b1) + } +} + +type Basic struct { + x int + y float32 +} + +type NotBasic Basic + +type DeepEqualTest struct { + a, b interface{} + eq bool +} + +var deepEqualTests = []DeepEqualTest{ + // Equalities + {1, 1, true}, + {int32(1), int32(1), true}, + {0.5, 0.5, true}, + {float32(0.5), float32(0.5), true}, + {"hello", "hello", true}, + {make([]int, 10), make([]int, 10), true}, + {&[3]int{1, 2, 3}, &[3]int{1, 2, 3}, true}, + {Basic{1, 0.5}, Basic{1, 0.5}, true}, + {os.Error(nil), os.Error(nil), true}, + {map[int]string{1: "one", 2: "two"}, map[int]string{2: "two", 1: "one"}, true}, + + // Inequalities + {1, 2, false}, + {int32(1), int32(2), false}, + {0.5, 0.6, false}, + {float32(0.5), float32(0.6), false}, + {"hello", "hey", false}, + {make([]int, 10), make([]int, 11), false}, + {&[3]int{1, 2, 3}, &[3]int{1, 2, 4}, false}, + {Basic{1, 0.5}, Basic{1, 0.6}, false}, + {Basic{1, 0}, Basic{2, 0}, false}, + {map[int]string{1: "one", 3: "two"}, map[int]string{2: "two", 1: "one"}, false}, + {map[int]string{1: "one", 2: "txo"}, map[int]string{2: "two", 1: "one"}, false}, + {map[int]string{1: "one"}, map[int]string{2: "two", 1: "one"}, false}, + {map[int]string{2: "two", 1: "one"}, map[int]string{1: "one"}, false}, + {nil, 1, false}, + {1, nil, false}, + + // Mismatched types + {1, 1.0, false}, + {int32(1), int64(1), false}, + {0.5, "hello", false}, + {[]int{1, 2, 3}, [3]int{1, 2, 3}, false}, + {&[3]interface{}{1, 2, 4}, &[3]interface{}{1, 2, "s"}, false}, + {Basic{1, 0.5}, NotBasic{1, 0.5}, false}, + {map[uint]string{1: "one", 2: "two"}, map[int]string{2: "two", 1: "one"}, false}, +} + +func TestDeepEqual(t *testing.T) { + for _, test := range deepEqualTests { + if r := DeepEqual(test.a, test.b); r != test.eq { + t.Errorf("DeepEqual(%v, %v) = %v, want %v", test.a, test.b, r, test.eq) + } + } +} + +func TestTypeof(t *testing.T) { + for _, test := range deepEqualTests { + v := NewValue(test.a) + if v == nil { + continue + } + typ := Typeof(test.a) + if typ != v.Type() { + t.Errorf("Typeof(%v) = %v, but NewValue(%v).Type() = %v", test.a, typ, test.a, v.Type()) + } + } +} + +type Recursive struct { + x int + r *Recursive +} + +func TestDeepEqualRecursiveStruct(t *testing.T) { + a, b := new(Recursive), new(Recursive) + *a = Recursive{12, a} + *b = Recursive{12, b} + if !DeepEqual(a, b) { + t.Error("DeepEqual(recursive same) = false, want true") + } +} + +type _Complex struct { + a int + b [3]*_Complex + c *string + d map[float64]float64 +} + +func TestDeepEqualComplexStruct(t *testing.T) { + m := make(map[float64]float64) + stra, strb := "hello", "hello" + a, b := new(_Complex), new(_Complex) + *a = _Complex{5, [3]*_Complex{a, b, a}, &stra, m} + *b = _Complex{5, [3]*_Complex{b, a, a}, &strb, m} + if !DeepEqual(a, b) { + t.Error("DeepEqual(complex same) = false, want true") + } +} + +func TestDeepEqualComplexStructInequality(t *testing.T) { + m := make(map[float64]float64) + stra, strb := "hello", "helloo" // Difference is here + a, b := new(_Complex), new(_Complex) + *a = _Complex{5, [3]*_Complex{a, b, a}, &stra, m} + *b = _Complex{5, [3]*_Complex{b, a, a}, &strb, m} + if DeepEqual(a, b) { + t.Error("DeepEqual(complex different) = true, want false") + } +} + + +func check2ndField(x interface{}, offs uintptr, t *testing.T) { + s := NewValue(x).(*StructValue) + f := s.Type().(*StructType).Field(1) + if f.Offset != offs { + t.Error("mismatched offsets in structure alignment:", f.Offset, offs) + } +} + +// Check that structure alignment & offsets viewed through reflect agree with those +// from the compiler itself. +func TestAlignment(t *testing.T) { + type T1inner struct { + a int + } + type T1 struct { + T1inner + f int + } + type T2inner struct { + a, b int + } + type T2 struct { + T2inner + f int + } + + x := T1{T1inner{2}, 17} + check2ndField(x, uintptr(unsafe.Pointer(&x.f))-uintptr(unsafe.Pointer(&x)), t) + + x1 := T2{T2inner{2, 3}, 17} + check2ndField(x1, uintptr(unsafe.Pointer(&x1.f))-uintptr(unsafe.Pointer(&x1)), t) +} + +type IsNiller interface { + IsNil() bool +} + +func Nil(a interface{}, t *testing.T) { + n := NewValue(a).(*StructValue).Field(0).(IsNiller) + if !n.IsNil() { + t.Errorf("%v should be nil", a) + } +} + +func NotNil(a interface{}, t *testing.T) { + n := NewValue(a).(*StructValue).Field(0).(IsNiller) + if n.IsNil() { + t.Errorf("value of type %v should not be nil", NewValue(a).Type().String()) + } +} + +func TestIsNil(t *testing.T) { + // These do not implement IsNil + doNotNil := []interface{}{int(0), float32(0), struct{ a int }{}} + for _, ts := range doNotNil { + ty := Typeof(ts) + v := MakeZero(ty) + if _, ok := v.(IsNiller); ok { + t.Errorf("%s is nilable; should not be", ts) + } + } + + // These do implement IsNil. + // Wrap in extra struct to hide interface type. + doNil := []interface{}{ + struct{ x *int }{}, + struct{ x interface{} }{}, + struct{ x map[string]int }{}, + struct{ x func() bool }{}, + struct{ x chan int }{}, + struct{ x []string }{}, + } + for _, ts := range doNil { + ty := Typeof(ts).(*StructType).Field(0).Type + v := MakeZero(ty) + if _, ok := v.(IsNiller); !ok { + t.Errorf("%s %T is not nilable; should be", ts, v) + } + } + + // Check the implementations + var pi struct { + x *int + } + Nil(pi, t) + pi.x = new(int) + NotNil(pi, t) + + var si struct { + x []int + } + Nil(si, t) + si.x = make([]int, 10) + NotNil(si, t) + + var ci struct { + x chan int + } + Nil(ci, t) + ci.x = make(chan int) + NotNil(ci, t) + + var mi struct { + x map[int]int + } + Nil(mi, t) + mi.x = make(map[int]int) + NotNil(mi, t) + + var ii struct { + x interface{} + } + Nil(ii, t) + ii.x = 2 + NotNil(ii, t) + + var fi struct { + x func(t *testing.T) + } + Nil(fi, t) + fi.x = TestIsNil + NotNil(fi, t) +} + +func TestInterfaceExtraction(t *testing.T) { + var s struct { + w io.Writer + } + + s.w = os.Stdout + v := Indirect(NewValue(&s)).(*StructValue).Field(0).Interface() + if v != s.w.(interface{}) { + t.Error("Interface() on interface: ", v, s.w) + } +} + +func TestInterfaceEditing(t *testing.T) { + // strings are bigger than one word, + // so the interface conversion allocates + // memory to hold a string and puts that + // pointer in the interface. + var i interface{} = "hello" + + // if i pass the interface value by value + // to NewValue, i should get a fresh copy + // of the value. + v := NewValue(i) + + // and setting that copy to "bye" should + // not change the value stored in i. + v.(*StringValue).Set("bye") + if i.(string) != "hello" { + t.Errorf(`Set("bye") changed i to %s`, i.(string)) + } + + // the same should be true of smaller items. + i = 123 + v = NewValue(i) + v.(*IntValue).Set(234) + if i.(int) != 123 { + t.Errorf("Set(234) changed i to %d", i.(int)) + } +} + +func TestNilPtrValueSub(t *testing.T) { + var pi *int + if pv := NewValue(pi).(*PtrValue); pv.Elem() != nil { + t.Error("NewValue((*int)(nil)).(*PtrValue).Elem() != nil") + } +} + +func TestMap(t *testing.T) { + m := map[string]int{"a": 1, "b": 2} + mv := NewValue(m).(*MapValue) + if n := mv.Len(); n != len(m) { + t.Errorf("Len = %d, want %d", n, len(m)) + } + keys := mv.Keys() + i := 0 + newmap := MakeMap(mv.Type().(*MapType)) + for k, v := range m { + // Check that returned Keys match keys in range. + // These aren't required to be in the same order, + // but they are in this implementation, which makes + // the test easier. + if i >= len(keys) { + t.Errorf("Missing key #%d %q", i, k) + } else if kv := keys[i].(*StringValue); kv.Get() != k { + t.Errorf("Keys[%d] = %q, want %q", i, kv.Get(), k) + } + i++ + + // Check that value lookup is correct. + vv := mv.Elem(NewValue(k)) + if vi := vv.(*IntValue).Get(); vi != int64(v) { + t.Errorf("Key %q: have value %d, want %d", k, vi, v) + } + + // Copy into new map. + newmap.SetElem(NewValue(k), NewValue(v)) + } + vv := mv.Elem(NewValue("not-present")) + if vv != nil { + t.Errorf("Invalid key: got non-nil value %s", valueToString(vv)) + } + + newm := newmap.Interface().(map[string]int) + if len(newm) != len(m) { + t.Errorf("length after copy: newm=%d, m=%d", newm, m) + } + + for k, v := range newm { + mv, ok := m[k] + if mv != v { + t.Errorf("newm[%q] = %d, but m[%q] = %d, %v", k, v, k, mv, ok) + } + } + + newmap.SetElem(NewValue("a"), nil) + v, ok := newm["a"] + if ok { + t.Errorf("newm[\"a\"] = %d after delete", v) + } + + mv = NewValue(&m).(*PtrValue).Elem().(*MapValue) + mv.Set(nil) + if m != nil { + t.Errorf("mv.Set(nil) failed") + } +} + +func TestChan(t *testing.T) { + for loop := 0; loop < 2; loop++ { + var c chan int + var cv *ChanValue + + // check both ways to allocate channels + switch loop { + case 1: + c = make(chan int, 1) + cv = NewValue(c).(*ChanValue) + case 0: + cv = MakeChan(Typeof(c).(*ChanType), 1) + c = cv.Interface().(chan int) + } + + // Send + cv.Send(NewValue(2)) + if i := <-c; i != 2 { + t.Errorf("reflect Send 2, native recv %d", i) + } + + // Recv + c <- 3 + if i := cv.Recv().(*IntValue).Get(); i != 3 { + t.Errorf("native send 3, reflect Recv %d", i) + } + + // TryRecv fail + val := cv.TryRecv() + if val != nil { + t.Errorf("TryRecv on empty chan: %s", valueToString(val)) + } + + // TryRecv success + c <- 4 + val = cv.TryRecv() + if val == nil { + t.Errorf("TryRecv on ready chan got nil") + } else if i := val.(*IntValue).Get(); i != 4 { + t.Errorf("native send 4, TryRecv %d", i) + } + + // TrySend fail + c <- 100 + ok := cv.TrySend(NewValue(5)) + i := <-c + if ok { + t.Errorf("TrySend on full chan succeeded: value %d", i) + } + + // TrySend success + ok = cv.TrySend(NewValue(6)) + if !ok { + t.Errorf("TrySend on empty chan failed") + } else { + if i = <-c; i != 6 { + t.Errorf("TrySend 6, recv %d", i) + } + } + + // Close + c <- 123 + cv.Close() + if cv.Closed() { + t.Errorf("closed too soon - 1") + } + if i := cv.Recv().(*IntValue).Get(); i != 123 { + t.Errorf("send 123 then close; Recv %d", i) + } + if cv.Closed() { + t.Errorf("closed too soon - 2") + } + if i := cv.Recv().(*IntValue).Get(); i != 0 { + t.Errorf("after close Recv %d", i) + } + if !cv.Closed() { + t.Errorf("not closed") + } + } + + // check creation of unbuffered channel + var c chan int + cv := MakeChan(Typeof(c).(*ChanType), 0) + c = cv.Interface().(chan int) + if cv.TrySend(NewValue(7)) { + t.Errorf("TrySend on sync chan succeeded") + } + if cv.TryRecv() != nil { + t.Errorf("TryRecv on sync chan succeeded") + } + + // len/cap + cv = MakeChan(Typeof(c).(*ChanType), 10) + c = cv.Interface().(chan int) + for i := 0; i < 3; i++ { + c <- i + } + if l, m := cv.Len(), cv.Cap(); l != len(c) || m != cap(c) { + t.Errorf("Len/Cap = %d/%d want %d/%d", l, m, len(c), cap(c)) + } + +} + +// Difficult test for function call because of +// implicit padding between arguments. +func dummy(b byte, c int, d byte) (i byte, j int, k byte) { + return b, c, d +} + +func TestFunc(t *testing.T) { + ret := NewValue(dummy).(*FuncValue).Call([]Value{NewValue(byte(10)), NewValue(20), NewValue(byte(30))}) + if len(ret) != 3 { + t.Fatalf("Call returned %d values, want 3", len(ret)) + } + + i := ret[0].(*UintValue).Get() + j := ret[1].(*IntValue).Get() + k := ret[2].(*UintValue).Get() + if i != 10 || j != 20 || k != 30 { + t.Errorf("Call returned %d, %d, %d; want 10, 20, 30", i, j, k) + } +} + +type Point struct { + x, y int +} + +func (p Point) Dist(scale int) int { return p.x*p.x*scale + p.y*p.y*scale } + +func TestMethod(t *testing.T) { + // Non-curried method of type. + p := Point{3, 4} + i := Typeof(p).Method(0).Func.Call([]Value{NewValue(p), NewValue(10)})[0].(*IntValue).Get() + if i != 250 { + t.Errorf("Type Method returned %d; want 250", i) + } + + i = Typeof(&p).Method(0).Func.Call([]Value{NewValue(&p), NewValue(10)})[0].(*IntValue).Get() + if i != 250 { + t.Errorf("Pointer Type Method returned %d; want 250", i) + } + + // Curried method of value. + i = NewValue(p).Method(0).Call([]Value{NewValue(10)})[0].(*IntValue).Get() + if i != 250 { + t.Errorf("Value Method returned %d; want 250", i) + } + + // Curried method of interface value. + // Have to wrap interface value in a struct to get at it. + // Passing it to NewValue directly would + // access the underlying Point, not the interface. + var s = struct { + x interface { + Dist(int) int + } + }{p} + pv := NewValue(s).(*StructValue).Field(0) + i = pv.Method(0).Call([]Value{NewValue(10)})[0].(*IntValue).Get() + if i != 250 { + t.Errorf("Interface Method returned %d; want 250", i) + } +} + +func TestInterfaceSet(t *testing.T) { + p := &Point{3, 4} + + var s struct { + I interface{} + P interface { + Dist(int) int + } + } + sv := NewValue(&s).(*PtrValue).Elem().(*StructValue) + sv.Field(0).(*InterfaceValue).Set(NewValue(p)) + if q := s.I.(*Point); q != p { + t.Errorf("i: have %p want %p", q, p) + } + + pv := sv.Field(1).(*InterfaceValue) + pv.Set(NewValue(p)) + if q := s.P.(*Point); q != p { + t.Errorf("i: have %p want %p", q, p) + } + + i := pv.Method(0).Call([]Value{NewValue(10)})[0].(*IntValue).Get() + if i != 250 { + t.Errorf("Interface Method returned %d; want 250", i) + } +} + +type T1 struct { + a string + int +} + +func TestAnonymousFields(t *testing.T) { + var field StructField + var ok bool + var t1 T1 + type1 := Typeof(t1).(*StructType) + if field, ok = type1.FieldByName("int"); !ok { + t.Error("no field 'int'") + } + if field.Index[0] != 1 { + t.Error("field index should be 1; is", field.Index) + } +} + +type FTest struct { + s interface{} + name string + index []int + value int +} + +type D1 struct { + d int +} +type D2 struct { + d int +} + +type S0 struct { + a, b, c int + D1 + D2 +} + +type S1 struct { + b int + S0 +} + +type S2 struct { + a int + *S1 +} + +type S1x struct { + S1 +} + +type S1y struct { + S1 +} + +type S3 struct { + S1x + S2 + d, e int + *S1y +} + +type S4 struct { + *S4 + a int +} + +var fieldTests = []FTest{ + {struct{}{}, "", nil, 0}, + {struct{}{}, "foo", nil, 0}, + {S0{a: 'a'}, "a", []int{0}, 'a'}, + {S0{}, "d", nil, 0}, + {S1{S0: S0{a: 'a'}}, "a", []int{1, 0}, 'a'}, + {S1{b: 'b'}, "b", []int{0}, 'b'}, + {S1{}, "S0", []int{1}, 0}, + {S1{S0: S0{c: 'c'}}, "c", []int{1, 2}, 'c'}, + {S2{a: 'a'}, "a", []int{0}, 'a'}, + {S2{}, "S1", []int{1}, 0}, + {S2{S1: &S1{b: 'b'}}, "b", []int{1, 0}, 'b'}, + {S2{S1: &S1{S0: S0{c: 'c'}}}, "c", []int{1, 1, 2}, 'c'}, + {S2{}, "d", nil, 0}, + {S3{}, "S1", nil, 0}, + {S3{S2: S2{a: 'a'}}, "a", []int{1, 0}, 'a'}, + {S3{}, "b", nil, 0}, + {S3{d: 'd'}, "d", []int{2}, 0}, + {S3{e: 'e'}, "e", []int{3}, 'e'}, + {S4{a: 'a'}, "a", []int{1}, 'a'}, + {S4{}, "b", nil, 0}, +} + +func TestFieldByIndex(t *testing.T) { + for _, test := range fieldTests { + s := Typeof(test.s).(*StructType) + f := s.FieldByIndex(test.index) + if f.Name != "" { + if test.index != nil { + if f.Name != test.name { + t.Errorf("%s.%s found; want %s", s.Name(), f.Name, test.name) + } + } else { + t.Errorf("%s.%s found", s.Name(), f.Name) + } + } else if len(test.index) > 0 { + t.Errorf("%s.%s not found", s.Name(), test.name) + } + + if test.value != 0 { + v := NewValue(test.s).(*StructValue).FieldByIndex(test.index) + if v != nil { + if x, ok := v.Interface().(int); ok { + if x != test.value { + t.Errorf("%s%v is %d; want %d", s.Name(), test.index, x, test.value) + } + } else { + t.Errorf("%s%v value not an int", s.Name(), test.index) + } + } else { + t.Errorf("%s%v value not found", s.Name(), test.index) + } + } + } +} + +func TestFieldByName(t *testing.T) { + for _, test := range fieldTests { + s := Typeof(test.s).(*StructType) + f, found := s.FieldByName(test.name) + if found { + if test.index != nil { + // Verify field depth and index. + if len(f.Index) != len(test.index) { + t.Errorf("%s.%s depth %d; want %d", s.Name(), test.name, len(f.Index), len(test.index)) + } else { + for i, x := range f.Index { + if x != test.index[i] { + t.Errorf("%s.%s.Index[%d] is %d; want %d", s.Name(), test.name, i, x, test.index[i]) + } + } + } + } else { + t.Errorf("%s.%s found", s.Name(), f.Name) + } + } else if len(test.index) > 0 { + t.Errorf("%s.%s not found", s.Name(), test.name) + } + + if test.value != 0 { + v := NewValue(test.s).(*StructValue).FieldByName(test.name) + if v != nil { + if x, ok := v.Interface().(int); ok { + if x != test.value { + t.Errorf("%s.%s is %d; want %d", s.Name(), test.name, x, test.value) + } + } else { + t.Errorf("%s.%s value not an int", s.Name(), test.name) + } + } else { + t.Errorf("%s.%s value not found", s.Name(), test.name) + } + } + } +} + +func TestImportPath(t *testing.T) { + if path := Typeof(vector.Vector{}).PkgPath(); path != "libgo_container.vector" { + t.Errorf("Typeof(vector.Vector{}).PkgPath() = %q, want \"libgo_container.vector\"", path) + } +} + +func TestDotDotDot(t *testing.T) { + // Test example from FuncType.DotDotDot documentation. + var f func(x int, y ...float64) + typ := Typeof(f).(*FuncType) + if typ.NumIn() == 2 && typ.In(0) == Typeof(int(0)) { + sl, ok := typ.In(1).(*SliceType) + if ok { + if sl.Elem() == Typeof(0.0) { + // ok + return + } + } + } + + // Failed + t.Errorf("want NumIn() = 2, In(0) = int, In(1) = []float64") + s := fmt.Sprintf("have NumIn() = %d", typ.NumIn()) + for i := 0; i < typ.NumIn(); i++ { + s += fmt.Sprintf(", In(%d) = %s", i, typ.In(i)) + } + t.Error(s) +} + +type inner struct { + x int +} + +type outer struct { + y int + inner +} + +func (*inner) m() {} +func (*outer) m() {} + +func TestNestedMethods(t *testing.T) { + typ := Typeof((*outer)(nil)) + if typ.NumMethod() != 1 || typ.Method(0).Func.Get() != NewValue((*outer).m).(*FuncValue).Get() { + t.Errorf("Wrong method table for outer: (m=%p)", (*outer).m) + for i := 0; i < typ.NumMethod(); i++ { + m := typ.Method(i) + t.Errorf("\t%d: %s %#x\n", i, m.Name, m.Func.Get()) + } + } +} + +type innerInt struct { + x int +} + +type outerInt struct { + y int + innerInt +} + +func (i *innerInt) m() int { + return i.x +} + +func TestEmbeddedMethods(t *testing.T) { + typ := Typeof((*outerInt)(nil)) + if typ.NumMethod() != 1 || typ.Method(0).Func.Get() != NewValue((*outerInt).m).(*FuncValue).Get() { + t.Errorf("Wrong method table for outerInt: (m=%p)", (*outerInt).m) + for i := 0; i < typ.NumMethod(); i++ { + m := typ.Method(i) + t.Errorf("\t%d: %s %#x\n", i, m.Name, m.Func.Get()) + } + } + + i := &innerInt{3} + if v := NewValue(i).Method(0).Call(nil)[0].(*IntValue).Get(); v != 3 { + t.Errorf("i.m() = %d, want 3", v) + } + + o := &outerInt{1, innerInt{2}} + if v := NewValue(o).Method(0).Call(nil)[0].(*IntValue).Get(); v != 2 { + t.Errorf("i.m() = %d, want 2", v) + } + + f := (*outerInt).m + if v := f(o); v != 2 { + t.Errorf("f(o) = %d, want 2", v) + } +} diff --git a/libgo/go/reflect/deepequal.go b/libgo/go/reflect/deepequal.go new file mode 100644 index 000000000..a50925e51 --- /dev/null +++ b/libgo/go/reflect/deepequal.go @@ -0,0 +1,135 @@ +// Copyright 2009 The Go Authors. All rights reserved. +// Use of this source code is governed by a BSD-style +// license that can be found in the LICENSE file. + +// Deep equality test via reflection + +package reflect + + +// During deepValueEqual, must keep track of checks that are +// in progress. The comparison algorithm assumes that all +// checks in progress are true when it reencounters them. +// Visited are stored in a map indexed by 17 * a1 + a2; +type visit struct { + a1 uintptr + a2 uintptr + typ Type + next *visit +} + +// Tests for deep equality using reflected types. The map argument tracks +// comparisons that have already been seen, which allows short circuiting on +// recursive types. +func deepValueEqual(v1, v2 Value, visited map[uintptr]*visit, depth int) bool { + if v1 == nil || v2 == nil { + return v1 == v2 + } + if v1.Type() != v2.Type() { + return false + } + + // if depth > 10 { panic("deepValueEqual") } // for debugging + + addr1 := v1.Addr() + addr2 := v2.Addr() + if addr1 > addr2 { + // Canonicalize order to reduce number of entries in visited. + addr1, addr2 = addr2, addr1 + } + + // Short circuit if references are identical ... + if addr1 == addr2 { + return true + } + + // ... or already seen + h := 17*addr1 + addr2 + seen := visited[h] + typ := v1.Type() + for p := seen; p != nil; p = p.next { + if p.a1 == addr1 && p.a2 == addr2 && p.typ == typ { + return true + } + } + + // Remember for later. + visited[h] = &visit{addr1, addr2, typ, seen} + + switch v := v1.(type) { + case *ArrayValue: + arr1 := v + arr2 := v2.(*ArrayValue) + if arr1.Len() != arr2.Len() { + return false + } + for i := 0; i < arr1.Len(); i++ { + if !deepValueEqual(arr1.Elem(i), arr2.Elem(i), visited, depth+1) { + return false + } + } + return true + case *SliceValue: + arr1 := v + arr2 := v2.(*SliceValue) + if arr1.Len() != arr2.Len() { + return false + } + for i := 0; i < arr1.Len(); i++ { + if !deepValueEqual(arr1.Elem(i), arr2.Elem(i), visited, depth+1) { + return false + } + } + return true + case *InterfaceValue: + i1 := v.Interface() + i2 := v2.Interface() + if i1 == nil || i2 == nil { + return i1 == i2 + } + return deepValueEqual(NewValue(i1), NewValue(i2), visited, depth+1) + case *PtrValue: + return deepValueEqual(v.Elem(), v2.(*PtrValue).Elem(), visited, depth+1) + case *StructValue: + struct1 := v + struct2 := v2.(*StructValue) + for i, n := 0, v.NumField(); i < n; i++ { + if !deepValueEqual(struct1.Field(i), struct2.Field(i), visited, depth+1) { + return false + } + } + return true + case *MapValue: + map1 := v + map2 := v2.(*MapValue) + if map1.Len() != map2.Len() { + return false + } + for _, k := range map1.Keys() { + if !deepValueEqual(map1.Elem(k), map2.Elem(k), visited, depth+1) { + return false + } + } + return true + default: + // Normal equality suffices + return v1.Interface() == v2.Interface() + } + + panic("Not reached") +} + +// DeepEqual tests for deep equality. It uses normal == equality where possible +// but will scan members of arrays, slices, and fields of structs. It correctly +// handles recursive types. +func DeepEqual(a1, a2 interface{}) bool { + if a1 == nil || a2 == nil { + return a1 == a2 + } + v1 := NewValue(a1) + v2 := NewValue(a2) + if v1.Type() != v2.Type() { + return false + } + return deepValueEqual(v1, v2, make(map[uintptr]*visit), 0) +} diff --git a/libgo/go/reflect/tostring_test.go b/libgo/go/reflect/tostring_test.go new file mode 100644 index 000000000..a1487fdd2 --- /dev/null +++ b/libgo/go/reflect/tostring_test.go @@ -0,0 +1,96 @@ +// Copyright 2009 The Go Authors. All rights reserved. +// Use of this source code is governed by a BSD-style +// license that can be found in the LICENSE file. + +// Formatting of reflection types and values for debugging. +// Not defined as methods so they do not need to be linked into most binaries; +// the functions are not used by the library itself, only in tests. + +package reflect_test + +import ( + . "reflect" + "strconv" +) + +// valueToString returns a textual representation of the reflection value val. +// For debugging only. +func valueToString(val Value) string { + var str string + if val == nil { + return "<nil>" + } + typ := val.Type() + switch val := val.(type) { + case *IntValue: + return strconv.Itoa64(val.Get()) + case *UintValue: + return strconv.Uitoa64(val.Get()) + case *FloatValue: + return strconv.Ftoa64(float64(val.Get()), 'g', -1) + case *ComplexValue: + c := val.Get() + return strconv.Ftoa64(float64(real(c)), 'g', -1) + "+" + strconv.Ftoa64(float64(imag(c)), 'g', -1) + "i" + case *StringValue: + return val.Get() + case *BoolValue: + if val.Get() { + return "true" + } else { + return "false" + } + case *PtrValue: + v := val + str = typ.String() + "(" + if v.IsNil() { + str += "0" + } else { + str += "&" + valueToString(v.Elem()) + } + str += ")" + return str + case ArrayOrSliceValue: + v := val + str += typ.String() + str += "{" + for i := 0; i < v.Len(); i++ { + if i > 0 { + str += ", " + } + str += valueToString(v.Elem(i)) + } + str += "}" + return str + case *MapValue: + t := typ.(*MapType) + str = t.String() + str += "{" + str += "<can't iterate on maps>" + str += "}" + return str + case *ChanValue: + str = typ.String() + return str + case *StructValue: + t := typ.(*StructType) + v := val + str += t.String() + str += "{" + for i, n := 0, v.NumField(); i < n; i++ { + if i > 0 { + str += ", " + } + str += valueToString(v.Field(i)) + } + str += "}" + return str + case *InterfaceValue: + return typ.String() + "(" + valueToString(val.Elem()) + ")" + case *FuncValue: + v := val + return typ.String() + "(" + strconv.Itoa64(int64(v.Get())) + ")" + default: + panic("valueToString: can't print type " + typ.String()) + } + return "valueToString: can't happen" +} diff --git a/libgo/go/reflect/type.go b/libgo/go/reflect/type.go new file mode 100644 index 000000000..4ad4c5f2b --- /dev/null +++ b/libgo/go/reflect/type.go @@ -0,0 +1,743 @@ +// Copyright 2009 The Go Authors. All rights reserved. +// Use of this source code is governed by a BSD-style +// license that can be found in the LICENSE file. + +// The reflect package implements run-time reflection, allowing a program to +// manipulate objects with arbitrary types. The typical use is to take a +// value with static type interface{} and extract its dynamic type +// information by calling Typeof, which returns an object with interface +// type Type. That contains a pointer to a struct of type *StructType, +// *IntType, etc. representing the details of the underlying type. A type +// switch or type assertion can reveal which. +// +// A call to NewValue creates a Value representing the run-time data; it +// contains a *StructValue, *IntValue, etc. MakeZero takes a Type and +// returns a Value representing a zero value for that type. +package reflect + +import ( + "runtime" + "strconv" + "sync" + "unsafe" +) + +/* + * Copy of data structures from ../runtime/type.go. + * For comments, see the ones in that file. + * + * These data structures are known to the compiler and the runtime. + * + * Putting these types in runtime instead of reflect means that + * reflect doesn't need to be autolinked into every binary, which + * simplifies bootstrapping and package dependencies. + * Unfortunately, it also means that reflect needs its own + * copy in order to access the private fields. + */ + +// commonType is the common implementation of most values. +// It is embedded in other, public struct types, but always +// with a unique tag like "uint" or "float" so that the client cannot +// convert from, say, *UintType to *FloatType. + +type commonType struct { + kind uint8 + align int8 + fieldAlign uint8 + size uintptr + hash uint32 + hashfn func(unsafe.Pointer, uintptr) + equalfn func(unsafe.Pointer, unsafe.Pointer, uintptr) + string *string + *uncommonType +} + +type method struct { + name *string + pkgPath *string + mtyp *runtime.Type + typ *runtime.Type + tfn unsafe.Pointer +} + +type uncommonType struct { + name *string + pkgPath *string + methods []method +} + +// BoolType represents a boolean type. +type BoolType struct { + commonType "bool" +} + +// FloatType represents a float type. +type FloatType struct { + commonType "float" +} + +// ComplexType represents a complex type. +type ComplexType struct { + commonType "complex" +} + +// IntType represents a signed integer type. +type IntType struct { + commonType "int" +} + +// UintType represents a uint type. +type UintType struct { + commonType "uint" +} + +// StringType represents a string type. +type StringType struct { + commonType "string" +} + +// UnsafePointerType represents an unsafe.Pointer type. +type UnsafePointerType struct { + commonType "unsafe.Pointer" +} + +// ArrayType represents a fixed array type. +type ArrayType struct { + commonType "array" + elem *runtime.Type + len uintptr +} + +// ChanDir represents a channel type's direction. +type ChanDir int + +const ( + RecvDir ChanDir = 1 << iota + SendDir + BothDir = RecvDir | SendDir +) + +// ChanType represents a channel type. +type ChanType struct { + commonType "chan" + elem *runtime.Type + dir uintptr +} + +// FuncType represents a function type. +type FuncType struct { + commonType "func" + dotdotdot bool + in []*runtime.Type + out []*runtime.Type +} + +// Method on interface type +type imethod struct { + name *string + pkgPath *string + typ *runtime.Type +} + +// InterfaceType represents an interface type. +type InterfaceType struct { + commonType "interface" + methods []imethod +} + +// MapType represents a map type. +type MapType struct { + commonType "map" + key *runtime.Type + elem *runtime.Type +} + +// PtrType represents a pointer type. +type PtrType struct { + commonType "ptr" + elem *runtime.Type +} + +// SliceType represents a slice type. +type SliceType struct { + commonType "slice" + elem *runtime.Type +} + +// Struct field +type structField struct { + name *string + pkgPath *string + typ *runtime.Type + tag *string + offset uintptr +} + +// StructType represents a struct type. +type StructType struct { + commonType "struct" + fields []structField +} + + +/* + * The compiler knows the exact layout of all the data structures above. + * The compiler does not know about the data structures and methods below. + */ + +// Method represents a single method. +type Method struct { + PkgPath string // empty for uppercase Name + Name string + Type *FuncType + Func *FuncValue +} + +// Type is the runtime representation of a Go type. +// Every type implements the methods listed here. +// Some types implement additional interfaces; +// use a type switch to find out what kind of type a Type is. +// Each type in a program has a unique Type, so == on Types +// corresponds to Go's type equality. +type Type interface { + // PkgPath returns the type's package path. + // The package path is a full package import path like "container/vector". + // PkgPath returns an empty string for unnamed types. + PkgPath() string + + // Name returns the type's name within its package. + // Name returns an empty string for unnamed types. + Name() string + + // String returns a string representation of the type. + // The string representation may use shortened package names + // (e.g., vector instead of "container/vector") and is not + // guaranteed to be unique among types. To test for equality, + // compare the Types directly. + String() string + + // Size returns the number of bytes needed to store + // a value of the given type; it is analogous to unsafe.Sizeof. + Size() uintptr + + // Bits returns the size of the type in bits. + // It is intended for use with numeric types and may overflow + // when used for composite types. + Bits() int + + // Align returns the alignment of a value of this type + // when allocated in memory. + Align() int + + // FieldAlign returns the alignment of a value of this type + // when used as a field in a struct. + FieldAlign() int + + // Kind returns the specific kind of this type. + Kind() Kind + + // For non-interface types, Method returns the i'th method with receiver T. + // For interface types, Method returns the i'th method in the interface. + // NumMethod returns the number of such methods. + Method(int) Method + NumMethod() int + uncommon() *uncommonType +} + +// A Kind represents the specific kind of type that a Type represents. +// For numeric types, the Kind gives more information than the Type's +// dynamic type. For example, the Type of a float32 is FloatType, but +// the Kind is Float32. +// +// The zero Kind is not a valid kind. +type Kind uint8 + +const ( + Bool Kind = 1 + iota + Int + Int8 + Int16 + Int32 + Int64 + Uint + Uint8 + Uint16 + Uint32 + Uint64 + Uintptr + Float32 + Float64 + Complex64 + Complex128 + Array + Chan + Func + Interface + Map + Ptr + Slice + String + Struct + UnsafePointer +) + +// High bit says whether type has +// embedded pointers,to help garbage collector. +const kindMask = 0x7f + +func (k Kind) String() string { + if int(k) < len(kindNames) { + return kindNames[k] + } + return "kind" + strconv.Itoa(int(k)) +} + +var kindNames = []string{ + Bool: "bool", + Int: "int", + Int8: "int8", + Int16: "int16", + Int32: "int32", + Int64: "int64", + Uint: "uint", + Uint8: "uint8", + Uint16: "uint16", + Uint32: "uint32", + Uint64: "uint64", + Uintptr: "uintptr", + Float32: "float32", + Float64: "float64", + Complex64: "complex64", + Complex128: "complex128", + Array: "array", + Chan: "chan", + Func: "func", + Interface: "interface", + Map: "map", + Ptr: "ptr", + Slice: "slice", + String: "string", + Struct: "struct", + UnsafePointer: "unsafe.Pointer", +} + +func (t *uncommonType) uncommon() *uncommonType { + return t +} + +func (t *uncommonType) PkgPath() string { + if t == nil || t.pkgPath == nil { + return "" + } + return *t.pkgPath +} + +func (t *uncommonType) Name() string { + if t == nil || t.name == nil { + return "" + } + return *t.name +} + +func (t *commonType) String() string { return *t.string } + +func (t *commonType) Size() uintptr { return t.size } + +func (t *commonType) Bits() int { return int(t.size * 8) } + +func (t *commonType) Align() int { return int(t.align) } + +func (t *commonType) FieldAlign() int { return int(t.fieldAlign) } + +func (t *commonType) Kind() Kind { return Kind(t.kind & kindMask) } + +func (t *uncommonType) Method(i int) (m Method) { + if t == nil || i < 0 || i >= len(t.methods) { + return + } + p := &t.methods[i] + if p.name != nil { + m.Name = *p.name + } + if p.pkgPath != nil { + m.PkgPath = *p.pkgPath + } + m.Type = runtimeToType(p.typ).(*FuncType) + fn := p.tfn + m.Func = &FuncValue{value: value{m.Type, addr(&fn), true}} + return +} + +func (t *uncommonType) NumMethod() int { + if t == nil { + return 0 + } + return len(t.methods) +} + +// TODO(rsc): 6g supplies these, but they are not +// as efficient as they could be: they have commonType +// as the receiver instead of *commonType. +func (t *commonType) NumMethod() int { return t.uncommonType.NumMethod() } + +func (t *commonType) Method(i int) (m Method) { return t.uncommonType.Method(i) } + +func (t *commonType) PkgPath() string { return t.uncommonType.PkgPath() } + +func (t *commonType) Name() string { return t.uncommonType.Name() } + +// Len returns the number of elements in the array. +func (t *ArrayType) Len() int { return int(t.len) } + +// Elem returns the type of the array's elements. +func (t *ArrayType) Elem() Type { return runtimeToType(t.elem) } + +// Dir returns the channel direction. +func (t *ChanType) Dir() ChanDir { return ChanDir(t.dir) } + +// Elem returns the channel's element type. +func (t *ChanType) Elem() Type { return runtimeToType(t.elem) } + +func (d ChanDir) String() string { + switch d { + case SendDir: + return "chan<-" + case RecvDir: + return "<-chan" + case BothDir: + return "chan" + } + return "ChanDir" + strconv.Itoa(int(d)) +} + +// In returns the type of the i'th function input parameter. +func (t *FuncType) In(i int) Type { + if i < 0 || i >= len(t.in) { + return nil + } + return runtimeToType(t.in[i]) +} + +// DotDotDot returns true if the final function input parameter +// is a "..." parameter. If so, t.In(t.NumIn() - 1) returns the +// parameter's underlying static type []T. +// +// For concreteness, if t is func(x int, y ... float), then +// +// t.NumIn() == 2 +// t.In(0) is the reflect.Type for "int" +// t.In(1) is the reflect.Type for "[]float" +// t.DotDotDot() == true +// +func (t *FuncType) DotDotDot() bool { return t.dotdotdot } + +// NumIn returns the number of input parameters. +func (t *FuncType) NumIn() int { return len(t.in) } + +// Out returns the type of the i'th function output parameter. +func (t *FuncType) Out(i int) Type { + if i < 0 || i >= len(t.out) { + return nil + } + return runtimeToType(t.out[i]) +} + +// NumOut returns the number of function output parameters. +func (t *FuncType) NumOut() int { return len(t.out) } + +// Method returns the i'th interface method. +func (t *InterfaceType) Method(i int) (m Method) { + if i < 0 || i >= len(t.methods) { + return + } + p := &t.methods[i] + m.Name = *p.name + if p.pkgPath != nil { + m.PkgPath = *p.pkgPath + } + m.Type = runtimeToType(p.typ).(*FuncType) + return +} + +// NumMethod returns the number of interface methods. +func (t *InterfaceType) NumMethod() int { return len(t.methods) } + +// Key returns the map key type. +func (t *MapType) Key() Type { return runtimeToType(t.key) } + +// Elem returns the map element type. +func (t *MapType) Elem() Type { return runtimeToType(t.elem) } + +// Elem returns the pointer element type. +func (t *PtrType) Elem() Type { return runtimeToType(t.elem) } + +// Elem returns the type of the slice's elements. +func (t *SliceType) Elem() Type { return runtimeToType(t.elem) } + +type StructField struct { + PkgPath string // empty for uppercase Name + Name string + Type Type + Tag string + Offset uintptr + Index []int + Anonymous bool +} + +// Field returns the i'th struct field. +func (t *StructType) Field(i int) (f StructField) { + if i < 0 || i >= len(t.fields) { + return + } + p := t.fields[i] + f.Type = runtimeToType(p.typ) + if p.name != nil { + f.Name = *p.name + } else { + t := f.Type + if pt, ok := t.(*PtrType); ok { + t = pt.Elem() + } + f.Name = t.Name() + f.Anonymous = true + } + if p.pkgPath != nil { + f.PkgPath = *p.pkgPath + } + if p.tag != nil { + f.Tag = *p.tag + } + f.Offset = p.offset + f.Index = []int{i} + return +} + +// TODO(gri): Should there be an error/bool indicator if the index +// is wrong for FieldByIndex? + +// FieldByIndex returns the nested field corresponding to index. +func (t *StructType) FieldByIndex(index []int) (f StructField) { + for i, x := range index { + if i > 0 { + ft := f.Type + if pt, ok := ft.(*PtrType); ok { + ft = pt.Elem() + } + if st, ok := ft.(*StructType); ok { + t = st + } else { + var f0 StructField + f = f0 + return + } + } + f = t.Field(x) + } + return +} + +const inf = 1 << 30 // infinity - no struct has that many nesting levels + +func (t *StructType) fieldByNameFunc(match func(string) bool, mark map[*StructType]bool, depth int) (ff StructField, fd int) { + fd = inf // field depth + + if mark[t] { + // Struct already seen. + return + } + mark[t] = true + + var fi int // field index + n := 0 // number of matching fields at depth fd +L: + for i := range t.fields { + f := t.Field(i) + d := inf + switch { + case match(f.Name): + // Matching top-level field. + d = depth + case f.Anonymous: + ft := f.Type + if pt, ok := ft.(*PtrType); ok { + ft = pt.Elem() + } + switch { + case match(ft.Name()): + // Matching anonymous top-level field. + d = depth + case fd > depth: + // No top-level field yet; look inside nested structs. + if st, ok := ft.(*StructType); ok { + f, d = st.fieldByNameFunc(match, mark, depth+1) + } + } + } + + switch { + case d < fd: + // Found field at shallower depth. + ff, fi, fd = f, i, d + n = 1 + case d == fd: + // More than one matching field at the same depth (or d, fd == inf). + // Same as no field found at this depth. + n++ + if d == depth { + // Impossible to find a field at lower depth. + break L + } + } + } + + if n == 1 { + // Found matching field. + if len(ff.Index) <= depth { + ff.Index = make([]int, depth+1) + } + ff.Index[depth] = fi + } else { + // None or more than one matching field found. + fd = inf + } + + mark[t] = false, false + return +} + +// FieldByName returns the struct field with the given name +// and a boolean to indicate if the field was found. +func (t *StructType) FieldByName(name string) (f StructField, present bool) { + return t.FieldByNameFunc(func(s string) bool { return s == name }) +} + +// FieldByNameFunc returns the struct field with a name that satisfies the +// match function and a boolean to indicate if the field was found. +func (t *StructType) FieldByNameFunc(match func(string) bool) (f StructField, present bool) { + if ff, fd := t.fieldByNameFunc(match, make(map[*StructType]bool), 0); fd < inf { + ff.Index = ff.Index[0 : fd+1] + f, present = ff, true + } + return +} + +// NumField returns the number of struct fields. +func (t *StructType) NumField() int { return len(t.fields) } + +// Canonicalize a Type. +var canonicalType = make(map[string]Type) + +var canonicalTypeLock sync.Mutex + +func canonicalize(t Type) Type { + if t == nil { + return nil + } + u := t.uncommon() + var s string + if u == nil || u.PkgPath() == "" { + s = t.String() + } else { + s = u.PkgPath() + "." + u.Name() + } + canonicalTypeLock.Lock() + if r, ok := canonicalType[s]; ok { + canonicalTypeLock.Unlock() + return r + } + canonicalType[s] = t + canonicalTypeLock.Unlock() + return t +} + +// Convert runtime type to reflect type. +// Same memory layouts, different method sets. +func toType(i interface{}) Type { + switch v := i.(type) { + case nil: + return nil + case *runtime.BoolType: + return (*BoolType)(unsafe.Pointer(v)) + case *runtime.FloatType: + return (*FloatType)(unsafe.Pointer(v)) + case *runtime.ComplexType: + return (*ComplexType)(unsafe.Pointer(v)) + case *runtime.IntType: + return (*IntType)(unsafe.Pointer(v)) + case *runtime.StringType: + return (*StringType)(unsafe.Pointer(v)) + case *runtime.UintType: + return (*UintType)(unsafe.Pointer(v)) + case *runtime.UnsafePointerType: + return (*UnsafePointerType)(unsafe.Pointer(v)) + case *runtime.ArrayType: + return (*ArrayType)(unsafe.Pointer(v)) + case *runtime.ChanType: + return (*ChanType)(unsafe.Pointer(v)) + case *runtime.FuncType: + return (*FuncType)(unsafe.Pointer(v)) + case *runtime.InterfaceType: + return (*InterfaceType)(unsafe.Pointer(v)) + case *runtime.MapType: + return (*MapType)(unsafe.Pointer(v)) + case *runtime.PtrType: + return (*PtrType)(unsafe.Pointer(v)) + case *runtime.SliceType: + return (*SliceType)(unsafe.Pointer(v)) + case *runtime.StructType: + return (*StructType)(unsafe.Pointer(v)) + } + println(i) + panic("toType") +} + +// Convert pointer to runtime Type structure to our Type structure. +func runtimeToType(v *runtime.Type) Type { + var r Type + switch Kind(v.Kind) { + case Bool: + r = (*BoolType)(unsafe.Pointer(v)) + case Int, Int8, Int16, Int32, Int64: + r = (*IntType)(unsafe.Pointer(v)) + case Uint, Uint8, Uint16, Uint32, Uint64, Uintptr: + r = (*UintType)(unsafe.Pointer(v)) + case Float32, Float64: + r = (*FloatType)(unsafe.Pointer(v)) + case Complex64, Complex128: + r = (*ComplexType)(unsafe.Pointer(v)) + case Array: + r = (*ArrayType)(unsafe.Pointer(v)) + case Chan: + r = (*ChanType)(unsafe.Pointer(v)) + case Func: + r = (*FuncType)(unsafe.Pointer(v)) + case Interface: + r = (*InterfaceType)(unsafe.Pointer(v)) + case Map: + r = (*MapType)(unsafe.Pointer(v)) + case Ptr: + r = (*PtrType)(unsafe.Pointer(v)) + case Slice: + r = (*SliceType)(unsafe.Pointer(v)) + case String: + r = (*StringType)(unsafe.Pointer(v)) + case Struct: + r = (*StructType)(unsafe.Pointer(v)) + case UnsafePointer: + r = (*UnsafePointerType)(unsafe.Pointer(v)) + default: + panic("runtimeToType") + } + return canonicalize(r) + panic("runtimeToType") +} + +// ArrayOrSliceType is the common interface implemented +// by both ArrayType and SliceType. +type ArrayOrSliceType interface { + Type + Elem() Type +} + +// Typeof returns the reflection Type of the value in the interface{}. +func Typeof(i interface{}) Type { return canonicalize(toType(unsafe.Typeof(i))) } diff --git a/libgo/go/reflect/value.go b/libgo/go/reflect/value.go new file mode 100644 index 000000000..8ef402bbc --- /dev/null +++ b/libgo/go/reflect/value.go @@ -0,0 +1,1242 @@ +// Copyright 2009 The Go Authors. All rights reserved. +// Use of this source code is governed by a BSD-style +// license that can be found in the LICENSE file. + +package reflect + +import ( + "math" + "runtime" + "unsafe" +) + +const ptrSize = uintptr(unsafe.Sizeof((*byte)(nil))) +const cannotSet = "cannot set value obtained via unexported struct field" + +type addr unsafe.Pointer + +// TODO: This will have to go away when +// the new gc goes in. +func memmove(adst, asrc addr, n uintptr) { + dst := uintptr(adst) + src := uintptr(asrc) + switch { + case src < dst && src+n > dst: + // byte copy backward + // careful: i is unsigned + for i := n; i > 0; { + i-- + *(*byte)(addr(dst + i)) = *(*byte)(addr(src + i)) + } + case (n|src|dst)&(ptrSize-1) != 0: + // byte copy forward + for i := uintptr(0); i < n; i++ { + *(*byte)(addr(dst + i)) = *(*byte)(addr(src + i)) + } + default: + // word copy forward + for i := uintptr(0); i < n; i += ptrSize { + *(*uintptr)(addr(dst + i)) = *(*uintptr)(addr(src + i)) + } + } +} + +// Value is the common interface to reflection values. +// The implementations of Value (e.g., ArrayValue, StructValue) +// have additional type-specific methods. +type Value interface { + // Type returns the value's type. + Type() Type + + // Interface returns the value as an interface{}. + Interface() interface{} + + // CanSet returns whether the value can be changed. + // Values obtained by the use of non-exported struct fields + // can be used in Get but not Set. + // If CanSet() returns false, calling the type-specific Set + // will cause a crash. + CanSet() bool + + // SetValue assigns v to the value; v must have the same type as the value. + SetValue(v Value) + + // Addr returns a pointer to the underlying data. + // It is for advanced clients that also + // import the "unsafe" package. + Addr() uintptr + + // Method returns a FuncValue corresponding to the value's i'th method. + // The arguments to a Call on the returned FuncValue + // should not include a receiver; the FuncValue will use + // the value as the receiver. + Method(i int) *FuncValue + + getAddr() addr +} + +// value is the common implementation of most values. +// It is embedded in other, public struct types, but always +// with a unique tag like "uint" or "float" so that the client cannot +// convert from, say, *UintValue to *FloatValue. +type value struct { + typ Type + addr addr + canSet bool +} + +func (v *value) Type() Type { return v.typ } + +func (v *value) Addr() uintptr { return uintptr(v.addr) } + +func (v *value) getAddr() addr { return v.addr } + +func (v *value) Interface() interface{} { + if typ, ok := v.typ.(*InterfaceType); ok { + // There are two different representations of interface values, + // one if the interface type has methods and one if it doesn't. + // These two representations require different expressions + // to extract correctly. + if typ.NumMethod() == 0 { + // Extract as interface value without methods. + return *(*interface{})(v.addr) + } + // Extract from v.addr as interface value with methods. + return *(*interface { + m() + })(v.addr) + } + return unsafe.Unreflect(v.typ, unsafe.Pointer(v.addr)) +} + +func (v *value) CanSet() bool { return v.canSet } + +/* + * basic types + */ + +// BoolValue represents a bool value. +type BoolValue struct { + value "bool" +} + +// Get returns the underlying bool value. +func (v *BoolValue) Get() bool { return *(*bool)(v.addr) } + +// Set sets v to the value x. +func (v *BoolValue) Set(x bool) { + if !v.canSet { + panic(cannotSet) + } + *(*bool)(v.addr) = x +} + +// Set sets v to the value x. +func (v *BoolValue) SetValue(x Value) { v.Set(x.(*BoolValue).Get()) } + +// FloatValue represents a float value. +type FloatValue struct { + value "float" +} + +// Get returns the underlying int value. +func (v *FloatValue) Get() float64 { + switch v.typ.Kind() { + case Float32: + return float64(*(*float32)(v.addr)) + case Float64: + return *(*float64)(v.addr) + } + panic("reflect: invalid float kind") +} + +// Set sets v to the value x. +func (v *FloatValue) Set(x float64) { + if !v.canSet { + panic(cannotSet) + } + switch v.typ.Kind() { + default: + panic("reflect: invalid float kind") + case Float32: + *(*float32)(v.addr) = float32(x) + case Float64: + *(*float64)(v.addr) = x + } +} + +// Overflow returns true if x cannot be represented by the type of v. +func (v *FloatValue) Overflow(x float64) bool { + if v.typ.Size() == 8 { + return false + } + if x < 0 { + x = -x + } + return math.MaxFloat32 < x && x <= math.MaxFloat64 +} + +// Set sets v to the value x. +func (v *FloatValue) SetValue(x Value) { v.Set(x.(*FloatValue).Get()) } + +// ComplexValue represents a complex value. +type ComplexValue struct { + value "complex" +} + +// Get returns the underlying complex value. +func (v *ComplexValue) Get() complex128 { + switch v.typ.Kind() { + case Complex64: + return complex128(*(*complex64)(v.addr)) + case Complex128: + return *(*complex128)(v.addr) + } + panic("reflect: invalid complex kind") +} + +// Set sets v to the value x. +func (v *ComplexValue) Set(x complex128) { + if !v.canSet { + panic(cannotSet) + } + switch v.typ.Kind() { + default: + panic("reflect: invalid complex kind") + case Complex64: + *(*complex64)(v.addr) = complex64(x) + case Complex128: + *(*complex128)(v.addr) = x + } +} + +// Set sets v to the value x. +func (v *ComplexValue) SetValue(x Value) { v.Set(x.(*ComplexValue).Get()) } + +// IntValue represents an int value. +type IntValue struct { + value "int" +} + +// Get returns the underlying int value. +func (v *IntValue) Get() int64 { + switch v.typ.Kind() { + case Int: + return int64(*(*int)(v.addr)) + case Int8: + return int64(*(*int8)(v.addr)) + case Int16: + return int64(*(*int16)(v.addr)) + case Int32: + return int64(*(*int32)(v.addr)) + case Int64: + return *(*int64)(v.addr) + } + panic("reflect: invalid int kind") +} + +// Set sets v to the value x. +func (v *IntValue) Set(x int64) { + if !v.canSet { + panic(cannotSet) + } + switch v.typ.Kind() { + default: + panic("reflect: invalid int kind") + case Int: + *(*int)(v.addr) = int(x) + case Int8: + *(*int8)(v.addr) = int8(x) + case Int16: + *(*int16)(v.addr) = int16(x) + case Int32: + *(*int32)(v.addr) = int32(x) + case Int64: + *(*int64)(v.addr) = x + } +} + +// Set sets v to the value x. +func (v *IntValue) SetValue(x Value) { v.Set(x.(*IntValue).Get()) } + +// Overflow returns true if x cannot be represented by the type of v. +func (v *IntValue) Overflow(x int64) bool { + bitSize := uint(v.typ.Bits()) + trunc := (x << (64 - bitSize)) >> (64 - bitSize) + return x != trunc +} + +// StringHeader is the runtime representation of a string. +type StringHeader struct { + Data uintptr + Len int +} + +// StringValue represents a string value. +type StringValue struct { + value "string" +} + +// Get returns the underlying string value. +func (v *StringValue) Get() string { return *(*string)(v.addr) } + +// Set sets v to the value x. +func (v *StringValue) Set(x string) { + if !v.canSet { + panic(cannotSet) + } + *(*string)(v.addr) = x +} + +// Set sets v to the value x. +func (v *StringValue) SetValue(x Value) { v.Set(x.(*StringValue).Get()) } + +// UintValue represents a uint value. +type UintValue struct { + value "uint" +} + +// Get returns the underlying uuint value. +func (v *UintValue) Get() uint64 { + switch v.typ.Kind() { + case Uint: + return uint64(*(*uint)(v.addr)) + case Uint8: + return uint64(*(*uint8)(v.addr)) + case Uint16: + return uint64(*(*uint16)(v.addr)) + case Uint32: + return uint64(*(*uint32)(v.addr)) + case Uint64: + return *(*uint64)(v.addr) + case Uintptr: + return uint64(*(*uintptr)(v.addr)) + } + panic("reflect: invalid uint kind") +} + +// Set sets v to the value x. +func (v *UintValue) Set(x uint64) { + if !v.canSet { + panic(cannotSet) + } + switch v.typ.Kind() { + default: + panic("reflect: invalid uint kind") + case Uint: + *(*uint)(v.addr) = uint(x) + case Uint8: + *(*uint8)(v.addr) = uint8(x) + case Uint16: + *(*uint16)(v.addr) = uint16(x) + case Uint32: + *(*uint32)(v.addr) = uint32(x) + case Uint64: + *(*uint64)(v.addr) = x + case Uintptr: + *(*uintptr)(v.addr) = uintptr(x) + } +} + +// Overflow returns true if x cannot be represented by the type of v. +func (v *UintValue) Overflow(x uint64) bool { + bitSize := uint(v.typ.Bits()) + trunc := (x << (64 - bitSize)) >> (64 - bitSize) + return x != trunc +} + +// Set sets v to the value x. +func (v *UintValue) SetValue(x Value) { v.Set(x.(*UintValue).Get()) } + +// UnsafePointerValue represents an unsafe.Pointer value. +type UnsafePointerValue struct { + value "unsafe.Pointer" +} + +// Get returns the underlying uintptr value. +// Get returns uintptr, not unsafe.Pointer, so that +// programs that do not import "unsafe" cannot +// obtain a value of unsafe.Pointer type from "reflect". +func (v *UnsafePointerValue) Get() uintptr { return uintptr(*(*unsafe.Pointer)(v.addr)) } + +// Set sets v to the value x. +func (v *UnsafePointerValue) Set(x unsafe.Pointer) { + if !v.canSet { + panic(cannotSet) + } + *(*unsafe.Pointer)(v.addr) = x +} + +// Set sets v to the value x. +func (v *UnsafePointerValue) SetValue(x Value) { + v.Set(unsafe.Pointer(x.(*UnsafePointerValue).Get())) +} + +func typesMustMatch(t1, t2 Type) { + if t1 != t2 { + panic("type mismatch: " + t1.String() + " != " + t2.String()) + } +} + +/* + * array + */ + +// ArrayOrSliceValue is the common interface +// implemented by both ArrayValue and SliceValue. +type ArrayOrSliceValue interface { + Value + Len() int + Cap() int + Elem(i int) Value + addr() addr +} + +// grow grows the slice s so that it can hold extra more values, allocating +// more capacity if needed. It also returns the old and new slice lengths. +func grow(s *SliceValue, extra int) (*SliceValue, int, int) { + i0 := s.Len() + i1 := i0 + extra + if i1 < i0 { + panic("append: slice overflow") + } + m := s.Cap() + if i1 <= m { + return s.Slice(0, i1), i0, i1 + } + if m == 0 { + m = extra + } else { + for m < i1 { + if i0 < 1024 { + m += m + } else { + m += m / 4 + } + } + } + t := MakeSlice(s.Type().(*SliceType), i1, m) + Copy(t, s) + return t, i0, i1 +} + +// Append appends the values x to a slice s and returns the resulting slice. +// Each x must have the same type as s' element type. +func Append(s *SliceValue, x ...Value) *SliceValue { + s, i0, i1 := grow(s, len(x)) + for i, j := i0, 0; i < i1; i, j = i+1, j+1 { + s.Elem(i).SetValue(x[j]) + } + return s +} + +// AppendSlice appends a slice t to a slice s and returns the resulting slice. +// The slices s and t must have the same element type. +func AppendSlice(s, t *SliceValue) *SliceValue { + s, i0, i1 := grow(s, t.Len()) + Copy(s.Slice(i0, i1), t) + return s +} + +// Copy copies the contents of src into dst until either +// dst has been filled or src has been exhausted. +// It returns the number of elements copied. +// The arrays dst and src must have the same element type. +func Copy(dst, src ArrayOrSliceValue) int { + // TODO: This will have to move into the runtime + // once the real gc goes in. + de := dst.Type().(ArrayOrSliceType).Elem() + se := src.Type().(ArrayOrSliceType).Elem() + typesMustMatch(de, se) + n := dst.Len() + if xn := src.Len(); n > xn { + n = xn + } + memmove(dst.addr(), src.addr(), uintptr(n)*de.Size()) + return n +} + +// An ArrayValue represents an array. +type ArrayValue struct { + value "array" +} + +// Len returns the length of the array. +func (v *ArrayValue) Len() int { return v.typ.(*ArrayType).Len() } + +// Cap returns the capacity of the array (equal to Len()). +func (v *ArrayValue) Cap() int { return v.typ.(*ArrayType).Len() } + +// addr returns the base address of the data in the array. +func (v *ArrayValue) addr() addr { return v.value.addr } + +// Set assigns x to v. +// The new value x must have the same type as v. +func (v *ArrayValue) Set(x *ArrayValue) { + if !v.canSet { + panic(cannotSet) + } + typesMustMatch(v.typ, x.typ) + Copy(v, x) +} + +// Set sets v to the value x. +func (v *ArrayValue) SetValue(x Value) { v.Set(x.(*ArrayValue)) } + +// Elem returns the i'th element of v. +func (v *ArrayValue) Elem(i int) Value { + typ := v.typ.(*ArrayType).Elem() + n := v.Len() + if i < 0 || i >= n { + panic("array index out of bounds") + } + p := addr(uintptr(v.addr()) + uintptr(i)*typ.Size()) + return newValue(typ, p, v.canSet) +} + +/* + * slice + */ + +// runtime representation of slice +type SliceHeader struct { + Data uintptr + Len int + Cap int +} + +// A SliceValue represents a slice. +type SliceValue struct { + value "slice" +} + +func (v *SliceValue) slice() *SliceHeader { return (*SliceHeader)(v.value.addr) } + +// IsNil returns whether v is a nil slice. +func (v *SliceValue) IsNil() bool { return v.slice().Data == 0 } + +// Len returns the length of the slice. +func (v *SliceValue) Len() int { return int(v.slice().Len) } + +// Cap returns the capacity of the slice. +func (v *SliceValue) Cap() int { return int(v.slice().Cap) } + +// addr returns the base address of the data in the slice. +func (v *SliceValue) addr() addr { return addr(v.slice().Data) } + +// SetLen changes the length of v. +// The new length n must be between 0 and the capacity, inclusive. +func (v *SliceValue) SetLen(n int) { + s := v.slice() + if n < 0 || n > int(s.Cap) { + panic("reflect: slice length out of range in SetLen") + } + s.Len = n +} + +// Set assigns x to v. +// The new value x must have the same type as v. +func (v *SliceValue) Set(x *SliceValue) { + if !v.canSet { + panic(cannotSet) + } + typesMustMatch(v.typ, x.typ) + *v.slice() = *x.slice() +} + +// Set sets v to the value x. +func (v *SliceValue) SetValue(x Value) { v.Set(x.(*SliceValue)) } + +// Get returns the uintptr address of the v.Cap()'th element. This gives +// the same result for all slices of the same array. +// It is mainly useful for printing. +func (v *SliceValue) Get() uintptr { + typ := v.typ.(*SliceType) + return uintptr(v.addr()) + uintptr(v.Cap())*typ.Elem().Size() +} + +// Slice returns a sub-slice of the slice v. +func (v *SliceValue) Slice(beg, end int) *SliceValue { + cap := v.Cap() + if beg < 0 || end < beg || end > cap { + panic("slice index out of bounds") + } + typ := v.typ.(*SliceType) + s := new(SliceHeader) + s.Data = uintptr(v.addr()) + uintptr(beg)*typ.Elem().Size() + s.Len = end - beg + s.Cap = cap - beg + return newValue(typ, addr(s), v.canSet).(*SliceValue) +} + +// Elem returns the i'th element of v. +func (v *SliceValue) Elem(i int) Value { + typ := v.typ.(*SliceType).Elem() + n := v.Len() + if i < 0 || i >= n { + panic("reflect: slice index out of range") + } + p := addr(uintptr(v.addr()) + uintptr(i)*typ.Size()) + return newValue(typ, p, v.canSet) +} + +// MakeSlice creates a new zero-initialized slice value +// for the specified slice type, length, and capacity. +func MakeSlice(typ *SliceType, len, cap int) *SliceValue { + s := &SliceHeader{ + Data: uintptr(unsafe.NewArray(typ.Elem(), cap)), + Len: len, + Cap: cap, + } + return newValue(typ, addr(s), true).(*SliceValue) +} + +/* + * chan + */ + +// A ChanValue represents a chan. +type ChanValue struct { + value "chan" +} + +// IsNil returns whether v is a nil channel. +func (v *ChanValue) IsNil() bool { return *(*uintptr)(v.addr) == 0 } + +// Set assigns x to v. +// The new value x must have the same type as v. +func (v *ChanValue) Set(x *ChanValue) { + if !v.canSet { + panic(cannotSet) + } + typesMustMatch(v.typ, x.typ) + *(*uintptr)(v.addr) = *(*uintptr)(x.addr) +} + +// Set sets v to the value x. +func (v *ChanValue) SetValue(x Value) { v.Set(x.(*ChanValue)) } + +// Get returns the uintptr value of v. +// It is mainly useful for printing. +func (v *ChanValue) Get() uintptr { return *(*uintptr)(v.addr) } + +// implemented in ../pkg/runtime/reflect.cgo +func makechan(typ *runtime.ChanType, size uint32) (ch *byte) +func chansend(ch, val *byte, pres *bool) +func chanrecv(ch, val *byte, pres *bool) +func chanclosed(ch *byte) bool +func chanclose(ch *byte) +func chanlen(ch *byte) int32 +func chancap(ch *byte) int32 + +// Closed returns the result of closed(c) on the underlying channel. +func (v *ChanValue) Closed() bool { + ch := *(**byte)(v.addr) + return chanclosed(ch) +} + +// Close closes the channel. +func (v *ChanValue) Close() { + ch := *(**byte)(v.addr) + chanclose(ch) +} + +func (v *ChanValue) Len() int { + ch := *(**byte)(v.addr) + return int(chanlen(ch)) +} + +func (v *ChanValue) Cap() int { + ch := *(**byte)(v.addr) + return int(chancap(ch)) +} + +// internal send; non-blocking if b != nil +func (v *ChanValue) send(x Value, b *bool) { + t := v.Type().(*ChanType) + if t.Dir()&SendDir == 0 { + panic("send on recv-only channel") + } + typesMustMatch(t.Elem(), x.Type()) + ch := *(**byte)(v.addr) + chansend(ch, (*byte)(x.getAddr()), b) +} + +// internal recv; non-blocking if b != nil +func (v *ChanValue) recv(b *bool) Value { + t := v.Type().(*ChanType) + if t.Dir()&RecvDir == 0 { + panic("recv on send-only channel") + } + ch := *(**byte)(v.addr) + x := MakeZero(t.Elem()) + chanrecv(ch, (*byte)(x.getAddr()), b) + return x +} + +// Send sends x on the channel v. +func (v *ChanValue) Send(x Value) { v.send(x, nil) } + +// Recv receives and returns a value from the channel v. +func (v *ChanValue) Recv() Value { return v.recv(nil) } + +// TrySend attempts to sends x on the channel v but will not block. +// It returns true if the value was sent, false otherwise. +func (v *ChanValue) TrySend(x Value) bool { + var ok bool + v.send(x, &ok) + return ok +} + +// TryRecv attempts to receive a value from the channel v but will not block. +// It returns the value if one is received, nil otherwise. +func (v *ChanValue) TryRecv() Value { + var ok bool + x := v.recv(&ok) + if !ok { + return nil + } + return x +} + +// MakeChan creates a new channel with the specified type and buffer size. +func MakeChan(typ *ChanType, buffer int) *ChanValue { + if buffer < 0 { + panic("MakeChan: negative buffer size") + } + if typ.Dir() != BothDir { + panic("MakeChan: unidirectional channel type") + } + v := MakeZero(typ).(*ChanValue) + *(**byte)(v.addr) = makechan((*runtime.ChanType)(unsafe.Pointer(typ)), uint32(buffer)) + return v +} + +/* + * func + */ + +// A FuncValue represents a function value. +type FuncValue struct { + value "func" + first *value + isInterface bool +} + +// IsNil returns whether v is a nil function. +func (v *FuncValue) IsNil() bool { return *(*uintptr)(v.addr) == 0 } + +// Get returns the uintptr value of v. +// It is mainly useful for printing. +func (v *FuncValue) Get() uintptr { return *(*uintptr)(v.addr) } + +// Set assigns x to v. +// The new value x must have the same type as v. +func (v *FuncValue) Set(x *FuncValue) { + if !v.canSet { + panic(cannotSet) + } + typesMustMatch(v.typ, x.typ) + *(*uintptr)(v.addr) = *(*uintptr)(x.addr) +} + +// Set sets v to the value x. +func (v *FuncValue) SetValue(x Value) { v.Set(x.(*FuncValue)) } + +// Method returns a FuncValue corresponding to v's i'th method. +// The arguments to a Call on the returned FuncValue +// should not include a receiver; the FuncValue will use v +// as the receiver. +func (v *value) Method(i int) *FuncValue { + t := v.Type().uncommon() + if t == nil || i < 0 || i >= len(t.methods) { + return nil + } + p := &t.methods[i] + fn := p.tfn + fv := &FuncValue{value: value{runtimeToType(p.typ), addr(&fn), true}, first: v, isInterface: false} + return fv +} + +// implemented in ../pkg/runtime/*/asm.s +func call(typ *FuncType, fnaddr *byte, isInterface bool, params *addr, results *addr) + +// Call calls the function fv with input parameters in. +// It returns the function's output parameters as Values. +func (fv *FuncValue) Call(in []Value) []Value { + t := fv.Type().(*FuncType) + nin := len(in) + if fv.first != nil && !fv.isInterface { + nin++ + } + if nin != t.NumIn() { + panic("FuncValue: wrong argument count") + } + if fv.first != nil && fv.isInterface { + nin++ + } + nout := t.NumOut() + + params := make([]addr, nin) + delta := 0 + off := 0 + if v := fv.first; v != nil { + // Hard-wired first argument. + if fv.isInterface { + // v is a single uninterpreted word + params[0] = v.getAddr() + } else { + // v is a real value + tv := v.Type() + + // This is a method, so we need to always pass + // a pointer. + vAddr := v.getAddr() + if ptv, ok := tv.(*PtrType); ok { + typesMustMatch(t.In(0), tv) + } else { + p := addr(new(addr)) + *(*addr)(p) = vAddr + vAddr = p + typesMustMatch(t.In(0).(*PtrType).Elem(), tv) + } + + params[0] = vAddr + delta = 1 + } + off = 1 + } + for i, v := range in { + tv := v.Type() + tf := t.In(i + delta) + + // If this is really a method, and we are explicitly + // passing the object, then we need to pass the address + // of the object instead. Unfortunately, we don't + // have any way to know that this is a method, so we just + // check the type. FIXME: This is ugly. + vAddr := v.getAddr() + if i == 0 && tf != tv { + if ptf, ok := tf.(*PtrType); ok { + p := addr(new(addr)) + *(*addr)(p) = vAddr + vAddr = p + tf = ptf.Elem() + } + } + + typesMustMatch(tf, tv) + params[i+off] = vAddr + } + + ret := make([]Value, nout) + results := make([]addr, nout) + for i := 0; i < nout; i++ { + tv := t.Out(i) + v := MakeZero(tv) + results[i] = v.getAddr() + ret[i] = v + } + + call(t, *(**byte)(fv.addr), fv.isInterface, ¶ms[0], &results[0]) + + return ret +} + +/* + * interface + */ + +// An InterfaceValue represents an interface value. +type InterfaceValue struct { + value "interface" +} + +// IsNil returns whether v is a nil interface value. +func (v *InterfaceValue) IsNil() bool { return v.Interface() == nil } + +// No single uinptr Get because v.Interface() is available. + +// Get returns the two words that represent an interface in the runtime. +// Those words are useful only when playing unsafe games. +func (v *InterfaceValue) Get() [2]uintptr { + return *(*[2]uintptr)(v.addr) +} + +// Elem returns the concrete value stored in the interface value v. +func (v *InterfaceValue) Elem() Value { return NewValue(v.Interface()) } + +// ../runtime/reflect.cgo +func setiface(typ *InterfaceType, x *interface{}, addr addr) + +// Set assigns x to v. +func (v *InterfaceValue) Set(x Value) { + var i interface{} + if x != nil { + i = x.Interface() + } + if !v.canSet { + panic(cannotSet) + } + // Two different representations; see comment in Get. + // Empty interface is easy. + t := v.typ.(*InterfaceType) + if t.NumMethod() == 0 { + *(*interface{})(v.addr) = i + return + } + + // Non-empty interface requires a runtime check. + setiface(t, &i, v.addr) +} + +// Set sets v to the value x. +func (v *InterfaceValue) SetValue(x Value) { v.Set(x) } + +// Method returns a FuncValue corresponding to v's i'th method. +// The arguments to a Call on the returned FuncValue +// should not include a receiver; the FuncValue will use v +// as the receiver. +func (v *InterfaceValue) Method(i int) *FuncValue { + t := v.Type().(*InterfaceType) + if t == nil || i < 0 || i >= len(t.methods) { + return nil + } + p := &t.methods[i] + + // Interface is two words: itable, data. + tab := *(**[10000]addr)(v.addr) + data := &value{Typeof((*byte)(nil)), addr(uintptr(v.addr) + ptrSize), true} + + fn := tab[i+1] + fv := &FuncValue{value: value{runtimeToType(p.typ), addr(&fn), true}, first: data, isInterface: true} + return fv +} + +/* + * map + */ + +// A MapValue represents a map value. +type MapValue struct { + value "map" +} + +// IsNil returns whether v is a nil map value. +func (v *MapValue) IsNil() bool { return *(*uintptr)(v.addr) == 0 } + +// Set assigns x to v. +// The new value x must have the same type as v. +func (v *MapValue) Set(x *MapValue) { + if !v.canSet { + panic(cannotSet) + } + if x == nil { + *(**uintptr)(v.addr) = nil + return + } + typesMustMatch(v.typ, x.typ) + *(*uintptr)(v.addr) = *(*uintptr)(x.addr) +} + +// Set sets v to the value x. +func (v *MapValue) SetValue(x Value) { + if x == nil { + v.Set(nil) + return + } + v.Set(x.(*MapValue)) +} + +// Get returns the uintptr value of v. +// It is mainly useful for printing. +func (v *MapValue) Get() uintptr { return *(*uintptr)(v.addr) } + +// implemented in ../pkg/runtime/reflect.cgo +func mapaccess(m, key, val *byte) bool +func mapassign(m, key, val *byte) +func maplen(m *byte) int32 +func mapiterinit(m *byte) *byte +func mapiternext(it *byte) +func mapiterkey(it *byte, key *byte) bool +func makemap(t *runtime.MapType) *byte + +// Elem returns the value associated with key in the map v. +// It returns nil if key is not found in the map. +func (v *MapValue) Elem(key Value) Value { + t := v.Type().(*MapType) + typesMustMatch(t.Key(), key.Type()) + m := *(**byte)(v.addr) + if m == nil { + return nil + } + newval := MakeZero(t.Elem()) + if !mapaccess(m, (*byte)(key.getAddr()), (*byte)(newval.getAddr())) { + return nil + } + return newval +} + +// SetElem sets the value associated with key in the map v to val. +// If val is nil, Put deletes the key from map. +func (v *MapValue) SetElem(key, val Value) { + t := v.Type().(*MapType) + typesMustMatch(t.Key(), key.Type()) + var vaddr *byte + if val != nil { + typesMustMatch(t.Elem(), val.Type()) + vaddr = (*byte)(val.getAddr()) + } + m := *(**byte)(v.addr) + mapassign(m, (*byte)(key.getAddr()), vaddr) +} + +// Len returns the number of keys in the map v. +func (v *MapValue) Len() int { + m := *(**byte)(v.addr) + if m == nil { + return 0 + } + return int(maplen(m)) +} + +// Keys returns a slice containing all the keys present in the map, +// in unspecified order. +func (v *MapValue) Keys() []Value { + tk := v.Type().(*MapType).Key() + m := *(**byte)(v.addr) + mlen := int32(0) + if m != nil { + mlen = maplen(m) + } + it := mapiterinit(m) + a := make([]Value, mlen) + var i int + for i = 0; i < len(a); i++ { + k := MakeZero(tk) + if !mapiterkey(it, (*byte)(k.getAddr())) { + break + } + a[i] = k + mapiternext(it) + } + return a[0:i] +} + +// MakeMap creates a new map of the specified type. +func MakeMap(typ *MapType) *MapValue { + v := MakeZero(typ).(*MapValue) + *(**byte)(v.addr) = makemap((*runtime.MapType)(unsafe.Pointer(typ))) + return v +} + +/* + * ptr + */ + +// A PtrValue represents a pointer. +type PtrValue struct { + value "ptr" +} + +// IsNil returns whether v is a nil pointer. +func (v *PtrValue) IsNil() bool { return *(*uintptr)(v.addr) == 0 } + +// Get returns the uintptr value of v. +// It is mainly useful for printing. +func (v *PtrValue) Get() uintptr { return *(*uintptr)(v.addr) } + +// Set assigns x to v. +// The new value x must have the same type as v. +func (v *PtrValue) Set(x *PtrValue) { + if x == nil { + *(**uintptr)(v.addr) = nil + return + } + if !v.canSet { + panic(cannotSet) + } + typesMustMatch(v.typ, x.typ) + // TODO: This will have to move into the runtime + // once the new gc goes in + *(*uintptr)(v.addr) = *(*uintptr)(x.addr) +} + +// Set sets v to the value x. +func (v *PtrValue) SetValue(x Value) { + if x == nil { + v.Set(nil) + return + } + v.Set(x.(*PtrValue)) +} + +// PointTo changes v to point to x. +// If x is a nil Value, PointTo sets v to nil. +func (v *PtrValue) PointTo(x Value) { + if x == nil { + *(**uintptr)(v.addr) = nil + return + } + if !x.CanSet() { + panic("cannot set x; cannot point to x") + } + typesMustMatch(v.typ.(*PtrType).Elem(), x.Type()) + // TODO: This will have to move into the runtime + // once the new gc goes in. + *(*uintptr)(v.addr) = x.Addr() +} + +// Elem returns the value that v points to. +// If v is a nil pointer, Elem returns a nil Value. +func (v *PtrValue) Elem() Value { + if v.IsNil() { + return nil + } + return newValue(v.typ.(*PtrType).Elem(), *(*addr)(v.addr), v.canSet) +} + +// Indirect returns the value that v points to. +// If v is a nil pointer, Indirect returns a nil Value. +// If v is not a pointer, Indirect returns v. +func Indirect(v Value) Value { + if pv, ok := v.(*PtrValue); ok { + return pv.Elem() + } + return v +} + +/* + * struct + */ + +// A StructValue represents a struct value. +type StructValue struct { + value "struct" +} + +// Set assigns x to v. +// The new value x must have the same type as v. +func (v *StructValue) Set(x *StructValue) { + // TODO: This will have to move into the runtime + // once the gc goes in. + if !v.canSet { + panic(cannotSet) + } + typesMustMatch(v.typ, x.typ) + memmove(v.addr, x.addr, v.typ.Size()) +} + +// Set sets v to the value x. +func (v *StructValue) SetValue(x Value) { v.Set(x.(*StructValue)) } + +// Field returns the i'th field of the struct. +func (v *StructValue) Field(i int) Value { + t := v.typ.(*StructType) + if i < 0 || i >= t.NumField() { + return nil + } + f := t.Field(i) + return newValue(f.Type, addr(uintptr(v.addr)+f.Offset), v.canSet && f.PkgPath == "") +} + +// FieldByIndex returns the nested field corresponding to index. +func (t *StructValue) FieldByIndex(index []int) (v Value) { + v = t + for i, x := range index { + if i > 0 { + if p, ok := v.(*PtrValue); ok { + v = p.Elem() + } + if s, ok := v.(*StructValue); ok { + t = s + } else { + v = nil + return + } + } + v = t.Field(x) + } + return +} + +// FieldByName returns the struct field with the given name. +// The result is nil if no field was found. +func (t *StructValue) FieldByName(name string) Value { + if f, ok := t.Type().(*StructType).FieldByName(name); ok { + return t.FieldByIndex(f.Index) + } + return nil +} + +// FieldByNameFunc returns the struct field with a name that satisfies the +// match function. +// The result is nil if no field was found. +func (t *StructValue) FieldByNameFunc(match func(string) bool) Value { + if f, ok := t.Type().(*StructType).FieldByNameFunc(match); ok { + return t.FieldByIndex(f.Index) + } + return nil +} + +// NumField returns the number of fields in the struct. +func (v *StructValue) NumField() int { return v.typ.(*StructType).NumField() } + +/* + * constructors + */ + +// NewValue returns a new Value initialized to the concrete value +// stored in the interface i. NewValue(nil) returns nil. +func NewValue(i interface{}) Value { + if i == nil { + return nil + } + t, a := unsafe.Reflect(i) + return newValue(canonicalize(toType(t)), addr(a), true) +} + +func newValue(typ Type, addr addr, canSet bool) Value { + v := value{typ, addr, canSet} + switch typ.(type) { + case *ArrayType: + return &ArrayValue{v} + case *BoolType: + return &BoolValue{v} + case *ChanType: + return &ChanValue{v} + case *FloatType: + return &FloatValue{v} + case *FuncType: + return &FuncValue{value: v} + case *ComplexType: + return &ComplexValue{v} + case *IntType: + return &IntValue{v} + case *InterfaceType: + return &InterfaceValue{v} + case *MapType: + return &MapValue{v} + case *PtrType: + return &PtrValue{v} + case *SliceType: + return &SliceValue{v} + case *StringType: + return &StringValue{v} + case *StructType: + return &StructValue{v} + case *UintType: + return &UintValue{v} + case *UnsafePointerType: + return &UnsafePointerValue{v} + } + panic("newValue" + typ.String()) +} + +// MakeZero returns a zero Value for the specified Type. +func MakeZero(typ Type) Value { + if typ == nil { + return nil + } + return newValue(typ, addr(unsafe.New(typ)), true) +} |