summaryrefslogtreecommitdiff
path: root/libgo/go/reflect
diff options
context:
space:
mode:
authorupstream source tree <ports@midipix.org>2015-03-15 20:14:05 -0400
committerupstream source tree <ports@midipix.org>2015-03-15 20:14:05 -0400
commit554fd8c5195424bdbcabf5de30fdc183aba391bd (patch)
tree976dc5ab7fddf506dadce60ae936f43f58787092 /libgo/go/reflect
downloadcbb-gcc-4.6.4-554fd8c5195424bdbcabf5de30fdc183aba391bd.tar.bz2
cbb-gcc-4.6.4-554fd8c5195424bdbcabf5de30fdc183aba391bd.tar.xz
obtained gcc-4.6.4.tar.bz2 from upstream website;upstream
verified gcc-4.6.4.tar.bz2.sig; imported gcc-4.6.4 source tree from verified upstream tarball. downloading a git-generated archive based on the 'upstream' tag should provide you with a source tree that is binary identical to the one extracted from the above tarball. if you have obtained the source via the command 'git clone', however, do note that line-endings of files in your working directory might differ from line-endings of the respective files in the upstream repository.
Diffstat (limited to 'libgo/go/reflect')
-rw-r--r--libgo/go/reflect/all_test.go1392
-rw-r--r--libgo/go/reflect/deepequal.go135
-rw-r--r--libgo/go/reflect/tostring_test.go96
-rw-r--r--libgo/go/reflect/type.go743
-rw-r--r--libgo/go/reflect/value.go1242
5 files changed, 3608 insertions, 0 deletions
diff --git a/libgo/go/reflect/all_test.go b/libgo/go/reflect/all_test.go
new file mode 100644
index 000000000..320f44203
--- /dev/null
+++ b/libgo/go/reflect/all_test.go
@@ -0,0 +1,1392 @@
+// Copyright 2009 The Go Authors. All rights reserved.
+// Use of this source code is governed by a BSD-style
+// license that can be found in the LICENSE file.
+
+package reflect_test
+
+import (
+ "container/vector"
+ "fmt"
+ "io"
+ "os"
+ . "reflect"
+ "testing"
+ "unsafe"
+)
+
+type integer int
+type T struct {
+ a int
+ b float64
+ c string
+ d *int
+}
+
+type pair struct {
+ i interface{}
+ s string
+}
+
+func isDigit(c uint8) bool { return '0' <= c && c <= '9' }
+
+func assert(t *testing.T, s, want string) {
+ if s != want {
+ t.Errorf("have %#q want %#q", s, want)
+ }
+}
+
+func typestring(i interface{}) string { return Typeof(i).String() }
+
+var typeTests = []pair{
+ {struct{ x int }{}, "int"},
+ {struct{ x int8 }{}, "int8"},
+ {struct{ x int16 }{}, "int16"},
+ {struct{ x int32 }{}, "int32"},
+ {struct{ x int64 }{}, "int64"},
+ {struct{ x uint }{}, "uint"},
+ {struct{ x uint8 }{}, "uint8"},
+ {struct{ x uint16 }{}, "uint16"},
+ {struct{ x uint32 }{}, "uint32"},
+ {struct{ x uint64 }{}, "uint64"},
+ {struct{ x float32 }{}, "float32"},
+ {struct{ x float64 }{}, "float64"},
+ {struct{ x int8 }{}, "int8"},
+ {struct{ x (**int8) }{}, "**int8"},
+ {struct{ x (**integer) }{}, "**reflect_test.integer"},
+ {struct{ x ([32]int32) }{}, "[32]int32"},
+ {struct{ x ([]int8) }{}, "[]int8"},
+ {struct{ x (map[string]int32) }{}, "map[string] int32"},
+ {struct{ x (chan<- string) }{}, "chan<- string"},
+ {struct {
+ x struct {
+ c chan *int32
+ d float32
+ }
+ }{},
+ "struct { c chan *int32; d float32 }",
+ },
+ {struct{ x (func(a int8, b int32)) }{}, "func(int8, int32)"},
+ {struct {
+ x struct {
+ c func(chan *integer, *int8)
+ }
+ }{},
+ "struct { c func(chan *reflect_test.integer, *int8) }",
+ },
+ {struct {
+ x struct {
+ a int8
+ b int32
+ }
+ }{},
+ "struct { a int8; b int32 }",
+ },
+ {struct {
+ x struct {
+ a int8
+ b int8
+ c int32
+ }
+ }{},
+ "struct { a int8; b int8; c int32 }",
+ },
+ {struct {
+ x struct {
+ a int8
+ b int8
+ c int8
+ d int32
+ }
+ }{},
+ "struct { a int8; b int8; c int8; d int32 }",
+ },
+ {struct {
+ x struct {
+ a int8
+ b int8
+ c int8
+ d int8
+ e int32
+ }
+ }{},
+ "struct { a int8; b int8; c int8; d int8; e int32 }",
+ },
+ {struct {
+ x struct {
+ a int8
+ b int8
+ c int8
+ d int8
+ e int8
+ f int32
+ }
+ }{},
+ "struct { a int8; b int8; c int8; d int8; e int8; f int32 }",
+ },
+ {struct {
+ x struct {
+ a int8 "hi there"
+ }
+ }{},
+ `struct { a int8 "hi there" }`,
+ },
+ {struct {
+ x struct {
+ a int8 "hi \x00there\t\n\"\\"
+ }
+ }{},
+ `struct { a int8 "hi \x00there\t\n\"\\" }`,
+ },
+ {struct {
+ x struct {
+ f func(args ...int)
+ }
+ }{},
+ "struct { f func(...int) }",
+ },
+ {struct {
+ x (interface {
+ a(func(func(int) int) func(func(int)) int)
+ b()
+ })
+ }{},
+ "interface { a(func(func(int) int) func(func(int)) int); b() }",
+ },
+}
+
+var valueTests = []pair{
+ {(int8)(0), "8"},
+ {(int16)(0), "16"},
+ {(int32)(0), "32"},
+ {(int64)(0), "64"},
+ {(uint8)(0), "8"},
+ {(uint16)(0), "16"},
+ {(uint32)(0), "32"},
+ {(uint64)(0), "64"},
+ {(float32)(0), "256.25"},
+ {(float64)(0), "512.125"},
+ {(string)(""), "stringy cheese"},
+ {(bool)(false), "true"},
+ {(*int8)(nil), "*int8(0)"},
+ {(**int8)(nil), "**int8(0)"},
+ {[5]int32{}, "[5]int32{0, 0, 0, 0, 0}"},
+ {(**integer)(nil), "**reflect_test.integer(0)"},
+ {(map[string]int32)(nil), "map[string] int32{<can't iterate on maps>}"},
+ {(chan<- string)(nil), "chan<- string"},
+ {struct {
+ c chan *int32
+ d float32
+ }{},
+ "struct { c chan *int32; d float32 }{chan *int32, 0}",
+ },
+ {(func(a int8, b int32))(nil), "func(int8, int32)(0)"},
+ {struct{ c func(chan *integer, *int8) }{},
+ "struct { c func(chan *reflect_test.integer, *int8) }{func(chan *reflect_test.integer, *int8)(0)}",
+ },
+ {struct {
+ a int8
+ b int32
+ }{},
+ "struct { a int8; b int32 }{0, 0}",
+ },
+ {struct {
+ a int8
+ b int8
+ c int32
+ }{},
+ "struct { a int8; b int8; c int32 }{0, 0, 0}",
+ },
+}
+
+func testType(t *testing.T, i int, typ Type, want string) {
+ s := typ.String()
+ if s != want {
+ t.Errorf("#%d: have %#q, want %#q", i, s, want)
+ }
+}
+
+func TestTypes(t *testing.T) {
+ for i, tt := range typeTests {
+ testType(t, i, NewValue(tt.i).(*StructValue).Field(0).Type(), tt.s)
+ }
+}
+
+func TestSet(t *testing.T) {
+ for i, tt := range valueTests {
+ v := NewValue(tt.i)
+ switch v := v.(type) {
+ case *IntValue:
+ switch v.Type().Kind() {
+ case Int:
+ v.Set(132)
+ case Int8:
+ v.Set(8)
+ case Int16:
+ v.Set(16)
+ case Int32:
+ v.Set(32)
+ case Int64:
+ v.Set(64)
+ }
+ case *UintValue:
+ switch v.Type().Kind() {
+ case Uint:
+ v.Set(132)
+ case Uint8:
+ v.Set(8)
+ case Uint16:
+ v.Set(16)
+ case Uint32:
+ v.Set(32)
+ case Uint64:
+ v.Set(64)
+ }
+ case *FloatValue:
+ switch v.Type().Kind() {
+ case Float32:
+ v.Set(256.25)
+ case Float64:
+ v.Set(512.125)
+ }
+ case *ComplexValue:
+ switch v.Type().Kind() {
+ case Complex64:
+ v.Set(532.125 + 10i)
+ case Complex128:
+ v.Set(564.25 + 1i)
+ }
+ case *StringValue:
+ v.Set("stringy cheese")
+ case *BoolValue:
+ v.Set(true)
+ }
+ s := valueToString(v)
+ if s != tt.s {
+ t.Errorf("#%d: have %#q, want %#q", i, s, tt.s)
+ }
+ }
+}
+
+func TestSetValue(t *testing.T) {
+ for i, tt := range valueTests {
+ v := NewValue(tt.i)
+ switch v := v.(type) {
+ case *IntValue:
+ switch v.Type().Kind() {
+ case Int:
+ v.SetValue(NewValue(int(132)))
+ case Int8:
+ v.SetValue(NewValue(int8(8)))
+ case Int16:
+ v.SetValue(NewValue(int16(16)))
+ case Int32:
+ v.SetValue(NewValue(int32(32)))
+ case Int64:
+ v.SetValue(NewValue(int64(64)))
+ }
+ case *UintValue:
+ switch v.Type().Kind() {
+ case Uint:
+ v.SetValue(NewValue(uint(132)))
+ case Uint8:
+ v.SetValue(NewValue(uint8(8)))
+ case Uint16:
+ v.SetValue(NewValue(uint16(16)))
+ case Uint32:
+ v.SetValue(NewValue(uint32(32)))
+ case Uint64:
+ v.SetValue(NewValue(uint64(64)))
+ }
+ case *FloatValue:
+ switch v.Type().Kind() {
+ case Float32:
+ v.SetValue(NewValue(float32(256.25)))
+ case Float64:
+ v.SetValue(NewValue(512.125))
+ }
+ case *ComplexValue:
+ switch v.Type().Kind() {
+ case Complex64:
+ v.SetValue(NewValue(complex64(532.125 + 10i)))
+ case Complex128:
+ v.SetValue(NewValue(complex128(564.25 + 1i)))
+ }
+
+ case *StringValue:
+ v.SetValue(NewValue("stringy cheese"))
+ case *BoolValue:
+ v.SetValue(NewValue(true))
+ }
+ s := valueToString(v)
+ if s != tt.s {
+ t.Errorf("#%d: have %#q, want %#q", i, s, tt.s)
+ }
+ }
+}
+
+var _i = 7
+
+var valueToStringTests = []pair{
+ {123, "123"},
+ {123.5, "123.5"},
+ {byte(123), "123"},
+ {"abc", "abc"},
+ {T{123, 456.75, "hello", &_i}, "reflect_test.T{123, 456.75, hello, *int(&7)}"},
+ {new(chan *T), "*chan *reflect_test.T(&chan *reflect_test.T)"},
+ {[10]int{1, 2, 3, 4, 5, 6, 7, 8, 9, 10}, "[10]int{1, 2, 3, 4, 5, 6, 7, 8, 9, 10}"},
+ {&[10]int{1, 2, 3, 4, 5, 6, 7, 8, 9, 10}, "*[10]int(&[10]int{1, 2, 3, 4, 5, 6, 7, 8, 9, 10})"},
+ {[]int{1, 2, 3, 4, 5, 6, 7, 8, 9, 10}, "[]int{1, 2, 3, 4, 5, 6, 7, 8, 9, 10}"},
+ {&[]int{1, 2, 3, 4, 5, 6, 7, 8, 9, 10}, "*[]int(&[]int{1, 2, 3, 4, 5, 6, 7, 8, 9, 10})"},
+}
+
+func TestValueToString(t *testing.T) {
+ for i, test := range valueToStringTests {
+ s := valueToString(NewValue(test.i))
+ if s != test.s {
+ t.Errorf("#%d: have %#q, want %#q", i, s, test.s)
+ }
+ }
+}
+
+func TestArrayElemSet(t *testing.T) {
+ v := NewValue([10]int{1, 2, 3, 4, 5, 6, 7, 8, 9, 10})
+ v.(*ArrayValue).Elem(4).(*IntValue).Set(123)
+ s := valueToString(v)
+ const want = "[10]int{1, 2, 3, 4, 123, 6, 7, 8, 9, 10}"
+ if s != want {
+ t.Errorf("[10]int: have %#q want %#q", s, want)
+ }
+
+ v = NewValue([]int{1, 2, 3, 4, 5, 6, 7, 8, 9, 10})
+ v.(*SliceValue).Elem(4).(*IntValue).Set(123)
+ s = valueToString(v)
+ const want1 = "[]int{1, 2, 3, 4, 123, 6, 7, 8, 9, 10}"
+ if s != want1 {
+ t.Errorf("[]int: have %#q want %#q", s, want1)
+ }
+}
+
+func TestPtrPointTo(t *testing.T) {
+ var ip *int32
+ var i int32 = 1234
+ vip := NewValue(&ip)
+ vi := NewValue(i)
+ vip.(*PtrValue).Elem().(*PtrValue).PointTo(vi)
+ if *ip != 1234 {
+ t.Errorf("got %d, want 1234", *ip)
+ }
+
+ ip = nil
+ vp := NewValue(ip).(*PtrValue)
+ vp.PointTo(vp.Elem())
+ if ip != nil {
+ t.Errorf("got non-nil (%p), want nil", ip)
+ }
+}
+
+func TestPtrSetNil(t *testing.T) {
+ var i int32 = 1234
+ ip := &i
+ vip := NewValue(&ip)
+ vip.(*PtrValue).Elem().(*PtrValue).Set(nil)
+ if ip != nil {
+ t.Errorf("got non-nil (%d), want nil", *ip)
+ }
+}
+
+func TestMapSetNil(t *testing.T) {
+ m := make(map[string]int)
+ vm := NewValue(&m)
+ vm.(*PtrValue).Elem().(*MapValue).Set(nil)
+ if m != nil {
+ t.Errorf("got non-nil (%p), want nil", m)
+ }
+}
+
+
+func TestAll(t *testing.T) {
+ testType(t, 1, Typeof((int8)(0)), "int8")
+ testType(t, 2, Typeof((*int8)(nil)).(*PtrType).Elem(), "int8")
+
+ typ := Typeof((*struct {
+ c chan *int32
+ d float32
+ })(nil))
+ testType(t, 3, typ, "*struct { c chan *int32; d float32 }")
+ etyp := typ.(*PtrType).Elem()
+ testType(t, 4, etyp, "struct { c chan *int32; d float32 }")
+ styp := etyp.(*StructType)
+ f := styp.Field(0)
+ testType(t, 5, f.Type, "chan *int32")
+
+ f, present := styp.FieldByName("d")
+ if !present {
+ t.Errorf("FieldByName says present field is absent")
+ }
+ testType(t, 6, f.Type, "float32")
+
+ f, present = styp.FieldByName("absent")
+ if present {
+ t.Errorf("FieldByName says absent field is present")
+ }
+
+ typ = Typeof([32]int32{})
+ testType(t, 7, typ, "[32]int32")
+ testType(t, 8, typ.(*ArrayType).Elem(), "int32")
+
+ typ = Typeof((map[string]*int32)(nil))
+ testType(t, 9, typ, "map[string] *int32")
+ mtyp := typ.(*MapType)
+ testType(t, 10, mtyp.Key(), "string")
+ testType(t, 11, mtyp.Elem(), "*int32")
+
+ typ = Typeof((chan<- string)(nil))
+ testType(t, 12, typ, "chan<- string")
+ testType(t, 13, typ.(*ChanType).Elem(), "string")
+
+ // make sure tag strings are not part of element type
+ typ = Typeof(struct {
+ d []uint32 "TAG"
+ }{}).(*StructType).Field(0).Type
+ testType(t, 14, typ, "[]uint32")
+}
+
+func TestInterfaceGet(t *testing.T) {
+ var inter struct {
+ e interface{}
+ }
+ inter.e = 123.456
+ v1 := NewValue(&inter)
+ v2 := v1.(*PtrValue).Elem().(*StructValue).Field(0)
+ assert(t, v2.Type().String(), "interface { }")
+ i2 := v2.(*InterfaceValue).Interface()
+ v3 := NewValue(i2)
+ assert(t, v3.Type().String(), "float64")
+}
+
+func TestInterfaceValue(t *testing.T) {
+ var inter struct {
+ e interface{}
+ }
+ inter.e = 123.456
+ v1 := NewValue(&inter)
+ v2 := v1.(*PtrValue).Elem().(*StructValue).Field(0)
+ assert(t, v2.Type().String(), "interface { }")
+ v3 := v2.(*InterfaceValue).Elem()
+ assert(t, v3.Type().String(), "float64")
+
+ i3 := v2.Interface()
+ if _, ok := i3.(float64); !ok {
+ t.Error("v2.Interface() did not return float64, got ", Typeof(i3))
+ }
+}
+
+func TestFunctionValue(t *testing.T) {
+ v := NewValue(func() {})
+ if v.Interface() != v.Interface() {
+ t.Fatalf("TestFunction != itself")
+ }
+ assert(t, v.Type().String(), "func()")
+}
+
+var appendTests = []struct {
+ orig, extra []int
+}{
+ {make([]int, 2, 4), []int{22}},
+ {make([]int, 2, 4), []int{22, 33, 44}},
+}
+
+func TestAppend(t *testing.T) {
+ for i, test := range appendTests {
+ origLen, extraLen := len(test.orig), len(test.extra)
+ want := append(test.orig, test.extra...)
+ // Convert extra from []int to []Value.
+ e0 := make([]Value, len(test.extra))
+ for j, e := range test.extra {
+ e0[j] = NewValue(e)
+ }
+ // Convert extra from []int to *SliceValue.
+ e1 := NewValue(test.extra).(*SliceValue)
+ // Test Append.
+ a0 := NewValue(test.orig).(*SliceValue)
+ have0 := Append(a0, e0...).Interface().([]int)
+ if !DeepEqual(have0, want) {
+ t.Errorf("Append #%d: have %v, want %v", i, have0, want)
+ }
+ // Check that the orig and extra slices were not modified.
+ if len(test.orig) != origLen {
+ t.Errorf("Append #%d origLen: have %v, want %v", i, len(test.orig), origLen)
+ }
+ if len(test.extra) != extraLen {
+ t.Errorf("Append #%d extraLen: have %v, want %v", i, len(test.extra), extraLen)
+ }
+ // Test AppendSlice.
+ a1 := NewValue(test.orig).(*SliceValue)
+ have1 := AppendSlice(a1, e1).Interface().([]int)
+ if !DeepEqual(have1, want) {
+ t.Errorf("AppendSlice #%d: have %v, want %v", i, have1, want)
+ }
+ // Check that the orig and extra slices were not modified.
+ if len(test.orig) != origLen {
+ t.Errorf("AppendSlice #%d origLen: have %v, want %v", i, len(test.orig), origLen)
+ }
+ if len(test.extra) != extraLen {
+ t.Errorf("AppendSlice #%d extraLen: have %v, want %v", i, len(test.extra), extraLen)
+ }
+ }
+}
+
+func TestCopy(t *testing.T) {
+ a := []int{1, 2, 3, 4, 10, 9, 8, 7}
+ b := []int{11, 22, 33, 44, 1010, 99, 88, 77, 66, 55, 44}
+ c := []int{11, 22, 33, 44, 1010, 99, 88, 77, 66, 55, 44}
+ for i := 0; i < len(b); i++ {
+ if b[i] != c[i] {
+ t.Fatalf("b != c before test")
+ }
+ }
+ aa := NewValue(a).(*SliceValue)
+ ab := NewValue(b).(*SliceValue)
+ for tocopy := 1; tocopy <= 7; tocopy++ {
+ aa.SetLen(tocopy)
+ Copy(ab, aa)
+ aa.SetLen(8)
+ for i := 0; i < tocopy; i++ {
+ if a[i] != b[i] {
+ t.Errorf("(i) tocopy=%d a[%d]=%d, b[%d]=%d",
+ tocopy, i, a[i], i, b[i])
+ }
+ }
+ for i := tocopy; i < len(b); i++ {
+ if b[i] != c[i] {
+ if i < len(a) {
+ t.Errorf("(ii) tocopy=%d a[%d]=%d, b[%d]=%d, c[%d]=%d",
+ tocopy, i, a[i], i, b[i], i, c[i])
+ } else {
+ t.Errorf("(iii) tocopy=%d b[%d]=%d, c[%d]=%d",
+ tocopy, i, b[i], i, c[i])
+ }
+ } else {
+ t.Logf("tocopy=%d elem %d is okay\n", tocopy, i)
+ }
+ }
+ }
+}
+
+func TestBigUnnamedStruct(t *testing.T) {
+ b := struct{ a, b, c, d int64 }{1, 2, 3, 4}
+ v := NewValue(b)
+ b1 := v.Interface().(struct {
+ a, b, c, d int64
+ })
+ if b1.a != b.a || b1.b != b.b || b1.c != b.c || b1.d != b.d {
+ t.Errorf("NewValue(%v).Interface().(*Big) = %v", b, b1)
+ }
+}
+
+type big struct {
+ a, b, c, d, e int64
+}
+
+func TestBigStruct(t *testing.T) {
+ b := big{1, 2, 3, 4, 5}
+ v := NewValue(b)
+ b1 := v.Interface().(big)
+ if b1.a != b.a || b1.b != b.b || b1.c != b.c || b1.d != b.d || b1.e != b.e {
+ t.Errorf("NewValue(%v).Interface().(big) = %v", b, b1)
+ }
+}
+
+type Basic struct {
+ x int
+ y float32
+}
+
+type NotBasic Basic
+
+type DeepEqualTest struct {
+ a, b interface{}
+ eq bool
+}
+
+var deepEqualTests = []DeepEqualTest{
+ // Equalities
+ {1, 1, true},
+ {int32(1), int32(1), true},
+ {0.5, 0.5, true},
+ {float32(0.5), float32(0.5), true},
+ {"hello", "hello", true},
+ {make([]int, 10), make([]int, 10), true},
+ {&[3]int{1, 2, 3}, &[3]int{1, 2, 3}, true},
+ {Basic{1, 0.5}, Basic{1, 0.5}, true},
+ {os.Error(nil), os.Error(nil), true},
+ {map[int]string{1: "one", 2: "two"}, map[int]string{2: "two", 1: "one"}, true},
+
+ // Inequalities
+ {1, 2, false},
+ {int32(1), int32(2), false},
+ {0.5, 0.6, false},
+ {float32(0.5), float32(0.6), false},
+ {"hello", "hey", false},
+ {make([]int, 10), make([]int, 11), false},
+ {&[3]int{1, 2, 3}, &[3]int{1, 2, 4}, false},
+ {Basic{1, 0.5}, Basic{1, 0.6}, false},
+ {Basic{1, 0}, Basic{2, 0}, false},
+ {map[int]string{1: "one", 3: "two"}, map[int]string{2: "two", 1: "one"}, false},
+ {map[int]string{1: "one", 2: "txo"}, map[int]string{2: "two", 1: "one"}, false},
+ {map[int]string{1: "one"}, map[int]string{2: "two", 1: "one"}, false},
+ {map[int]string{2: "two", 1: "one"}, map[int]string{1: "one"}, false},
+ {nil, 1, false},
+ {1, nil, false},
+
+ // Mismatched types
+ {1, 1.0, false},
+ {int32(1), int64(1), false},
+ {0.5, "hello", false},
+ {[]int{1, 2, 3}, [3]int{1, 2, 3}, false},
+ {&[3]interface{}{1, 2, 4}, &[3]interface{}{1, 2, "s"}, false},
+ {Basic{1, 0.5}, NotBasic{1, 0.5}, false},
+ {map[uint]string{1: "one", 2: "two"}, map[int]string{2: "two", 1: "one"}, false},
+}
+
+func TestDeepEqual(t *testing.T) {
+ for _, test := range deepEqualTests {
+ if r := DeepEqual(test.a, test.b); r != test.eq {
+ t.Errorf("DeepEqual(%v, %v) = %v, want %v", test.a, test.b, r, test.eq)
+ }
+ }
+}
+
+func TestTypeof(t *testing.T) {
+ for _, test := range deepEqualTests {
+ v := NewValue(test.a)
+ if v == nil {
+ continue
+ }
+ typ := Typeof(test.a)
+ if typ != v.Type() {
+ t.Errorf("Typeof(%v) = %v, but NewValue(%v).Type() = %v", test.a, typ, test.a, v.Type())
+ }
+ }
+}
+
+type Recursive struct {
+ x int
+ r *Recursive
+}
+
+func TestDeepEqualRecursiveStruct(t *testing.T) {
+ a, b := new(Recursive), new(Recursive)
+ *a = Recursive{12, a}
+ *b = Recursive{12, b}
+ if !DeepEqual(a, b) {
+ t.Error("DeepEqual(recursive same) = false, want true")
+ }
+}
+
+type _Complex struct {
+ a int
+ b [3]*_Complex
+ c *string
+ d map[float64]float64
+}
+
+func TestDeepEqualComplexStruct(t *testing.T) {
+ m := make(map[float64]float64)
+ stra, strb := "hello", "hello"
+ a, b := new(_Complex), new(_Complex)
+ *a = _Complex{5, [3]*_Complex{a, b, a}, &stra, m}
+ *b = _Complex{5, [3]*_Complex{b, a, a}, &strb, m}
+ if !DeepEqual(a, b) {
+ t.Error("DeepEqual(complex same) = false, want true")
+ }
+}
+
+func TestDeepEqualComplexStructInequality(t *testing.T) {
+ m := make(map[float64]float64)
+ stra, strb := "hello", "helloo" // Difference is here
+ a, b := new(_Complex), new(_Complex)
+ *a = _Complex{5, [3]*_Complex{a, b, a}, &stra, m}
+ *b = _Complex{5, [3]*_Complex{b, a, a}, &strb, m}
+ if DeepEqual(a, b) {
+ t.Error("DeepEqual(complex different) = true, want false")
+ }
+}
+
+
+func check2ndField(x interface{}, offs uintptr, t *testing.T) {
+ s := NewValue(x).(*StructValue)
+ f := s.Type().(*StructType).Field(1)
+ if f.Offset != offs {
+ t.Error("mismatched offsets in structure alignment:", f.Offset, offs)
+ }
+}
+
+// Check that structure alignment & offsets viewed through reflect agree with those
+// from the compiler itself.
+func TestAlignment(t *testing.T) {
+ type T1inner struct {
+ a int
+ }
+ type T1 struct {
+ T1inner
+ f int
+ }
+ type T2inner struct {
+ a, b int
+ }
+ type T2 struct {
+ T2inner
+ f int
+ }
+
+ x := T1{T1inner{2}, 17}
+ check2ndField(x, uintptr(unsafe.Pointer(&x.f))-uintptr(unsafe.Pointer(&x)), t)
+
+ x1 := T2{T2inner{2, 3}, 17}
+ check2ndField(x1, uintptr(unsafe.Pointer(&x1.f))-uintptr(unsafe.Pointer(&x1)), t)
+}
+
+type IsNiller interface {
+ IsNil() bool
+}
+
+func Nil(a interface{}, t *testing.T) {
+ n := NewValue(a).(*StructValue).Field(0).(IsNiller)
+ if !n.IsNil() {
+ t.Errorf("%v should be nil", a)
+ }
+}
+
+func NotNil(a interface{}, t *testing.T) {
+ n := NewValue(a).(*StructValue).Field(0).(IsNiller)
+ if n.IsNil() {
+ t.Errorf("value of type %v should not be nil", NewValue(a).Type().String())
+ }
+}
+
+func TestIsNil(t *testing.T) {
+ // These do not implement IsNil
+ doNotNil := []interface{}{int(0), float32(0), struct{ a int }{}}
+ for _, ts := range doNotNil {
+ ty := Typeof(ts)
+ v := MakeZero(ty)
+ if _, ok := v.(IsNiller); ok {
+ t.Errorf("%s is nilable; should not be", ts)
+ }
+ }
+
+ // These do implement IsNil.
+ // Wrap in extra struct to hide interface type.
+ doNil := []interface{}{
+ struct{ x *int }{},
+ struct{ x interface{} }{},
+ struct{ x map[string]int }{},
+ struct{ x func() bool }{},
+ struct{ x chan int }{},
+ struct{ x []string }{},
+ }
+ for _, ts := range doNil {
+ ty := Typeof(ts).(*StructType).Field(0).Type
+ v := MakeZero(ty)
+ if _, ok := v.(IsNiller); !ok {
+ t.Errorf("%s %T is not nilable; should be", ts, v)
+ }
+ }
+
+ // Check the implementations
+ var pi struct {
+ x *int
+ }
+ Nil(pi, t)
+ pi.x = new(int)
+ NotNil(pi, t)
+
+ var si struct {
+ x []int
+ }
+ Nil(si, t)
+ si.x = make([]int, 10)
+ NotNil(si, t)
+
+ var ci struct {
+ x chan int
+ }
+ Nil(ci, t)
+ ci.x = make(chan int)
+ NotNil(ci, t)
+
+ var mi struct {
+ x map[int]int
+ }
+ Nil(mi, t)
+ mi.x = make(map[int]int)
+ NotNil(mi, t)
+
+ var ii struct {
+ x interface{}
+ }
+ Nil(ii, t)
+ ii.x = 2
+ NotNil(ii, t)
+
+ var fi struct {
+ x func(t *testing.T)
+ }
+ Nil(fi, t)
+ fi.x = TestIsNil
+ NotNil(fi, t)
+}
+
+func TestInterfaceExtraction(t *testing.T) {
+ var s struct {
+ w io.Writer
+ }
+
+ s.w = os.Stdout
+ v := Indirect(NewValue(&s)).(*StructValue).Field(0).Interface()
+ if v != s.w.(interface{}) {
+ t.Error("Interface() on interface: ", v, s.w)
+ }
+}
+
+func TestInterfaceEditing(t *testing.T) {
+ // strings are bigger than one word,
+ // so the interface conversion allocates
+ // memory to hold a string and puts that
+ // pointer in the interface.
+ var i interface{} = "hello"
+
+ // if i pass the interface value by value
+ // to NewValue, i should get a fresh copy
+ // of the value.
+ v := NewValue(i)
+
+ // and setting that copy to "bye" should
+ // not change the value stored in i.
+ v.(*StringValue).Set("bye")
+ if i.(string) != "hello" {
+ t.Errorf(`Set("bye") changed i to %s`, i.(string))
+ }
+
+ // the same should be true of smaller items.
+ i = 123
+ v = NewValue(i)
+ v.(*IntValue).Set(234)
+ if i.(int) != 123 {
+ t.Errorf("Set(234) changed i to %d", i.(int))
+ }
+}
+
+func TestNilPtrValueSub(t *testing.T) {
+ var pi *int
+ if pv := NewValue(pi).(*PtrValue); pv.Elem() != nil {
+ t.Error("NewValue((*int)(nil)).(*PtrValue).Elem() != nil")
+ }
+}
+
+func TestMap(t *testing.T) {
+ m := map[string]int{"a": 1, "b": 2}
+ mv := NewValue(m).(*MapValue)
+ if n := mv.Len(); n != len(m) {
+ t.Errorf("Len = %d, want %d", n, len(m))
+ }
+ keys := mv.Keys()
+ i := 0
+ newmap := MakeMap(mv.Type().(*MapType))
+ for k, v := range m {
+ // Check that returned Keys match keys in range.
+ // These aren't required to be in the same order,
+ // but they are in this implementation, which makes
+ // the test easier.
+ if i >= len(keys) {
+ t.Errorf("Missing key #%d %q", i, k)
+ } else if kv := keys[i].(*StringValue); kv.Get() != k {
+ t.Errorf("Keys[%d] = %q, want %q", i, kv.Get(), k)
+ }
+ i++
+
+ // Check that value lookup is correct.
+ vv := mv.Elem(NewValue(k))
+ if vi := vv.(*IntValue).Get(); vi != int64(v) {
+ t.Errorf("Key %q: have value %d, want %d", k, vi, v)
+ }
+
+ // Copy into new map.
+ newmap.SetElem(NewValue(k), NewValue(v))
+ }
+ vv := mv.Elem(NewValue("not-present"))
+ if vv != nil {
+ t.Errorf("Invalid key: got non-nil value %s", valueToString(vv))
+ }
+
+ newm := newmap.Interface().(map[string]int)
+ if len(newm) != len(m) {
+ t.Errorf("length after copy: newm=%d, m=%d", newm, m)
+ }
+
+ for k, v := range newm {
+ mv, ok := m[k]
+ if mv != v {
+ t.Errorf("newm[%q] = %d, but m[%q] = %d, %v", k, v, k, mv, ok)
+ }
+ }
+
+ newmap.SetElem(NewValue("a"), nil)
+ v, ok := newm["a"]
+ if ok {
+ t.Errorf("newm[\"a\"] = %d after delete", v)
+ }
+
+ mv = NewValue(&m).(*PtrValue).Elem().(*MapValue)
+ mv.Set(nil)
+ if m != nil {
+ t.Errorf("mv.Set(nil) failed")
+ }
+}
+
+func TestChan(t *testing.T) {
+ for loop := 0; loop < 2; loop++ {
+ var c chan int
+ var cv *ChanValue
+
+ // check both ways to allocate channels
+ switch loop {
+ case 1:
+ c = make(chan int, 1)
+ cv = NewValue(c).(*ChanValue)
+ case 0:
+ cv = MakeChan(Typeof(c).(*ChanType), 1)
+ c = cv.Interface().(chan int)
+ }
+
+ // Send
+ cv.Send(NewValue(2))
+ if i := <-c; i != 2 {
+ t.Errorf("reflect Send 2, native recv %d", i)
+ }
+
+ // Recv
+ c <- 3
+ if i := cv.Recv().(*IntValue).Get(); i != 3 {
+ t.Errorf("native send 3, reflect Recv %d", i)
+ }
+
+ // TryRecv fail
+ val := cv.TryRecv()
+ if val != nil {
+ t.Errorf("TryRecv on empty chan: %s", valueToString(val))
+ }
+
+ // TryRecv success
+ c <- 4
+ val = cv.TryRecv()
+ if val == nil {
+ t.Errorf("TryRecv on ready chan got nil")
+ } else if i := val.(*IntValue).Get(); i != 4 {
+ t.Errorf("native send 4, TryRecv %d", i)
+ }
+
+ // TrySend fail
+ c <- 100
+ ok := cv.TrySend(NewValue(5))
+ i := <-c
+ if ok {
+ t.Errorf("TrySend on full chan succeeded: value %d", i)
+ }
+
+ // TrySend success
+ ok = cv.TrySend(NewValue(6))
+ if !ok {
+ t.Errorf("TrySend on empty chan failed")
+ } else {
+ if i = <-c; i != 6 {
+ t.Errorf("TrySend 6, recv %d", i)
+ }
+ }
+
+ // Close
+ c <- 123
+ cv.Close()
+ if cv.Closed() {
+ t.Errorf("closed too soon - 1")
+ }
+ if i := cv.Recv().(*IntValue).Get(); i != 123 {
+ t.Errorf("send 123 then close; Recv %d", i)
+ }
+ if cv.Closed() {
+ t.Errorf("closed too soon - 2")
+ }
+ if i := cv.Recv().(*IntValue).Get(); i != 0 {
+ t.Errorf("after close Recv %d", i)
+ }
+ if !cv.Closed() {
+ t.Errorf("not closed")
+ }
+ }
+
+ // check creation of unbuffered channel
+ var c chan int
+ cv := MakeChan(Typeof(c).(*ChanType), 0)
+ c = cv.Interface().(chan int)
+ if cv.TrySend(NewValue(7)) {
+ t.Errorf("TrySend on sync chan succeeded")
+ }
+ if cv.TryRecv() != nil {
+ t.Errorf("TryRecv on sync chan succeeded")
+ }
+
+ // len/cap
+ cv = MakeChan(Typeof(c).(*ChanType), 10)
+ c = cv.Interface().(chan int)
+ for i := 0; i < 3; i++ {
+ c <- i
+ }
+ if l, m := cv.Len(), cv.Cap(); l != len(c) || m != cap(c) {
+ t.Errorf("Len/Cap = %d/%d want %d/%d", l, m, len(c), cap(c))
+ }
+
+}
+
+// Difficult test for function call because of
+// implicit padding between arguments.
+func dummy(b byte, c int, d byte) (i byte, j int, k byte) {
+ return b, c, d
+}
+
+func TestFunc(t *testing.T) {
+ ret := NewValue(dummy).(*FuncValue).Call([]Value{NewValue(byte(10)), NewValue(20), NewValue(byte(30))})
+ if len(ret) != 3 {
+ t.Fatalf("Call returned %d values, want 3", len(ret))
+ }
+
+ i := ret[0].(*UintValue).Get()
+ j := ret[1].(*IntValue).Get()
+ k := ret[2].(*UintValue).Get()
+ if i != 10 || j != 20 || k != 30 {
+ t.Errorf("Call returned %d, %d, %d; want 10, 20, 30", i, j, k)
+ }
+}
+
+type Point struct {
+ x, y int
+}
+
+func (p Point) Dist(scale int) int { return p.x*p.x*scale + p.y*p.y*scale }
+
+func TestMethod(t *testing.T) {
+ // Non-curried method of type.
+ p := Point{3, 4}
+ i := Typeof(p).Method(0).Func.Call([]Value{NewValue(p), NewValue(10)})[0].(*IntValue).Get()
+ if i != 250 {
+ t.Errorf("Type Method returned %d; want 250", i)
+ }
+
+ i = Typeof(&p).Method(0).Func.Call([]Value{NewValue(&p), NewValue(10)})[0].(*IntValue).Get()
+ if i != 250 {
+ t.Errorf("Pointer Type Method returned %d; want 250", i)
+ }
+
+ // Curried method of value.
+ i = NewValue(p).Method(0).Call([]Value{NewValue(10)})[0].(*IntValue).Get()
+ if i != 250 {
+ t.Errorf("Value Method returned %d; want 250", i)
+ }
+
+ // Curried method of interface value.
+ // Have to wrap interface value in a struct to get at it.
+ // Passing it to NewValue directly would
+ // access the underlying Point, not the interface.
+ var s = struct {
+ x interface {
+ Dist(int) int
+ }
+ }{p}
+ pv := NewValue(s).(*StructValue).Field(0)
+ i = pv.Method(0).Call([]Value{NewValue(10)})[0].(*IntValue).Get()
+ if i != 250 {
+ t.Errorf("Interface Method returned %d; want 250", i)
+ }
+}
+
+func TestInterfaceSet(t *testing.T) {
+ p := &Point{3, 4}
+
+ var s struct {
+ I interface{}
+ P interface {
+ Dist(int) int
+ }
+ }
+ sv := NewValue(&s).(*PtrValue).Elem().(*StructValue)
+ sv.Field(0).(*InterfaceValue).Set(NewValue(p))
+ if q := s.I.(*Point); q != p {
+ t.Errorf("i: have %p want %p", q, p)
+ }
+
+ pv := sv.Field(1).(*InterfaceValue)
+ pv.Set(NewValue(p))
+ if q := s.P.(*Point); q != p {
+ t.Errorf("i: have %p want %p", q, p)
+ }
+
+ i := pv.Method(0).Call([]Value{NewValue(10)})[0].(*IntValue).Get()
+ if i != 250 {
+ t.Errorf("Interface Method returned %d; want 250", i)
+ }
+}
+
+type T1 struct {
+ a string
+ int
+}
+
+func TestAnonymousFields(t *testing.T) {
+ var field StructField
+ var ok bool
+ var t1 T1
+ type1 := Typeof(t1).(*StructType)
+ if field, ok = type1.FieldByName("int"); !ok {
+ t.Error("no field 'int'")
+ }
+ if field.Index[0] != 1 {
+ t.Error("field index should be 1; is", field.Index)
+ }
+}
+
+type FTest struct {
+ s interface{}
+ name string
+ index []int
+ value int
+}
+
+type D1 struct {
+ d int
+}
+type D2 struct {
+ d int
+}
+
+type S0 struct {
+ a, b, c int
+ D1
+ D2
+}
+
+type S1 struct {
+ b int
+ S0
+}
+
+type S2 struct {
+ a int
+ *S1
+}
+
+type S1x struct {
+ S1
+}
+
+type S1y struct {
+ S1
+}
+
+type S3 struct {
+ S1x
+ S2
+ d, e int
+ *S1y
+}
+
+type S4 struct {
+ *S4
+ a int
+}
+
+var fieldTests = []FTest{
+ {struct{}{}, "", nil, 0},
+ {struct{}{}, "foo", nil, 0},
+ {S0{a: 'a'}, "a", []int{0}, 'a'},
+ {S0{}, "d", nil, 0},
+ {S1{S0: S0{a: 'a'}}, "a", []int{1, 0}, 'a'},
+ {S1{b: 'b'}, "b", []int{0}, 'b'},
+ {S1{}, "S0", []int{1}, 0},
+ {S1{S0: S0{c: 'c'}}, "c", []int{1, 2}, 'c'},
+ {S2{a: 'a'}, "a", []int{0}, 'a'},
+ {S2{}, "S1", []int{1}, 0},
+ {S2{S1: &S1{b: 'b'}}, "b", []int{1, 0}, 'b'},
+ {S2{S1: &S1{S0: S0{c: 'c'}}}, "c", []int{1, 1, 2}, 'c'},
+ {S2{}, "d", nil, 0},
+ {S3{}, "S1", nil, 0},
+ {S3{S2: S2{a: 'a'}}, "a", []int{1, 0}, 'a'},
+ {S3{}, "b", nil, 0},
+ {S3{d: 'd'}, "d", []int{2}, 0},
+ {S3{e: 'e'}, "e", []int{3}, 'e'},
+ {S4{a: 'a'}, "a", []int{1}, 'a'},
+ {S4{}, "b", nil, 0},
+}
+
+func TestFieldByIndex(t *testing.T) {
+ for _, test := range fieldTests {
+ s := Typeof(test.s).(*StructType)
+ f := s.FieldByIndex(test.index)
+ if f.Name != "" {
+ if test.index != nil {
+ if f.Name != test.name {
+ t.Errorf("%s.%s found; want %s", s.Name(), f.Name, test.name)
+ }
+ } else {
+ t.Errorf("%s.%s found", s.Name(), f.Name)
+ }
+ } else if len(test.index) > 0 {
+ t.Errorf("%s.%s not found", s.Name(), test.name)
+ }
+
+ if test.value != 0 {
+ v := NewValue(test.s).(*StructValue).FieldByIndex(test.index)
+ if v != nil {
+ if x, ok := v.Interface().(int); ok {
+ if x != test.value {
+ t.Errorf("%s%v is %d; want %d", s.Name(), test.index, x, test.value)
+ }
+ } else {
+ t.Errorf("%s%v value not an int", s.Name(), test.index)
+ }
+ } else {
+ t.Errorf("%s%v value not found", s.Name(), test.index)
+ }
+ }
+ }
+}
+
+func TestFieldByName(t *testing.T) {
+ for _, test := range fieldTests {
+ s := Typeof(test.s).(*StructType)
+ f, found := s.FieldByName(test.name)
+ if found {
+ if test.index != nil {
+ // Verify field depth and index.
+ if len(f.Index) != len(test.index) {
+ t.Errorf("%s.%s depth %d; want %d", s.Name(), test.name, len(f.Index), len(test.index))
+ } else {
+ for i, x := range f.Index {
+ if x != test.index[i] {
+ t.Errorf("%s.%s.Index[%d] is %d; want %d", s.Name(), test.name, i, x, test.index[i])
+ }
+ }
+ }
+ } else {
+ t.Errorf("%s.%s found", s.Name(), f.Name)
+ }
+ } else if len(test.index) > 0 {
+ t.Errorf("%s.%s not found", s.Name(), test.name)
+ }
+
+ if test.value != 0 {
+ v := NewValue(test.s).(*StructValue).FieldByName(test.name)
+ if v != nil {
+ if x, ok := v.Interface().(int); ok {
+ if x != test.value {
+ t.Errorf("%s.%s is %d; want %d", s.Name(), test.name, x, test.value)
+ }
+ } else {
+ t.Errorf("%s.%s value not an int", s.Name(), test.name)
+ }
+ } else {
+ t.Errorf("%s.%s value not found", s.Name(), test.name)
+ }
+ }
+ }
+}
+
+func TestImportPath(t *testing.T) {
+ if path := Typeof(vector.Vector{}).PkgPath(); path != "libgo_container.vector" {
+ t.Errorf("Typeof(vector.Vector{}).PkgPath() = %q, want \"libgo_container.vector\"", path)
+ }
+}
+
+func TestDotDotDot(t *testing.T) {
+ // Test example from FuncType.DotDotDot documentation.
+ var f func(x int, y ...float64)
+ typ := Typeof(f).(*FuncType)
+ if typ.NumIn() == 2 && typ.In(0) == Typeof(int(0)) {
+ sl, ok := typ.In(1).(*SliceType)
+ if ok {
+ if sl.Elem() == Typeof(0.0) {
+ // ok
+ return
+ }
+ }
+ }
+
+ // Failed
+ t.Errorf("want NumIn() = 2, In(0) = int, In(1) = []float64")
+ s := fmt.Sprintf("have NumIn() = %d", typ.NumIn())
+ for i := 0; i < typ.NumIn(); i++ {
+ s += fmt.Sprintf(", In(%d) = %s", i, typ.In(i))
+ }
+ t.Error(s)
+}
+
+type inner struct {
+ x int
+}
+
+type outer struct {
+ y int
+ inner
+}
+
+func (*inner) m() {}
+func (*outer) m() {}
+
+func TestNestedMethods(t *testing.T) {
+ typ := Typeof((*outer)(nil))
+ if typ.NumMethod() != 1 || typ.Method(0).Func.Get() != NewValue((*outer).m).(*FuncValue).Get() {
+ t.Errorf("Wrong method table for outer: (m=%p)", (*outer).m)
+ for i := 0; i < typ.NumMethod(); i++ {
+ m := typ.Method(i)
+ t.Errorf("\t%d: %s %#x\n", i, m.Name, m.Func.Get())
+ }
+ }
+}
+
+type innerInt struct {
+ x int
+}
+
+type outerInt struct {
+ y int
+ innerInt
+}
+
+func (i *innerInt) m() int {
+ return i.x
+}
+
+func TestEmbeddedMethods(t *testing.T) {
+ typ := Typeof((*outerInt)(nil))
+ if typ.NumMethod() != 1 || typ.Method(0).Func.Get() != NewValue((*outerInt).m).(*FuncValue).Get() {
+ t.Errorf("Wrong method table for outerInt: (m=%p)", (*outerInt).m)
+ for i := 0; i < typ.NumMethod(); i++ {
+ m := typ.Method(i)
+ t.Errorf("\t%d: %s %#x\n", i, m.Name, m.Func.Get())
+ }
+ }
+
+ i := &innerInt{3}
+ if v := NewValue(i).Method(0).Call(nil)[0].(*IntValue).Get(); v != 3 {
+ t.Errorf("i.m() = %d, want 3", v)
+ }
+
+ o := &outerInt{1, innerInt{2}}
+ if v := NewValue(o).Method(0).Call(nil)[0].(*IntValue).Get(); v != 2 {
+ t.Errorf("i.m() = %d, want 2", v)
+ }
+
+ f := (*outerInt).m
+ if v := f(o); v != 2 {
+ t.Errorf("f(o) = %d, want 2", v)
+ }
+}
diff --git a/libgo/go/reflect/deepequal.go b/libgo/go/reflect/deepequal.go
new file mode 100644
index 000000000..a50925e51
--- /dev/null
+++ b/libgo/go/reflect/deepequal.go
@@ -0,0 +1,135 @@
+// Copyright 2009 The Go Authors. All rights reserved.
+// Use of this source code is governed by a BSD-style
+// license that can be found in the LICENSE file.
+
+// Deep equality test via reflection
+
+package reflect
+
+
+// During deepValueEqual, must keep track of checks that are
+// in progress. The comparison algorithm assumes that all
+// checks in progress are true when it reencounters them.
+// Visited are stored in a map indexed by 17 * a1 + a2;
+type visit struct {
+ a1 uintptr
+ a2 uintptr
+ typ Type
+ next *visit
+}
+
+// Tests for deep equality using reflected types. The map argument tracks
+// comparisons that have already been seen, which allows short circuiting on
+// recursive types.
+func deepValueEqual(v1, v2 Value, visited map[uintptr]*visit, depth int) bool {
+ if v1 == nil || v2 == nil {
+ return v1 == v2
+ }
+ if v1.Type() != v2.Type() {
+ return false
+ }
+
+ // if depth > 10 { panic("deepValueEqual") } // for debugging
+
+ addr1 := v1.Addr()
+ addr2 := v2.Addr()
+ if addr1 > addr2 {
+ // Canonicalize order to reduce number of entries in visited.
+ addr1, addr2 = addr2, addr1
+ }
+
+ // Short circuit if references are identical ...
+ if addr1 == addr2 {
+ return true
+ }
+
+ // ... or already seen
+ h := 17*addr1 + addr2
+ seen := visited[h]
+ typ := v1.Type()
+ for p := seen; p != nil; p = p.next {
+ if p.a1 == addr1 && p.a2 == addr2 && p.typ == typ {
+ return true
+ }
+ }
+
+ // Remember for later.
+ visited[h] = &visit{addr1, addr2, typ, seen}
+
+ switch v := v1.(type) {
+ case *ArrayValue:
+ arr1 := v
+ arr2 := v2.(*ArrayValue)
+ if arr1.Len() != arr2.Len() {
+ return false
+ }
+ for i := 0; i < arr1.Len(); i++ {
+ if !deepValueEqual(arr1.Elem(i), arr2.Elem(i), visited, depth+1) {
+ return false
+ }
+ }
+ return true
+ case *SliceValue:
+ arr1 := v
+ arr2 := v2.(*SliceValue)
+ if arr1.Len() != arr2.Len() {
+ return false
+ }
+ for i := 0; i < arr1.Len(); i++ {
+ if !deepValueEqual(arr1.Elem(i), arr2.Elem(i), visited, depth+1) {
+ return false
+ }
+ }
+ return true
+ case *InterfaceValue:
+ i1 := v.Interface()
+ i2 := v2.Interface()
+ if i1 == nil || i2 == nil {
+ return i1 == i2
+ }
+ return deepValueEqual(NewValue(i1), NewValue(i2), visited, depth+1)
+ case *PtrValue:
+ return deepValueEqual(v.Elem(), v2.(*PtrValue).Elem(), visited, depth+1)
+ case *StructValue:
+ struct1 := v
+ struct2 := v2.(*StructValue)
+ for i, n := 0, v.NumField(); i < n; i++ {
+ if !deepValueEqual(struct1.Field(i), struct2.Field(i), visited, depth+1) {
+ return false
+ }
+ }
+ return true
+ case *MapValue:
+ map1 := v
+ map2 := v2.(*MapValue)
+ if map1.Len() != map2.Len() {
+ return false
+ }
+ for _, k := range map1.Keys() {
+ if !deepValueEqual(map1.Elem(k), map2.Elem(k), visited, depth+1) {
+ return false
+ }
+ }
+ return true
+ default:
+ // Normal equality suffices
+ return v1.Interface() == v2.Interface()
+ }
+
+ panic("Not reached")
+}
+
+// DeepEqual tests for deep equality. It uses normal == equality where possible
+// but will scan members of arrays, slices, and fields of structs. It correctly
+// handles recursive types.
+func DeepEqual(a1, a2 interface{}) bool {
+ if a1 == nil || a2 == nil {
+ return a1 == a2
+ }
+ v1 := NewValue(a1)
+ v2 := NewValue(a2)
+ if v1.Type() != v2.Type() {
+ return false
+ }
+ return deepValueEqual(v1, v2, make(map[uintptr]*visit), 0)
+}
diff --git a/libgo/go/reflect/tostring_test.go b/libgo/go/reflect/tostring_test.go
new file mode 100644
index 000000000..a1487fdd2
--- /dev/null
+++ b/libgo/go/reflect/tostring_test.go
@@ -0,0 +1,96 @@
+// Copyright 2009 The Go Authors. All rights reserved.
+// Use of this source code is governed by a BSD-style
+// license that can be found in the LICENSE file.
+
+// Formatting of reflection types and values for debugging.
+// Not defined as methods so they do not need to be linked into most binaries;
+// the functions are not used by the library itself, only in tests.
+
+package reflect_test
+
+import (
+ . "reflect"
+ "strconv"
+)
+
+// valueToString returns a textual representation of the reflection value val.
+// For debugging only.
+func valueToString(val Value) string {
+ var str string
+ if val == nil {
+ return "<nil>"
+ }
+ typ := val.Type()
+ switch val := val.(type) {
+ case *IntValue:
+ return strconv.Itoa64(val.Get())
+ case *UintValue:
+ return strconv.Uitoa64(val.Get())
+ case *FloatValue:
+ return strconv.Ftoa64(float64(val.Get()), 'g', -1)
+ case *ComplexValue:
+ c := val.Get()
+ return strconv.Ftoa64(float64(real(c)), 'g', -1) + "+" + strconv.Ftoa64(float64(imag(c)), 'g', -1) + "i"
+ case *StringValue:
+ return val.Get()
+ case *BoolValue:
+ if val.Get() {
+ return "true"
+ } else {
+ return "false"
+ }
+ case *PtrValue:
+ v := val
+ str = typ.String() + "("
+ if v.IsNil() {
+ str += "0"
+ } else {
+ str += "&" + valueToString(v.Elem())
+ }
+ str += ")"
+ return str
+ case ArrayOrSliceValue:
+ v := val
+ str += typ.String()
+ str += "{"
+ for i := 0; i < v.Len(); i++ {
+ if i > 0 {
+ str += ", "
+ }
+ str += valueToString(v.Elem(i))
+ }
+ str += "}"
+ return str
+ case *MapValue:
+ t := typ.(*MapType)
+ str = t.String()
+ str += "{"
+ str += "<can't iterate on maps>"
+ str += "}"
+ return str
+ case *ChanValue:
+ str = typ.String()
+ return str
+ case *StructValue:
+ t := typ.(*StructType)
+ v := val
+ str += t.String()
+ str += "{"
+ for i, n := 0, v.NumField(); i < n; i++ {
+ if i > 0 {
+ str += ", "
+ }
+ str += valueToString(v.Field(i))
+ }
+ str += "}"
+ return str
+ case *InterfaceValue:
+ return typ.String() + "(" + valueToString(val.Elem()) + ")"
+ case *FuncValue:
+ v := val
+ return typ.String() + "(" + strconv.Itoa64(int64(v.Get())) + ")"
+ default:
+ panic("valueToString: can't print type " + typ.String())
+ }
+ return "valueToString: can't happen"
+}
diff --git a/libgo/go/reflect/type.go b/libgo/go/reflect/type.go
new file mode 100644
index 000000000..4ad4c5f2b
--- /dev/null
+++ b/libgo/go/reflect/type.go
@@ -0,0 +1,743 @@
+// Copyright 2009 The Go Authors. All rights reserved.
+// Use of this source code is governed by a BSD-style
+// license that can be found in the LICENSE file.
+
+// The reflect package implements run-time reflection, allowing a program to
+// manipulate objects with arbitrary types. The typical use is to take a
+// value with static type interface{} and extract its dynamic type
+// information by calling Typeof, which returns an object with interface
+// type Type. That contains a pointer to a struct of type *StructType,
+// *IntType, etc. representing the details of the underlying type. A type
+// switch or type assertion can reveal which.
+//
+// A call to NewValue creates a Value representing the run-time data; it
+// contains a *StructValue, *IntValue, etc. MakeZero takes a Type and
+// returns a Value representing a zero value for that type.
+package reflect
+
+import (
+ "runtime"
+ "strconv"
+ "sync"
+ "unsafe"
+)
+
+/*
+ * Copy of data structures from ../runtime/type.go.
+ * For comments, see the ones in that file.
+ *
+ * These data structures are known to the compiler and the runtime.
+ *
+ * Putting these types in runtime instead of reflect means that
+ * reflect doesn't need to be autolinked into every binary, which
+ * simplifies bootstrapping and package dependencies.
+ * Unfortunately, it also means that reflect needs its own
+ * copy in order to access the private fields.
+ */
+
+// commonType is the common implementation of most values.
+// It is embedded in other, public struct types, but always
+// with a unique tag like "uint" or "float" so that the client cannot
+// convert from, say, *UintType to *FloatType.
+
+type commonType struct {
+ kind uint8
+ align int8
+ fieldAlign uint8
+ size uintptr
+ hash uint32
+ hashfn func(unsafe.Pointer, uintptr)
+ equalfn func(unsafe.Pointer, unsafe.Pointer, uintptr)
+ string *string
+ *uncommonType
+}
+
+type method struct {
+ name *string
+ pkgPath *string
+ mtyp *runtime.Type
+ typ *runtime.Type
+ tfn unsafe.Pointer
+}
+
+type uncommonType struct {
+ name *string
+ pkgPath *string
+ methods []method
+}
+
+// BoolType represents a boolean type.
+type BoolType struct {
+ commonType "bool"
+}
+
+// FloatType represents a float type.
+type FloatType struct {
+ commonType "float"
+}
+
+// ComplexType represents a complex type.
+type ComplexType struct {
+ commonType "complex"
+}
+
+// IntType represents a signed integer type.
+type IntType struct {
+ commonType "int"
+}
+
+// UintType represents a uint type.
+type UintType struct {
+ commonType "uint"
+}
+
+// StringType represents a string type.
+type StringType struct {
+ commonType "string"
+}
+
+// UnsafePointerType represents an unsafe.Pointer type.
+type UnsafePointerType struct {
+ commonType "unsafe.Pointer"
+}
+
+// ArrayType represents a fixed array type.
+type ArrayType struct {
+ commonType "array"
+ elem *runtime.Type
+ len uintptr
+}
+
+// ChanDir represents a channel type's direction.
+type ChanDir int
+
+const (
+ RecvDir ChanDir = 1 << iota
+ SendDir
+ BothDir = RecvDir | SendDir
+)
+
+// ChanType represents a channel type.
+type ChanType struct {
+ commonType "chan"
+ elem *runtime.Type
+ dir uintptr
+}
+
+// FuncType represents a function type.
+type FuncType struct {
+ commonType "func"
+ dotdotdot bool
+ in []*runtime.Type
+ out []*runtime.Type
+}
+
+// Method on interface type
+type imethod struct {
+ name *string
+ pkgPath *string
+ typ *runtime.Type
+}
+
+// InterfaceType represents an interface type.
+type InterfaceType struct {
+ commonType "interface"
+ methods []imethod
+}
+
+// MapType represents a map type.
+type MapType struct {
+ commonType "map"
+ key *runtime.Type
+ elem *runtime.Type
+}
+
+// PtrType represents a pointer type.
+type PtrType struct {
+ commonType "ptr"
+ elem *runtime.Type
+}
+
+// SliceType represents a slice type.
+type SliceType struct {
+ commonType "slice"
+ elem *runtime.Type
+}
+
+// Struct field
+type structField struct {
+ name *string
+ pkgPath *string
+ typ *runtime.Type
+ tag *string
+ offset uintptr
+}
+
+// StructType represents a struct type.
+type StructType struct {
+ commonType "struct"
+ fields []structField
+}
+
+
+/*
+ * The compiler knows the exact layout of all the data structures above.
+ * The compiler does not know about the data structures and methods below.
+ */
+
+// Method represents a single method.
+type Method struct {
+ PkgPath string // empty for uppercase Name
+ Name string
+ Type *FuncType
+ Func *FuncValue
+}
+
+// Type is the runtime representation of a Go type.
+// Every type implements the methods listed here.
+// Some types implement additional interfaces;
+// use a type switch to find out what kind of type a Type is.
+// Each type in a program has a unique Type, so == on Types
+// corresponds to Go's type equality.
+type Type interface {
+ // PkgPath returns the type's package path.
+ // The package path is a full package import path like "container/vector".
+ // PkgPath returns an empty string for unnamed types.
+ PkgPath() string
+
+ // Name returns the type's name within its package.
+ // Name returns an empty string for unnamed types.
+ Name() string
+
+ // String returns a string representation of the type.
+ // The string representation may use shortened package names
+ // (e.g., vector instead of "container/vector") and is not
+ // guaranteed to be unique among types. To test for equality,
+ // compare the Types directly.
+ String() string
+
+ // Size returns the number of bytes needed to store
+ // a value of the given type; it is analogous to unsafe.Sizeof.
+ Size() uintptr
+
+ // Bits returns the size of the type in bits.
+ // It is intended for use with numeric types and may overflow
+ // when used for composite types.
+ Bits() int
+
+ // Align returns the alignment of a value of this type
+ // when allocated in memory.
+ Align() int
+
+ // FieldAlign returns the alignment of a value of this type
+ // when used as a field in a struct.
+ FieldAlign() int
+
+ // Kind returns the specific kind of this type.
+ Kind() Kind
+
+ // For non-interface types, Method returns the i'th method with receiver T.
+ // For interface types, Method returns the i'th method in the interface.
+ // NumMethod returns the number of such methods.
+ Method(int) Method
+ NumMethod() int
+ uncommon() *uncommonType
+}
+
+// A Kind represents the specific kind of type that a Type represents.
+// For numeric types, the Kind gives more information than the Type's
+// dynamic type. For example, the Type of a float32 is FloatType, but
+// the Kind is Float32.
+//
+// The zero Kind is not a valid kind.
+type Kind uint8
+
+const (
+ Bool Kind = 1 + iota
+ Int
+ Int8
+ Int16
+ Int32
+ Int64
+ Uint
+ Uint8
+ Uint16
+ Uint32
+ Uint64
+ Uintptr
+ Float32
+ Float64
+ Complex64
+ Complex128
+ Array
+ Chan
+ Func
+ Interface
+ Map
+ Ptr
+ Slice
+ String
+ Struct
+ UnsafePointer
+)
+
+// High bit says whether type has
+// embedded pointers,to help garbage collector.
+const kindMask = 0x7f
+
+func (k Kind) String() string {
+ if int(k) < len(kindNames) {
+ return kindNames[k]
+ }
+ return "kind" + strconv.Itoa(int(k))
+}
+
+var kindNames = []string{
+ Bool: "bool",
+ Int: "int",
+ Int8: "int8",
+ Int16: "int16",
+ Int32: "int32",
+ Int64: "int64",
+ Uint: "uint",
+ Uint8: "uint8",
+ Uint16: "uint16",
+ Uint32: "uint32",
+ Uint64: "uint64",
+ Uintptr: "uintptr",
+ Float32: "float32",
+ Float64: "float64",
+ Complex64: "complex64",
+ Complex128: "complex128",
+ Array: "array",
+ Chan: "chan",
+ Func: "func",
+ Interface: "interface",
+ Map: "map",
+ Ptr: "ptr",
+ Slice: "slice",
+ String: "string",
+ Struct: "struct",
+ UnsafePointer: "unsafe.Pointer",
+}
+
+func (t *uncommonType) uncommon() *uncommonType {
+ return t
+}
+
+func (t *uncommonType) PkgPath() string {
+ if t == nil || t.pkgPath == nil {
+ return ""
+ }
+ return *t.pkgPath
+}
+
+func (t *uncommonType) Name() string {
+ if t == nil || t.name == nil {
+ return ""
+ }
+ return *t.name
+}
+
+func (t *commonType) String() string { return *t.string }
+
+func (t *commonType) Size() uintptr { return t.size }
+
+func (t *commonType) Bits() int { return int(t.size * 8) }
+
+func (t *commonType) Align() int { return int(t.align) }
+
+func (t *commonType) FieldAlign() int { return int(t.fieldAlign) }
+
+func (t *commonType) Kind() Kind { return Kind(t.kind & kindMask) }
+
+func (t *uncommonType) Method(i int) (m Method) {
+ if t == nil || i < 0 || i >= len(t.methods) {
+ return
+ }
+ p := &t.methods[i]
+ if p.name != nil {
+ m.Name = *p.name
+ }
+ if p.pkgPath != nil {
+ m.PkgPath = *p.pkgPath
+ }
+ m.Type = runtimeToType(p.typ).(*FuncType)
+ fn := p.tfn
+ m.Func = &FuncValue{value: value{m.Type, addr(&fn), true}}
+ return
+}
+
+func (t *uncommonType) NumMethod() int {
+ if t == nil {
+ return 0
+ }
+ return len(t.methods)
+}
+
+// TODO(rsc): 6g supplies these, but they are not
+// as efficient as they could be: they have commonType
+// as the receiver instead of *commonType.
+func (t *commonType) NumMethod() int { return t.uncommonType.NumMethod() }
+
+func (t *commonType) Method(i int) (m Method) { return t.uncommonType.Method(i) }
+
+func (t *commonType) PkgPath() string { return t.uncommonType.PkgPath() }
+
+func (t *commonType) Name() string { return t.uncommonType.Name() }
+
+// Len returns the number of elements in the array.
+func (t *ArrayType) Len() int { return int(t.len) }
+
+// Elem returns the type of the array's elements.
+func (t *ArrayType) Elem() Type { return runtimeToType(t.elem) }
+
+// Dir returns the channel direction.
+func (t *ChanType) Dir() ChanDir { return ChanDir(t.dir) }
+
+// Elem returns the channel's element type.
+func (t *ChanType) Elem() Type { return runtimeToType(t.elem) }
+
+func (d ChanDir) String() string {
+ switch d {
+ case SendDir:
+ return "chan<-"
+ case RecvDir:
+ return "<-chan"
+ case BothDir:
+ return "chan"
+ }
+ return "ChanDir" + strconv.Itoa(int(d))
+}
+
+// In returns the type of the i'th function input parameter.
+func (t *FuncType) In(i int) Type {
+ if i < 0 || i >= len(t.in) {
+ return nil
+ }
+ return runtimeToType(t.in[i])
+}
+
+// DotDotDot returns true if the final function input parameter
+// is a "..." parameter. If so, t.In(t.NumIn() - 1) returns the
+// parameter's underlying static type []T.
+//
+// For concreteness, if t is func(x int, y ... float), then
+//
+// t.NumIn() == 2
+// t.In(0) is the reflect.Type for "int"
+// t.In(1) is the reflect.Type for "[]float"
+// t.DotDotDot() == true
+//
+func (t *FuncType) DotDotDot() bool { return t.dotdotdot }
+
+// NumIn returns the number of input parameters.
+func (t *FuncType) NumIn() int { return len(t.in) }
+
+// Out returns the type of the i'th function output parameter.
+func (t *FuncType) Out(i int) Type {
+ if i < 0 || i >= len(t.out) {
+ return nil
+ }
+ return runtimeToType(t.out[i])
+}
+
+// NumOut returns the number of function output parameters.
+func (t *FuncType) NumOut() int { return len(t.out) }
+
+// Method returns the i'th interface method.
+func (t *InterfaceType) Method(i int) (m Method) {
+ if i < 0 || i >= len(t.methods) {
+ return
+ }
+ p := &t.methods[i]
+ m.Name = *p.name
+ if p.pkgPath != nil {
+ m.PkgPath = *p.pkgPath
+ }
+ m.Type = runtimeToType(p.typ).(*FuncType)
+ return
+}
+
+// NumMethod returns the number of interface methods.
+func (t *InterfaceType) NumMethod() int { return len(t.methods) }
+
+// Key returns the map key type.
+func (t *MapType) Key() Type { return runtimeToType(t.key) }
+
+// Elem returns the map element type.
+func (t *MapType) Elem() Type { return runtimeToType(t.elem) }
+
+// Elem returns the pointer element type.
+func (t *PtrType) Elem() Type { return runtimeToType(t.elem) }
+
+// Elem returns the type of the slice's elements.
+func (t *SliceType) Elem() Type { return runtimeToType(t.elem) }
+
+type StructField struct {
+ PkgPath string // empty for uppercase Name
+ Name string
+ Type Type
+ Tag string
+ Offset uintptr
+ Index []int
+ Anonymous bool
+}
+
+// Field returns the i'th struct field.
+func (t *StructType) Field(i int) (f StructField) {
+ if i < 0 || i >= len(t.fields) {
+ return
+ }
+ p := t.fields[i]
+ f.Type = runtimeToType(p.typ)
+ if p.name != nil {
+ f.Name = *p.name
+ } else {
+ t := f.Type
+ if pt, ok := t.(*PtrType); ok {
+ t = pt.Elem()
+ }
+ f.Name = t.Name()
+ f.Anonymous = true
+ }
+ if p.pkgPath != nil {
+ f.PkgPath = *p.pkgPath
+ }
+ if p.tag != nil {
+ f.Tag = *p.tag
+ }
+ f.Offset = p.offset
+ f.Index = []int{i}
+ return
+}
+
+// TODO(gri): Should there be an error/bool indicator if the index
+// is wrong for FieldByIndex?
+
+// FieldByIndex returns the nested field corresponding to index.
+func (t *StructType) FieldByIndex(index []int) (f StructField) {
+ for i, x := range index {
+ if i > 0 {
+ ft := f.Type
+ if pt, ok := ft.(*PtrType); ok {
+ ft = pt.Elem()
+ }
+ if st, ok := ft.(*StructType); ok {
+ t = st
+ } else {
+ var f0 StructField
+ f = f0
+ return
+ }
+ }
+ f = t.Field(x)
+ }
+ return
+}
+
+const inf = 1 << 30 // infinity - no struct has that many nesting levels
+
+func (t *StructType) fieldByNameFunc(match func(string) bool, mark map[*StructType]bool, depth int) (ff StructField, fd int) {
+ fd = inf // field depth
+
+ if mark[t] {
+ // Struct already seen.
+ return
+ }
+ mark[t] = true
+
+ var fi int // field index
+ n := 0 // number of matching fields at depth fd
+L:
+ for i := range t.fields {
+ f := t.Field(i)
+ d := inf
+ switch {
+ case match(f.Name):
+ // Matching top-level field.
+ d = depth
+ case f.Anonymous:
+ ft := f.Type
+ if pt, ok := ft.(*PtrType); ok {
+ ft = pt.Elem()
+ }
+ switch {
+ case match(ft.Name()):
+ // Matching anonymous top-level field.
+ d = depth
+ case fd > depth:
+ // No top-level field yet; look inside nested structs.
+ if st, ok := ft.(*StructType); ok {
+ f, d = st.fieldByNameFunc(match, mark, depth+1)
+ }
+ }
+ }
+
+ switch {
+ case d < fd:
+ // Found field at shallower depth.
+ ff, fi, fd = f, i, d
+ n = 1
+ case d == fd:
+ // More than one matching field at the same depth (or d, fd == inf).
+ // Same as no field found at this depth.
+ n++
+ if d == depth {
+ // Impossible to find a field at lower depth.
+ break L
+ }
+ }
+ }
+
+ if n == 1 {
+ // Found matching field.
+ if len(ff.Index) <= depth {
+ ff.Index = make([]int, depth+1)
+ }
+ ff.Index[depth] = fi
+ } else {
+ // None or more than one matching field found.
+ fd = inf
+ }
+
+ mark[t] = false, false
+ return
+}
+
+// FieldByName returns the struct field with the given name
+// and a boolean to indicate if the field was found.
+func (t *StructType) FieldByName(name string) (f StructField, present bool) {
+ return t.FieldByNameFunc(func(s string) bool { return s == name })
+}
+
+// FieldByNameFunc returns the struct field with a name that satisfies the
+// match function and a boolean to indicate if the field was found.
+func (t *StructType) FieldByNameFunc(match func(string) bool) (f StructField, present bool) {
+ if ff, fd := t.fieldByNameFunc(match, make(map[*StructType]bool), 0); fd < inf {
+ ff.Index = ff.Index[0 : fd+1]
+ f, present = ff, true
+ }
+ return
+}
+
+// NumField returns the number of struct fields.
+func (t *StructType) NumField() int { return len(t.fields) }
+
+// Canonicalize a Type.
+var canonicalType = make(map[string]Type)
+
+var canonicalTypeLock sync.Mutex
+
+func canonicalize(t Type) Type {
+ if t == nil {
+ return nil
+ }
+ u := t.uncommon()
+ var s string
+ if u == nil || u.PkgPath() == "" {
+ s = t.String()
+ } else {
+ s = u.PkgPath() + "." + u.Name()
+ }
+ canonicalTypeLock.Lock()
+ if r, ok := canonicalType[s]; ok {
+ canonicalTypeLock.Unlock()
+ return r
+ }
+ canonicalType[s] = t
+ canonicalTypeLock.Unlock()
+ return t
+}
+
+// Convert runtime type to reflect type.
+// Same memory layouts, different method sets.
+func toType(i interface{}) Type {
+ switch v := i.(type) {
+ case nil:
+ return nil
+ case *runtime.BoolType:
+ return (*BoolType)(unsafe.Pointer(v))
+ case *runtime.FloatType:
+ return (*FloatType)(unsafe.Pointer(v))
+ case *runtime.ComplexType:
+ return (*ComplexType)(unsafe.Pointer(v))
+ case *runtime.IntType:
+ return (*IntType)(unsafe.Pointer(v))
+ case *runtime.StringType:
+ return (*StringType)(unsafe.Pointer(v))
+ case *runtime.UintType:
+ return (*UintType)(unsafe.Pointer(v))
+ case *runtime.UnsafePointerType:
+ return (*UnsafePointerType)(unsafe.Pointer(v))
+ case *runtime.ArrayType:
+ return (*ArrayType)(unsafe.Pointer(v))
+ case *runtime.ChanType:
+ return (*ChanType)(unsafe.Pointer(v))
+ case *runtime.FuncType:
+ return (*FuncType)(unsafe.Pointer(v))
+ case *runtime.InterfaceType:
+ return (*InterfaceType)(unsafe.Pointer(v))
+ case *runtime.MapType:
+ return (*MapType)(unsafe.Pointer(v))
+ case *runtime.PtrType:
+ return (*PtrType)(unsafe.Pointer(v))
+ case *runtime.SliceType:
+ return (*SliceType)(unsafe.Pointer(v))
+ case *runtime.StructType:
+ return (*StructType)(unsafe.Pointer(v))
+ }
+ println(i)
+ panic("toType")
+}
+
+// Convert pointer to runtime Type structure to our Type structure.
+func runtimeToType(v *runtime.Type) Type {
+ var r Type
+ switch Kind(v.Kind) {
+ case Bool:
+ r = (*BoolType)(unsafe.Pointer(v))
+ case Int, Int8, Int16, Int32, Int64:
+ r = (*IntType)(unsafe.Pointer(v))
+ case Uint, Uint8, Uint16, Uint32, Uint64, Uintptr:
+ r = (*UintType)(unsafe.Pointer(v))
+ case Float32, Float64:
+ r = (*FloatType)(unsafe.Pointer(v))
+ case Complex64, Complex128:
+ r = (*ComplexType)(unsafe.Pointer(v))
+ case Array:
+ r = (*ArrayType)(unsafe.Pointer(v))
+ case Chan:
+ r = (*ChanType)(unsafe.Pointer(v))
+ case Func:
+ r = (*FuncType)(unsafe.Pointer(v))
+ case Interface:
+ r = (*InterfaceType)(unsafe.Pointer(v))
+ case Map:
+ r = (*MapType)(unsafe.Pointer(v))
+ case Ptr:
+ r = (*PtrType)(unsafe.Pointer(v))
+ case Slice:
+ r = (*SliceType)(unsafe.Pointer(v))
+ case String:
+ r = (*StringType)(unsafe.Pointer(v))
+ case Struct:
+ r = (*StructType)(unsafe.Pointer(v))
+ case UnsafePointer:
+ r = (*UnsafePointerType)(unsafe.Pointer(v))
+ default:
+ panic("runtimeToType")
+ }
+ return canonicalize(r)
+ panic("runtimeToType")
+}
+
+// ArrayOrSliceType is the common interface implemented
+// by both ArrayType and SliceType.
+type ArrayOrSliceType interface {
+ Type
+ Elem() Type
+}
+
+// Typeof returns the reflection Type of the value in the interface{}.
+func Typeof(i interface{}) Type { return canonicalize(toType(unsafe.Typeof(i))) }
diff --git a/libgo/go/reflect/value.go b/libgo/go/reflect/value.go
new file mode 100644
index 000000000..8ef402bbc
--- /dev/null
+++ b/libgo/go/reflect/value.go
@@ -0,0 +1,1242 @@
+// Copyright 2009 The Go Authors. All rights reserved.
+// Use of this source code is governed by a BSD-style
+// license that can be found in the LICENSE file.
+
+package reflect
+
+import (
+ "math"
+ "runtime"
+ "unsafe"
+)
+
+const ptrSize = uintptr(unsafe.Sizeof((*byte)(nil)))
+const cannotSet = "cannot set value obtained via unexported struct field"
+
+type addr unsafe.Pointer
+
+// TODO: This will have to go away when
+// the new gc goes in.
+func memmove(adst, asrc addr, n uintptr) {
+ dst := uintptr(adst)
+ src := uintptr(asrc)
+ switch {
+ case src < dst && src+n > dst:
+ // byte copy backward
+ // careful: i is unsigned
+ for i := n; i > 0; {
+ i--
+ *(*byte)(addr(dst + i)) = *(*byte)(addr(src + i))
+ }
+ case (n|src|dst)&(ptrSize-1) != 0:
+ // byte copy forward
+ for i := uintptr(0); i < n; i++ {
+ *(*byte)(addr(dst + i)) = *(*byte)(addr(src + i))
+ }
+ default:
+ // word copy forward
+ for i := uintptr(0); i < n; i += ptrSize {
+ *(*uintptr)(addr(dst + i)) = *(*uintptr)(addr(src + i))
+ }
+ }
+}
+
+// Value is the common interface to reflection values.
+// The implementations of Value (e.g., ArrayValue, StructValue)
+// have additional type-specific methods.
+type Value interface {
+ // Type returns the value's type.
+ Type() Type
+
+ // Interface returns the value as an interface{}.
+ Interface() interface{}
+
+ // CanSet returns whether the value can be changed.
+ // Values obtained by the use of non-exported struct fields
+ // can be used in Get but not Set.
+ // If CanSet() returns false, calling the type-specific Set
+ // will cause a crash.
+ CanSet() bool
+
+ // SetValue assigns v to the value; v must have the same type as the value.
+ SetValue(v Value)
+
+ // Addr returns a pointer to the underlying data.
+ // It is for advanced clients that also
+ // import the "unsafe" package.
+ Addr() uintptr
+
+ // Method returns a FuncValue corresponding to the value's i'th method.
+ // The arguments to a Call on the returned FuncValue
+ // should not include a receiver; the FuncValue will use
+ // the value as the receiver.
+ Method(i int) *FuncValue
+
+ getAddr() addr
+}
+
+// value is the common implementation of most values.
+// It is embedded in other, public struct types, but always
+// with a unique tag like "uint" or "float" so that the client cannot
+// convert from, say, *UintValue to *FloatValue.
+type value struct {
+ typ Type
+ addr addr
+ canSet bool
+}
+
+func (v *value) Type() Type { return v.typ }
+
+func (v *value) Addr() uintptr { return uintptr(v.addr) }
+
+func (v *value) getAddr() addr { return v.addr }
+
+func (v *value) Interface() interface{} {
+ if typ, ok := v.typ.(*InterfaceType); ok {
+ // There are two different representations of interface values,
+ // one if the interface type has methods and one if it doesn't.
+ // These two representations require different expressions
+ // to extract correctly.
+ if typ.NumMethod() == 0 {
+ // Extract as interface value without methods.
+ return *(*interface{})(v.addr)
+ }
+ // Extract from v.addr as interface value with methods.
+ return *(*interface {
+ m()
+ })(v.addr)
+ }
+ return unsafe.Unreflect(v.typ, unsafe.Pointer(v.addr))
+}
+
+func (v *value) CanSet() bool { return v.canSet }
+
+/*
+ * basic types
+ */
+
+// BoolValue represents a bool value.
+type BoolValue struct {
+ value "bool"
+}
+
+// Get returns the underlying bool value.
+func (v *BoolValue) Get() bool { return *(*bool)(v.addr) }
+
+// Set sets v to the value x.
+func (v *BoolValue) Set(x bool) {
+ if !v.canSet {
+ panic(cannotSet)
+ }
+ *(*bool)(v.addr) = x
+}
+
+// Set sets v to the value x.
+func (v *BoolValue) SetValue(x Value) { v.Set(x.(*BoolValue).Get()) }
+
+// FloatValue represents a float value.
+type FloatValue struct {
+ value "float"
+}
+
+// Get returns the underlying int value.
+func (v *FloatValue) Get() float64 {
+ switch v.typ.Kind() {
+ case Float32:
+ return float64(*(*float32)(v.addr))
+ case Float64:
+ return *(*float64)(v.addr)
+ }
+ panic("reflect: invalid float kind")
+}
+
+// Set sets v to the value x.
+func (v *FloatValue) Set(x float64) {
+ if !v.canSet {
+ panic(cannotSet)
+ }
+ switch v.typ.Kind() {
+ default:
+ panic("reflect: invalid float kind")
+ case Float32:
+ *(*float32)(v.addr) = float32(x)
+ case Float64:
+ *(*float64)(v.addr) = x
+ }
+}
+
+// Overflow returns true if x cannot be represented by the type of v.
+func (v *FloatValue) Overflow(x float64) bool {
+ if v.typ.Size() == 8 {
+ return false
+ }
+ if x < 0 {
+ x = -x
+ }
+ return math.MaxFloat32 < x && x <= math.MaxFloat64
+}
+
+// Set sets v to the value x.
+func (v *FloatValue) SetValue(x Value) { v.Set(x.(*FloatValue).Get()) }
+
+// ComplexValue represents a complex value.
+type ComplexValue struct {
+ value "complex"
+}
+
+// Get returns the underlying complex value.
+func (v *ComplexValue) Get() complex128 {
+ switch v.typ.Kind() {
+ case Complex64:
+ return complex128(*(*complex64)(v.addr))
+ case Complex128:
+ return *(*complex128)(v.addr)
+ }
+ panic("reflect: invalid complex kind")
+}
+
+// Set sets v to the value x.
+func (v *ComplexValue) Set(x complex128) {
+ if !v.canSet {
+ panic(cannotSet)
+ }
+ switch v.typ.Kind() {
+ default:
+ panic("reflect: invalid complex kind")
+ case Complex64:
+ *(*complex64)(v.addr) = complex64(x)
+ case Complex128:
+ *(*complex128)(v.addr) = x
+ }
+}
+
+// Set sets v to the value x.
+func (v *ComplexValue) SetValue(x Value) { v.Set(x.(*ComplexValue).Get()) }
+
+// IntValue represents an int value.
+type IntValue struct {
+ value "int"
+}
+
+// Get returns the underlying int value.
+func (v *IntValue) Get() int64 {
+ switch v.typ.Kind() {
+ case Int:
+ return int64(*(*int)(v.addr))
+ case Int8:
+ return int64(*(*int8)(v.addr))
+ case Int16:
+ return int64(*(*int16)(v.addr))
+ case Int32:
+ return int64(*(*int32)(v.addr))
+ case Int64:
+ return *(*int64)(v.addr)
+ }
+ panic("reflect: invalid int kind")
+}
+
+// Set sets v to the value x.
+func (v *IntValue) Set(x int64) {
+ if !v.canSet {
+ panic(cannotSet)
+ }
+ switch v.typ.Kind() {
+ default:
+ panic("reflect: invalid int kind")
+ case Int:
+ *(*int)(v.addr) = int(x)
+ case Int8:
+ *(*int8)(v.addr) = int8(x)
+ case Int16:
+ *(*int16)(v.addr) = int16(x)
+ case Int32:
+ *(*int32)(v.addr) = int32(x)
+ case Int64:
+ *(*int64)(v.addr) = x
+ }
+}
+
+// Set sets v to the value x.
+func (v *IntValue) SetValue(x Value) { v.Set(x.(*IntValue).Get()) }
+
+// Overflow returns true if x cannot be represented by the type of v.
+func (v *IntValue) Overflow(x int64) bool {
+ bitSize := uint(v.typ.Bits())
+ trunc := (x << (64 - bitSize)) >> (64 - bitSize)
+ return x != trunc
+}
+
+// StringHeader is the runtime representation of a string.
+type StringHeader struct {
+ Data uintptr
+ Len int
+}
+
+// StringValue represents a string value.
+type StringValue struct {
+ value "string"
+}
+
+// Get returns the underlying string value.
+func (v *StringValue) Get() string { return *(*string)(v.addr) }
+
+// Set sets v to the value x.
+func (v *StringValue) Set(x string) {
+ if !v.canSet {
+ panic(cannotSet)
+ }
+ *(*string)(v.addr) = x
+}
+
+// Set sets v to the value x.
+func (v *StringValue) SetValue(x Value) { v.Set(x.(*StringValue).Get()) }
+
+// UintValue represents a uint value.
+type UintValue struct {
+ value "uint"
+}
+
+// Get returns the underlying uuint value.
+func (v *UintValue) Get() uint64 {
+ switch v.typ.Kind() {
+ case Uint:
+ return uint64(*(*uint)(v.addr))
+ case Uint8:
+ return uint64(*(*uint8)(v.addr))
+ case Uint16:
+ return uint64(*(*uint16)(v.addr))
+ case Uint32:
+ return uint64(*(*uint32)(v.addr))
+ case Uint64:
+ return *(*uint64)(v.addr)
+ case Uintptr:
+ return uint64(*(*uintptr)(v.addr))
+ }
+ panic("reflect: invalid uint kind")
+}
+
+// Set sets v to the value x.
+func (v *UintValue) Set(x uint64) {
+ if !v.canSet {
+ panic(cannotSet)
+ }
+ switch v.typ.Kind() {
+ default:
+ panic("reflect: invalid uint kind")
+ case Uint:
+ *(*uint)(v.addr) = uint(x)
+ case Uint8:
+ *(*uint8)(v.addr) = uint8(x)
+ case Uint16:
+ *(*uint16)(v.addr) = uint16(x)
+ case Uint32:
+ *(*uint32)(v.addr) = uint32(x)
+ case Uint64:
+ *(*uint64)(v.addr) = x
+ case Uintptr:
+ *(*uintptr)(v.addr) = uintptr(x)
+ }
+}
+
+// Overflow returns true if x cannot be represented by the type of v.
+func (v *UintValue) Overflow(x uint64) bool {
+ bitSize := uint(v.typ.Bits())
+ trunc := (x << (64 - bitSize)) >> (64 - bitSize)
+ return x != trunc
+}
+
+// Set sets v to the value x.
+func (v *UintValue) SetValue(x Value) { v.Set(x.(*UintValue).Get()) }
+
+// UnsafePointerValue represents an unsafe.Pointer value.
+type UnsafePointerValue struct {
+ value "unsafe.Pointer"
+}
+
+// Get returns the underlying uintptr value.
+// Get returns uintptr, not unsafe.Pointer, so that
+// programs that do not import "unsafe" cannot
+// obtain a value of unsafe.Pointer type from "reflect".
+func (v *UnsafePointerValue) Get() uintptr { return uintptr(*(*unsafe.Pointer)(v.addr)) }
+
+// Set sets v to the value x.
+func (v *UnsafePointerValue) Set(x unsafe.Pointer) {
+ if !v.canSet {
+ panic(cannotSet)
+ }
+ *(*unsafe.Pointer)(v.addr) = x
+}
+
+// Set sets v to the value x.
+func (v *UnsafePointerValue) SetValue(x Value) {
+ v.Set(unsafe.Pointer(x.(*UnsafePointerValue).Get()))
+}
+
+func typesMustMatch(t1, t2 Type) {
+ if t1 != t2 {
+ panic("type mismatch: " + t1.String() + " != " + t2.String())
+ }
+}
+
+/*
+ * array
+ */
+
+// ArrayOrSliceValue is the common interface
+// implemented by both ArrayValue and SliceValue.
+type ArrayOrSliceValue interface {
+ Value
+ Len() int
+ Cap() int
+ Elem(i int) Value
+ addr() addr
+}
+
+// grow grows the slice s so that it can hold extra more values, allocating
+// more capacity if needed. It also returns the old and new slice lengths.
+func grow(s *SliceValue, extra int) (*SliceValue, int, int) {
+ i0 := s.Len()
+ i1 := i0 + extra
+ if i1 < i0 {
+ panic("append: slice overflow")
+ }
+ m := s.Cap()
+ if i1 <= m {
+ return s.Slice(0, i1), i0, i1
+ }
+ if m == 0 {
+ m = extra
+ } else {
+ for m < i1 {
+ if i0 < 1024 {
+ m += m
+ } else {
+ m += m / 4
+ }
+ }
+ }
+ t := MakeSlice(s.Type().(*SliceType), i1, m)
+ Copy(t, s)
+ return t, i0, i1
+}
+
+// Append appends the values x to a slice s and returns the resulting slice.
+// Each x must have the same type as s' element type.
+func Append(s *SliceValue, x ...Value) *SliceValue {
+ s, i0, i1 := grow(s, len(x))
+ for i, j := i0, 0; i < i1; i, j = i+1, j+1 {
+ s.Elem(i).SetValue(x[j])
+ }
+ return s
+}
+
+// AppendSlice appends a slice t to a slice s and returns the resulting slice.
+// The slices s and t must have the same element type.
+func AppendSlice(s, t *SliceValue) *SliceValue {
+ s, i0, i1 := grow(s, t.Len())
+ Copy(s.Slice(i0, i1), t)
+ return s
+}
+
+// Copy copies the contents of src into dst until either
+// dst has been filled or src has been exhausted.
+// It returns the number of elements copied.
+// The arrays dst and src must have the same element type.
+func Copy(dst, src ArrayOrSliceValue) int {
+ // TODO: This will have to move into the runtime
+ // once the real gc goes in.
+ de := dst.Type().(ArrayOrSliceType).Elem()
+ se := src.Type().(ArrayOrSliceType).Elem()
+ typesMustMatch(de, se)
+ n := dst.Len()
+ if xn := src.Len(); n > xn {
+ n = xn
+ }
+ memmove(dst.addr(), src.addr(), uintptr(n)*de.Size())
+ return n
+}
+
+// An ArrayValue represents an array.
+type ArrayValue struct {
+ value "array"
+}
+
+// Len returns the length of the array.
+func (v *ArrayValue) Len() int { return v.typ.(*ArrayType).Len() }
+
+// Cap returns the capacity of the array (equal to Len()).
+func (v *ArrayValue) Cap() int { return v.typ.(*ArrayType).Len() }
+
+// addr returns the base address of the data in the array.
+func (v *ArrayValue) addr() addr { return v.value.addr }
+
+// Set assigns x to v.
+// The new value x must have the same type as v.
+func (v *ArrayValue) Set(x *ArrayValue) {
+ if !v.canSet {
+ panic(cannotSet)
+ }
+ typesMustMatch(v.typ, x.typ)
+ Copy(v, x)
+}
+
+// Set sets v to the value x.
+func (v *ArrayValue) SetValue(x Value) { v.Set(x.(*ArrayValue)) }
+
+// Elem returns the i'th element of v.
+func (v *ArrayValue) Elem(i int) Value {
+ typ := v.typ.(*ArrayType).Elem()
+ n := v.Len()
+ if i < 0 || i >= n {
+ panic("array index out of bounds")
+ }
+ p := addr(uintptr(v.addr()) + uintptr(i)*typ.Size())
+ return newValue(typ, p, v.canSet)
+}
+
+/*
+ * slice
+ */
+
+// runtime representation of slice
+type SliceHeader struct {
+ Data uintptr
+ Len int
+ Cap int
+}
+
+// A SliceValue represents a slice.
+type SliceValue struct {
+ value "slice"
+}
+
+func (v *SliceValue) slice() *SliceHeader { return (*SliceHeader)(v.value.addr) }
+
+// IsNil returns whether v is a nil slice.
+func (v *SliceValue) IsNil() bool { return v.slice().Data == 0 }
+
+// Len returns the length of the slice.
+func (v *SliceValue) Len() int { return int(v.slice().Len) }
+
+// Cap returns the capacity of the slice.
+func (v *SliceValue) Cap() int { return int(v.slice().Cap) }
+
+// addr returns the base address of the data in the slice.
+func (v *SliceValue) addr() addr { return addr(v.slice().Data) }
+
+// SetLen changes the length of v.
+// The new length n must be between 0 and the capacity, inclusive.
+func (v *SliceValue) SetLen(n int) {
+ s := v.slice()
+ if n < 0 || n > int(s.Cap) {
+ panic("reflect: slice length out of range in SetLen")
+ }
+ s.Len = n
+}
+
+// Set assigns x to v.
+// The new value x must have the same type as v.
+func (v *SliceValue) Set(x *SliceValue) {
+ if !v.canSet {
+ panic(cannotSet)
+ }
+ typesMustMatch(v.typ, x.typ)
+ *v.slice() = *x.slice()
+}
+
+// Set sets v to the value x.
+func (v *SliceValue) SetValue(x Value) { v.Set(x.(*SliceValue)) }
+
+// Get returns the uintptr address of the v.Cap()'th element. This gives
+// the same result for all slices of the same array.
+// It is mainly useful for printing.
+func (v *SliceValue) Get() uintptr {
+ typ := v.typ.(*SliceType)
+ return uintptr(v.addr()) + uintptr(v.Cap())*typ.Elem().Size()
+}
+
+// Slice returns a sub-slice of the slice v.
+func (v *SliceValue) Slice(beg, end int) *SliceValue {
+ cap := v.Cap()
+ if beg < 0 || end < beg || end > cap {
+ panic("slice index out of bounds")
+ }
+ typ := v.typ.(*SliceType)
+ s := new(SliceHeader)
+ s.Data = uintptr(v.addr()) + uintptr(beg)*typ.Elem().Size()
+ s.Len = end - beg
+ s.Cap = cap - beg
+ return newValue(typ, addr(s), v.canSet).(*SliceValue)
+}
+
+// Elem returns the i'th element of v.
+func (v *SliceValue) Elem(i int) Value {
+ typ := v.typ.(*SliceType).Elem()
+ n := v.Len()
+ if i < 0 || i >= n {
+ panic("reflect: slice index out of range")
+ }
+ p := addr(uintptr(v.addr()) + uintptr(i)*typ.Size())
+ return newValue(typ, p, v.canSet)
+}
+
+// MakeSlice creates a new zero-initialized slice value
+// for the specified slice type, length, and capacity.
+func MakeSlice(typ *SliceType, len, cap int) *SliceValue {
+ s := &SliceHeader{
+ Data: uintptr(unsafe.NewArray(typ.Elem(), cap)),
+ Len: len,
+ Cap: cap,
+ }
+ return newValue(typ, addr(s), true).(*SliceValue)
+}
+
+/*
+ * chan
+ */
+
+// A ChanValue represents a chan.
+type ChanValue struct {
+ value "chan"
+}
+
+// IsNil returns whether v is a nil channel.
+func (v *ChanValue) IsNil() bool { return *(*uintptr)(v.addr) == 0 }
+
+// Set assigns x to v.
+// The new value x must have the same type as v.
+func (v *ChanValue) Set(x *ChanValue) {
+ if !v.canSet {
+ panic(cannotSet)
+ }
+ typesMustMatch(v.typ, x.typ)
+ *(*uintptr)(v.addr) = *(*uintptr)(x.addr)
+}
+
+// Set sets v to the value x.
+func (v *ChanValue) SetValue(x Value) { v.Set(x.(*ChanValue)) }
+
+// Get returns the uintptr value of v.
+// It is mainly useful for printing.
+func (v *ChanValue) Get() uintptr { return *(*uintptr)(v.addr) }
+
+// implemented in ../pkg/runtime/reflect.cgo
+func makechan(typ *runtime.ChanType, size uint32) (ch *byte)
+func chansend(ch, val *byte, pres *bool)
+func chanrecv(ch, val *byte, pres *bool)
+func chanclosed(ch *byte) bool
+func chanclose(ch *byte)
+func chanlen(ch *byte) int32
+func chancap(ch *byte) int32
+
+// Closed returns the result of closed(c) on the underlying channel.
+func (v *ChanValue) Closed() bool {
+ ch := *(**byte)(v.addr)
+ return chanclosed(ch)
+}
+
+// Close closes the channel.
+func (v *ChanValue) Close() {
+ ch := *(**byte)(v.addr)
+ chanclose(ch)
+}
+
+func (v *ChanValue) Len() int {
+ ch := *(**byte)(v.addr)
+ return int(chanlen(ch))
+}
+
+func (v *ChanValue) Cap() int {
+ ch := *(**byte)(v.addr)
+ return int(chancap(ch))
+}
+
+// internal send; non-blocking if b != nil
+func (v *ChanValue) send(x Value, b *bool) {
+ t := v.Type().(*ChanType)
+ if t.Dir()&SendDir == 0 {
+ panic("send on recv-only channel")
+ }
+ typesMustMatch(t.Elem(), x.Type())
+ ch := *(**byte)(v.addr)
+ chansend(ch, (*byte)(x.getAddr()), b)
+}
+
+// internal recv; non-blocking if b != nil
+func (v *ChanValue) recv(b *bool) Value {
+ t := v.Type().(*ChanType)
+ if t.Dir()&RecvDir == 0 {
+ panic("recv on send-only channel")
+ }
+ ch := *(**byte)(v.addr)
+ x := MakeZero(t.Elem())
+ chanrecv(ch, (*byte)(x.getAddr()), b)
+ return x
+}
+
+// Send sends x on the channel v.
+func (v *ChanValue) Send(x Value) { v.send(x, nil) }
+
+// Recv receives and returns a value from the channel v.
+func (v *ChanValue) Recv() Value { return v.recv(nil) }
+
+// TrySend attempts to sends x on the channel v but will not block.
+// It returns true if the value was sent, false otherwise.
+func (v *ChanValue) TrySend(x Value) bool {
+ var ok bool
+ v.send(x, &ok)
+ return ok
+}
+
+// TryRecv attempts to receive a value from the channel v but will not block.
+// It returns the value if one is received, nil otherwise.
+func (v *ChanValue) TryRecv() Value {
+ var ok bool
+ x := v.recv(&ok)
+ if !ok {
+ return nil
+ }
+ return x
+}
+
+// MakeChan creates a new channel with the specified type and buffer size.
+func MakeChan(typ *ChanType, buffer int) *ChanValue {
+ if buffer < 0 {
+ panic("MakeChan: negative buffer size")
+ }
+ if typ.Dir() != BothDir {
+ panic("MakeChan: unidirectional channel type")
+ }
+ v := MakeZero(typ).(*ChanValue)
+ *(**byte)(v.addr) = makechan((*runtime.ChanType)(unsafe.Pointer(typ)), uint32(buffer))
+ return v
+}
+
+/*
+ * func
+ */
+
+// A FuncValue represents a function value.
+type FuncValue struct {
+ value "func"
+ first *value
+ isInterface bool
+}
+
+// IsNil returns whether v is a nil function.
+func (v *FuncValue) IsNil() bool { return *(*uintptr)(v.addr) == 0 }
+
+// Get returns the uintptr value of v.
+// It is mainly useful for printing.
+func (v *FuncValue) Get() uintptr { return *(*uintptr)(v.addr) }
+
+// Set assigns x to v.
+// The new value x must have the same type as v.
+func (v *FuncValue) Set(x *FuncValue) {
+ if !v.canSet {
+ panic(cannotSet)
+ }
+ typesMustMatch(v.typ, x.typ)
+ *(*uintptr)(v.addr) = *(*uintptr)(x.addr)
+}
+
+// Set sets v to the value x.
+func (v *FuncValue) SetValue(x Value) { v.Set(x.(*FuncValue)) }
+
+// Method returns a FuncValue corresponding to v's i'th method.
+// The arguments to a Call on the returned FuncValue
+// should not include a receiver; the FuncValue will use v
+// as the receiver.
+func (v *value) Method(i int) *FuncValue {
+ t := v.Type().uncommon()
+ if t == nil || i < 0 || i >= len(t.methods) {
+ return nil
+ }
+ p := &t.methods[i]
+ fn := p.tfn
+ fv := &FuncValue{value: value{runtimeToType(p.typ), addr(&fn), true}, first: v, isInterface: false}
+ return fv
+}
+
+// implemented in ../pkg/runtime/*/asm.s
+func call(typ *FuncType, fnaddr *byte, isInterface bool, params *addr, results *addr)
+
+// Call calls the function fv with input parameters in.
+// It returns the function's output parameters as Values.
+func (fv *FuncValue) Call(in []Value) []Value {
+ t := fv.Type().(*FuncType)
+ nin := len(in)
+ if fv.first != nil && !fv.isInterface {
+ nin++
+ }
+ if nin != t.NumIn() {
+ panic("FuncValue: wrong argument count")
+ }
+ if fv.first != nil && fv.isInterface {
+ nin++
+ }
+ nout := t.NumOut()
+
+ params := make([]addr, nin)
+ delta := 0
+ off := 0
+ if v := fv.first; v != nil {
+ // Hard-wired first argument.
+ if fv.isInterface {
+ // v is a single uninterpreted word
+ params[0] = v.getAddr()
+ } else {
+ // v is a real value
+ tv := v.Type()
+
+ // This is a method, so we need to always pass
+ // a pointer.
+ vAddr := v.getAddr()
+ if ptv, ok := tv.(*PtrType); ok {
+ typesMustMatch(t.In(0), tv)
+ } else {
+ p := addr(new(addr))
+ *(*addr)(p) = vAddr
+ vAddr = p
+ typesMustMatch(t.In(0).(*PtrType).Elem(), tv)
+ }
+
+ params[0] = vAddr
+ delta = 1
+ }
+ off = 1
+ }
+ for i, v := range in {
+ tv := v.Type()
+ tf := t.In(i + delta)
+
+ // If this is really a method, and we are explicitly
+ // passing the object, then we need to pass the address
+ // of the object instead. Unfortunately, we don't
+ // have any way to know that this is a method, so we just
+ // check the type. FIXME: This is ugly.
+ vAddr := v.getAddr()
+ if i == 0 && tf != tv {
+ if ptf, ok := tf.(*PtrType); ok {
+ p := addr(new(addr))
+ *(*addr)(p) = vAddr
+ vAddr = p
+ tf = ptf.Elem()
+ }
+ }
+
+ typesMustMatch(tf, tv)
+ params[i+off] = vAddr
+ }
+
+ ret := make([]Value, nout)
+ results := make([]addr, nout)
+ for i := 0; i < nout; i++ {
+ tv := t.Out(i)
+ v := MakeZero(tv)
+ results[i] = v.getAddr()
+ ret[i] = v
+ }
+
+ call(t, *(**byte)(fv.addr), fv.isInterface, &params[0], &results[0])
+
+ return ret
+}
+
+/*
+ * interface
+ */
+
+// An InterfaceValue represents an interface value.
+type InterfaceValue struct {
+ value "interface"
+}
+
+// IsNil returns whether v is a nil interface value.
+func (v *InterfaceValue) IsNil() bool { return v.Interface() == nil }
+
+// No single uinptr Get because v.Interface() is available.
+
+// Get returns the two words that represent an interface in the runtime.
+// Those words are useful only when playing unsafe games.
+func (v *InterfaceValue) Get() [2]uintptr {
+ return *(*[2]uintptr)(v.addr)
+}
+
+// Elem returns the concrete value stored in the interface value v.
+func (v *InterfaceValue) Elem() Value { return NewValue(v.Interface()) }
+
+// ../runtime/reflect.cgo
+func setiface(typ *InterfaceType, x *interface{}, addr addr)
+
+// Set assigns x to v.
+func (v *InterfaceValue) Set(x Value) {
+ var i interface{}
+ if x != nil {
+ i = x.Interface()
+ }
+ if !v.canSet {
+ panic(cannotSet)
+ }
+ // Two different representations; see comment in Get.
+ // Empty interface is easy.
+ t := v.typ.(*InterfaceType)
+ if t.NumMethod() == 0 {
+ *(*interface{})(v.addr) = i
+ return
+ }
+
+ // Non-empty interface requires a runtime check.
+ setiface(t, &i, v.addr)
+}
+
+// Set sets v to the value x.
+func (v *InterfaceValue) SetValue(x Value) { v.Set(x) }
+
+// Method returns a FuncValue corresponding to v's i'th method.
+// The arguments to a Call on the returned FuncValue
+// should not include a receiver; the FuncValue will use v
+// as the receiver.
+func (v *InterfaceValue) Method(i int) *FuncValue {
+ t := v.Type().(*InterfaceType)
+ if t == nil || i < 0 || i >= len(t.methods) {
+ return nil
+ }
+ p := &t.methods[i]
+
+ // Interface is two words: itable, data.
+ tab := *(**[10000]addr)(v.addr)
+ data := &value{Typeof((*byte)(nil)), addr(uintptr(v.addr) + ptrSize), true}
+
+ fn := tab[i+1]
+ fv := &FuncValue{value: value{runtimeToType(p.typ), addr(&fn), true}, first: data, isInterface: true}
+ return fv
+}
+
+/*
+ * map
+ */
+
+// A MapValue represents a map value.
+type MapValue struct {
+ value "map"
+}
+
+// IsNil returns whether v is a nil map value.
+func (v *MapValue) IsNil() bool { return *(*uintptr)(v.addr) == 0 }
+
+// Set assigns x to v.
+// The new value x must have the same type as v.
+func (v *MapValue) Set(x *MapValue) {
+ if !v.canSet {
+ panic(cannotSet)
+ }
+ if x == nil {
+ *(**uintptr)(v.addr) = nil
+ return
+ }
+ typesMustMatch(v.typ, x.typ)
+ *(*uintptr)(v.addr) = *(*uintptr)(x.addr)
+}
+
+// Set sets v to the value x.
+func (v *MapValue) SetValue(x Value) {
+ if x == nil {
+ v.Set(nil)
+ return
+ }
+ v.Set(x.(*MapValue))
+}
+
+// Get returns the uintptr value of v.
+// It is mainly useful for printing.
+func (v *MapValue) Get() uintptr { return *(*uintptr)(v.addr) }
+
+// implemented in ../pkg/runtime/reflect.cgo
+func mapaccess(m, key, val *byte) bool
+func mapassign(m, key, val *byte)
+func maplen(m *byte) int32
+func mapiterinit(m *byte) *byte
+func mapiternext(it *byte)
+func mapiterkey(it *byte, key *byte) bool
+func makemap(t *runtime.MapType) *byte
+
+// Elem returns the value associated with key in the map v.
+// It returns nil if key is not found in the map.
+func (v *MapValue) Elem(key Value) Value {
+ t := v.Type().(*MapType)
+ typesMustMatch(t.Key(), key.Type())
+ m := *(**byte)(v.addr)
+ if m == nil {
+ return nil
+ }
+ newval := MakeZero(t.Elem())
+ if !mapaccess(m, (*byte)(key.getAddr()), (*byte)(newval.getAddr())) {
+ return nil
+ }
+ return newval
+}
+
+// SetElem sets the value associated with key in the map v to val.
+// If val is nil, Put deletes the key from map.
+func (v *MapValue) SetElem(key, val Value) {
+ t := v.Type().(*MapType)
+ typesMustMatch(t.Key(), key.Type())
+ var vaddr *byte
+ if val != nil {
+ typesMustMatch(t.Elem(), val.Type())
+ vaddr = (*byte)(val.getAddr())
+ }
+ m := *(**byte)(v.addr)
+ mapassign(m, (*byte)(key.getAddr()), vaddr)
+}
+
+// Len returns the number of keys in the map v.
+func (v *MapValue) Len() int {
+ m := *(**byte)(v.addr)
+ if m == nil {
+ return 0
+ }
+ return int(maplen(m))
+}
+
+// Keys returns a slice containing all the keys present in the map,
+// in unspecified order.
+func (v *MapValue) Keys() []Value {
+ tk := v.Type().(*MapType).Key()
+ m := *(**byte)(v.addr)
+ mlen := int32(0)
+ if m != nil {
+ mlen = maplen(m)
+ }
+ it := mapiterinit(m)
+ a := make([]Value, mlen)
+ var i int
+ for i = 0; i < len(a); i++ {
+ k := MakeZero(tk)
+ if !mapiterkey(it, (*byte)(k.getAddr())) {
+ break
+ }
+ a[i] = k
+ mapiternext(it)
+ }
+ return a[0:i]
+}
+
+// MakeMap creates a new map of the specified type.
+func MakeMap(typ *MapType) *MapValue {
+ v := MakeZero(typ).(*MapValue)
+ *(**byte)(v.addr) = makemap((*runtime.MapType)(unsafe.Pointer(typ)))
+ return v
+}
+
+/*
+ * ptr
+ */
+
+// A PtrValue represents a pointer.
+type PtrValue struct {
+ value "ptr"
+}
+
+// IsNil returns whether v is a nil pointer.
+func (v *PtrValue) IsNil() bool { return *(*uintptr)(v.addr) == 0 }
+
+// Get returns the uintptr value of v.
+// It is mainly useful for printing.
+func (v *PtrValue) Get() uintptr { return *(*uintptr)(v.addr) }
+
+// Set assigns x to v.
+// The new value x must have the same type as v.
+func (v *PtrValue) Set(x *PtrValue) {
+ if x == nil {
+ *(**uintptr)(v.addr) = nil
+ return
+ }
+ if !v.canSet {
+ panic(cannotSet)
+ }
+ typesMustMatch(v.typ, x.typ)
+ // TODO: This will have to move into the runtime
+ // once the new gc goes in
+ *(*uintptr)(v.addr) = *(*uintptr)(x.addr)
+}
+
+// Set sets v to the value x.
+func (v *PtrValue) SetValue(x Value) {
+ if x == nil {
+ v.Set(nil)
+ return
+ }
+ v.Set(x.(*PtrValue))
+}
+
+// PointTo changes v to point to x.
+// If x is a nil Value, PointTo sets v to nil.
+func (v *PtrValue) PointTo(x Value) {
+ if x == nil {
+ *(**uintptr)(v.addr) = nil
+ return
+ }
+ if !x.CanSet() {
+ panic("cannot set x; cannot point to x")
+ }
+ typesMustMatch(v.typ.(*PtrType).Elem(), x.Type())
+ // TODO: This will have to move into the runtime
+ // once the new gc goes in.
+ *(*uintptr)(v.addr) = x.Addr()
+}
+
+// Elem returns the value that v points to.
+// If v is a nil pointer, Elem returns a nil Value.
+func (v *PtrValue) Elem() Value {
+ if v.IsNil() {
+ return nil
+ }
+ return newValue(v.typ.(*PtrType).Elem(), *(*addr)(v.addr), v.canSet)
+}
+
+// Indirect returns the value that v points to.
+// If v is a nil pointer, Indirect returns a nil Value.
+// If v is not a pointer, Indirect returns v.
+func Indirect(v Value) Value {
+ if pv, ok := v.(*PtrValue); ok {
+ return pv.Elem()
+ }
+ return v
+}
+
+/*
+ * struct
+ */
+
+// A StructValue represents a struct value.
+type StructValue struct {
+ value "struct"
+}
+
+// Set assigns x to v.
+// The new value x must have the same type as v.
+func (v *StructValue) Set(x *StructValue) {
+ // TODO: This will have to move into the runtime
+ // once the gc goes in.
+ if !v.canSet {
+ panic(cannotSet)
+ }
+ typesMustMatch(v.typ, x.typ)
+ memmove(v.addr, x.addr, v.typ.Size())
+}
+
+// Set sets v to the value x.
+func (v *StructValue) SetValue(x Value) { v.Set(x.(*StructValue)) }
+
+// Field returns the i'th field of the struct.
+func (v *StructValue) Field(i int) Value {
+ t := v.typ.(*StructType)
+ if i < 0 || i >= t.NumField() {
+ return nil
+ }
+ f := t.Field(i)
+ return newValue(f.Type, addr(uintptr(v.addr)+f.Offset), v.canSet && f.PkgPath == "")
+}
+
+// FieldByIndex returns the nested field corresponding to index.
+func (t *StructValue) FieldByIndex(index []int) (v Value) {
+ v = t
+ for i, x := range index {
+ if i > 0 {
+ if p, ok := v.(*PtrValue); ok {
+ v = p.Elem()
+ }
+ if s, ok := v.(*StructValue); ok {
+ t = s
+ } else {
+ v = nil
+ return
+ }
+ }
+ v = t.Field(x)
+ }
+ return
+}
+
+// FieldByName returns the struct field with the given name.
+// The result is nil if no field was found.
+func (t *StructValue) FieldByName(name string) Value {
+ if f, ok := t.Type().(*StructType).FieldByName(name); ok {
+ return t.FieldByIndex(f.Index)
+ }
+ return nil
+}
+
+// FieldByNameFunc returns the struct field with a name that satisfies the
+// match function.
+// The result is nil if no field was found.
+func (t *StructValue) FieldByNameFunc(match func(string) bool) Value {
+ if f, ok := t.Type().(*StructType).FieldByNameFunc(match); ok {
+ return t.FieldByIndex(f.Index)
+ }
+ return nil
+}
+
+// NumField returns the number of fields in the struct.
+func (v *StructValue) NumField() int { return v.typ.(*StructType).NumField() }
+
+/*
+ * constructors
+ */
+
+// NewValue returns a new Value initialized to the concrete value
+// stored in the interface i. NewValue(nil) returns nil.
+func NewValue(i interface{}) Value {
+ if i == nil {
+ return nil
+ }
+ t, a := unsafe.Reflect(i)
+ return newValue(canonicalize(toType(t)), addr(a), true)
+}
+
+func newValue(typ Type, addr addr, canSet bool) Value {
+ v := value{typ, addr, canSet}
+ switch typ.(type) {
+ case *ArrayType:
+ return &ArrayValue{v}
+ case *BoolType:
+ return &BoolValue{v}
+ case *ChanType:
+ return &ChanValue{v}
+ case *FloatType:
+ return &FloatValue{v}
+ case *FuncType:
+ return &FuncValue{value: v}
+ case *ComplexType:
+ return &ComplexValue{v}
+ case *IntType:
+ return &IntValue{v}
+ case *InterfaceType:
+ return &InterfaceValue{v}
+ case *MapType:
+ return &MapValue{v}
+ case *PtrType:
+ return &PtrValue{v}
+ case *SliceType:
+ return &SliceValue{v}
+ case *StringType:
+ return &StringValue{v}
+ case *StructType:
+ return &StructValue{v}
+ case *UintType:
+ return &UintValue{v}
+ case *UnsafePointerType:
+ return &UnsafePointerValue{v}
+ }
+ panic("newValue" + typ.String())
+}
+
+// MakeZero returns a zero Value for the specified Type.
+func MakeZero(typ Type) Value {
+ if typ == nil {
+ return nil
+ }
+ return newValue(typ, addr(unsafe.New(typ)), true)
+}