summaryrefslogtreecommitdiff
path: root/libjava/classpath/java/awt/geom/AffineTransform.java
diff options
context:
space:
mode:
authorupstream source tree <ports@midipix.org>2015-03-15 20:14:05 -0400
committerupstream source tree <ports@midipix.org>2015-03-15 20:14:05 -0400
commit554fd8c5195424bdbcabf5de30fdc183aba391bd (patch)
tree976dc5ab7fddf506dadce60ae936f43f58787092 /libjava/classpath/java/awt/geom/AffineTransform.java
downloadcbb-gcc-4.6.4-554fd8c5195424bdbcabf5de30fdc183aba391bd.tar.bz2
cbb-gcc-4.6.4-554fd8c5195424bdbcabf5de30fdc183aba391bd.tar.xz
obtained gcc-4.6.4.tar.bz2 from upstream website;upstream
verified gcc-4.6.4.tar.bz2.sig; imported gcc-4.6.4 source tree from verified upstream tarball. downloading a git-generated archive based on the 'upstream' tag should provide you with a source tree that is binary identical to the one extracted from the above tarball. if you have obtained the source via the command 'git clone', however, do note that line-endings of files in your working directory might differ from line-endings of the respective files in the upstream repository.
Diffstat (limited to 'libjava/classpath/java/awt/geom/AffineTransform.java')
-rw-r--r--libjava/classpath/java/awt/geom/AffineTransform.java1489
1 files changed, 1489 insertions, 0 deletions
diff --git a/libjava/classpath/java/awt/geom/AffineTransform.java b/libjava/classpath/java/awt/geom/AffineTransform.java
new file mode 100644
index 000000000..42590efce
--- /dev/null
+++ b/libjava/classpath/java/awt/geom/AffineTransform.java
@@ -0,0 +1,1489 @@
+/* AffineTransform.java -- transform coordinates between two 2-D spaces
+ Copyright (C) 2000, 2001, 2002, 2004 Free Software Foundation
+
+This file is part of GNU Classpath.
+
+GNU Classpath is free software; you can redistribute it and/or modify
+it under the terms of the GNU General Public License as published by
+the Free Software Foundation; either version 2, or (at your option)
+any later version.
+
+GNU Classpath is distributed in the hope that it will be useful, but
+WITHOUT ANY WARRANTY; without even the implied warranty of
+MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
+General Public License for more details.
+
+You should have received a copy of the GNU General Public License
+along with GNU Classpath; see the file COPYING. If not, write to the
+Free Software Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA
+02110-1301 USA.
+
+Linking this library statically or dynamically with other modules is
+making a combined work based on this library. Thus, the terms and
+conditions of the GNU General Public License cover the whole
+combination.
+
+As a special exception, the copyright holders of this library give you
+permission to link this library with independent modules to produce an
+executable, regardless of the license terms of these independent
+modules, and to copy and distribute the resulting executable under
+terms of your choice, provided that you also meet, for each linked
+independent module, the terms and conditions of the license of that
+module. An independent module is a module which is not derived from
+or based on this library. If you modify this library, you may extend
+this exception to your version of the library, but you are not
+obligated to do so. If you do not wish to do so, delete this
+exception statement from your version. */
+
+
+package java.awt.geom;
+
+import java.awt.Shape;
+import java.io.IOException;
+import java.io.ObjectInputStream;
+import java.io.Serializable;
+
+/**
+ * This class represents an affine transformation between two coordinate
+ * spaces in 2 dimensions. Such a transform preserves the "straightness"
+ * and "parallelness" of lines. The transform is built from a sequence of
+ * translations, scales, flips, rotations, and shears.
+ *
+ * <p>The transformation can be represented using matrix math on a 3x3 array.
+ * Given (x,y), the transformation (x',y') can be found by:
+ * <pre>
+ * [ x'] [ m00 m01 m02 ] [ x ] [ m00*x + m01*y + m02 ]
+ * [ y'] = [ m10 m11 m12 ] [ y ] = [ m10*x + m11*y + m12 ]
+ * [ 1 ] [ 0 0 1 ] [ 1 ] [ 1 ]
+ * </pre>
+ * The bottom row of the matrix is constant, so a transform can be uniquely
+ * represented (as in {@link #toString()}) by
+ * "[[m00, m01, m02], [m10, m11, m12]]".
+ *
+ * @author Tom Tromey (tromey@cygnus.com)
+ * @author Eric Blake (ebb9@email.byu.edu)
+ * @since 1.2
+ * @status partially updated to 1.4, still has some problems
+ */
+public class AffineTransform implements Cloneable, Serializable
+{
+ /**
+ * Compatible with JDK 1.2+.
+ */
+ private static final long serialVersionUID = 1330973210523860834L;
+
+ /**
+ * The transformation is the identity (x' = x, y' = y). All other transforms
+ * have either a combination of the appropriate transform flag bits for
+ * their type, or the type GENERAL_TRANSFORM.
+ *
+ * @see #TYPE_TRANSLATION
+ * @see #TYPE_UNIFORM_SCALE
+ * @see #TYPE_GENERAL_SCALE
+ * @see #TYPE_FLIP
+ * @see #TYPE_QUADRANT_ROTATION
+ * @see #TYPE_GENERAL_ROTATION
+ * @see #TYPE_GENERAL_TRANSFORM
+ * @see #getType()
+ */
+ public static final int TYPE_IDENTITY = 0;
+
+ /**
+ * The transformation includes a translation - shifting in the x or y
+ * direction without changing length or angles.
+ *
+ * @see #TYPE_IDENTITY
+ * @see #TYPE_UNIFORM_SCALE
+ * @see #TYPE_GENERAL_SCALE
+ * @see #TYPE_FLIP
+ * @see #TYPE_QUADRANT_ROTATION
+ * @see #TYPE_GENERAL_ROTATION
+ * @see #TYPE_GENERAL_TRANSFORM
+ * @see #getType()
+ */
+ public static final int TYPE_TRANSLATION = 1;
+
+ /**
+ * The transformation includes a uniform scale - length is scaled in both
+ * the x and y directions by the same amount, without affecting angles.
+ * This is mutually exclusive with TYPE_GENERAL_SCALE.
+ *
+ * @see #TYPE_IDENTITY
+ * @see #TYPE_TRANSLATION
+ * @see #TYPE_GENERAL_SCALE
+ * @see #TYPE_FLIP
+ * @see #TYPE_QUADRANT_ROTATION
+ * @see #TYPE_GENERAL_ROTATION
+ * @see #TYPE_GENERAL_TRANSFORM
+ * @see #TYPE_MASK_SCALE
+ * @see #getType()
+ */
+ public static final int TYPE_UNIFORM_SCALE = 2;
+
+ /**
+ * The transformation includes a general scale - length is scaled in either
+ * or both the x and y directions, but by different amounts; without
+ * affecting angles. This is mutually exclusive with TYPE_UNIFORM_SCALE.
+ *
+ * @see #TYPE_IDENTITY
+ * @see #TYPE_TRANSLATION
+ * @see #TYPE_UNIFORM_SCALE
+ * @see #TYPE_FLIP
+ * @see #TYPE_QUADRANT_ROTATION
+ * @see #TYPE_GENERAL_ROTATION
+ * @see #TYPE_GENERAL_TRANSFORM
+ * @see #TYPE_MASK_SCALE
+ * @see #getType()
+ */
+ public static final int TYPE_GENERAL_SCALE = 4;
+
+ /**
+ * This constant checks if either variety of scale transform is performed.
+ *
+ * @see #TYPE_UNIFORM_SCALE
+ * @see #TYPE_GENERAL_SCALE
+ */
+ public static final int TYPE_MASK_SCALE = 6;
+
+ /**
+ * The transformation includes a flip about an axis, swapping between
+ * right-handed and left-handed coordinate systems. In a right-handed
+ * system, the positive x-axis rotates counter-clockwise to the positive
+ * y-axis; in a left-handed system it rotates clockwise.
+ *
+ * @see #TYPE_IDENTITY
+ * @see #TYPE_TRANSLATION
+ * @see #TYPE_UNIFORM_SCALE
+ * @see #TYPE_GENERAL_SCALE
+ * @see #TYPE_QUADRANT_ROTATION
+ * @see #TYPE_GENERAL_ROTATION
+ * @see #TYPE_GENERAL_TRANSFORM
+ * @see #getType()
+ */
+ public static final int TYPE_FLIP = 64;
+
+ /**
+ * The transformation includes a rotation of a multiple of 90 degrees (PI/2
+ * radians). Angles are rotated, but length is preserved. This is mutually
+ * exclusive with TYPE_GENERAL_ROTATION.
+ *
+ * @see #TYPE_IDENTITY
+ * @see #TYPE_TRANSLATION
+ * @see #TYPE_UNIFORM_SCALE
+ * @see #TYPE_GENERAL_SCALE
+ * @see #TYPE_FLIP
+ * @see #TYPE_GENERAL_ROTATION
+ * @see #TYPE_GENERAL_TRANSFORM
+ * @see #TYPE_MASK_ROTATION
+ * @see #getType()
+ */
+ public static final int TYPE_QUADRANT_ROTATION = 8;
+
+ /**
+ * The transformation includes a rotation by an arbitrary angle. Angles are
+ * rotated, but length is preserved. This is mutually exclusive with
+ * TYPE_QUADRANT_ROTATION.
+ *
+ * @see #TYPE_IDENTITY
+ * @see #TYPE_TRANSLATION
+ * @see #TYPE_UNIFORM_SCALE
+ * @see #TYPE_GENERAL_SCALE
+ * @see #TYPE_FLIP
+ * @see #TYPE_QUADRANT_ROTATION
+ * @see #TYPE_GENERAL_TRANSFORM
+ * @see #TYPE_MASK_ROTATION
+ * @see #getType()
+ */
+ public static final int TYPE_GENERAL_ROTATION = 16;
+
+ /**
+ * This constant checks if either variety of rotation is performed.
+ *
+ * @see #TYPE_QUADRANT_ROTATION
+ * @see #TYPE_GENERAL_ROTATION
+ */
+ public static final int TYPE_MASK_ROTATION = 24;
+
+ /**
+ * The transformation is an arbitrary conversion of coordinates which
+ * could not be decomposed into the other TYPEs.
+ *
+ * @see #TYPE_IDENTITY
+ * @see #TYPE_TRANSLATION
+ * @see #TYPE_UNIFORM_SCALE
+ * @see #TYPE_GENERAL_SCALE
+ * @see #TYPE_FLIP
+ * @see #TYPE_QUADRANT_ROTATION
+ * @see #TYPE_GENERAL_ROTATION
+ * @see #getType()
+ */
+ public static final int TYPE_GENERAL_TRANSFORM = 32;
+
+ /**
+ * The X coordinate scaling element of the transform matrix.
+ *
+ * @serial matrix[0,0]
+ */
+ private double m00;
+
+ /**
+ * The Y coordinate shearing element of the transform matrix.
+ *
+ * @serial matrix[1,0]
+ */
+ private double m10;
+
+ /**
+ * The X coordinate shearing element of the transform matrix.
+ *
+ * @serial matrix[0,1]
+ */
+ private double m01;
+
+ /**
+ * The Y coordinate scaling element of the transform matrix.
+ *
+ * @serial matrix[1,1]
+ */
+ private double m11;
+
+ /**
+ * The X coordinate translation element of the transform matrix.
+ *
+ * @serial matrix[0,2]
+ */
+ private double m02;
+
+ /**
+ * The Y coordinate translation element of the transform matrix.
+ *
+ * @serial matrix[1,2]
+ */
+ private double m12;
+
+ /** The type of this transform. */
+ private transient int type;
+
+ /**
+ * Construct a new identity transform:
+ * <pre>
+ * [ 1 0 0 ]
+ * [ 0 1 0 ]
+ * [ 0 0 1 ]
+ * </pre>
+ */
+ public AffineTransform()
+ {
+ m00 = m11 = 1;
+ }
+
+ /**
+ * Create a new transform which copies the given one.
+ *
+ * @param tx the transform to copy
+ * @throws NullPointerException if tx is null
+ */
+ public AffineTransform(AffineTransform tx)
+ {
+ setTransform(tx);
+ }
+
+ /**
+ * Construct a transform with the given matrix entries:
+ * <pre>
+ * [ m00 m01 m02 ]
+ * [ m10 m11 m12 ]
+ * [ 0 0 1 ]
+ * </pre>
+ *
+ * @param m00 the x scaling component
+ * @param m10 the y shearing component
+ * @param m01 the x shearing component
+ * @param m11 the y scaling component
+ * @param m02 the x translation component
+ * @param m12 the y translation component
+ */
+ public AffineTransform(float m00, float m10,
+ float m01, float m11,
+ float m02, float m12)
+ {
+ this.m00 = m00;
+ this.m10 = m10;
+ this.m01 = m01;
+ this.m11 = m11;
+ this.m02 = m02;
+ this.m12 = m12;
+ updateType();
+ }
+
+ /**
+ * Construct a transform from a sequence of float entries. The array must
+ * have at least 4 entries, which has a translation factor of 0; or 6
+ * entries, for specifying all parameters:
+ * <pre>
+ * [ f[0] f[2] (f[4]) ]
+ * [ f[1] f[3] (f[5]) ]
+ * [ 0 0 1 ]
+ * </pre>
+ *
+ * @param f the matrix to copy from, with at least 4 (6) entries
+ * @throws NullPointerException if f is null
+ * @throws ArrayIndexOutOfBoundsException if f is too small
+ */
+ public AffineTransform(float[] f)
+ {
+ m00 = f[0];
+ m10 = f[1];
+ m01 = f[2];
+ m11 = f[3];
+ if (f.length >= 6)
+ {
+ m02 = f[4];
+ m12 = f[5];
+ }
+ updateType();
+ }
+
+ /**
+ * Construct a transform with the given matrix entries:
+ * <pre>
+ * [ m00 m01 m02 ]
+ * [ m10 m11 m12 ]
+ * [ 0 0 1 ]
+ * </pre>
+ *
+ * @param m00 the x scaling component
+ * @param m10 the y shearing component
+ * @param m01 the x shearing component
+ * @param m11 the y scaling component
+ * @param m02 the x translation component
+ * @param m12 the y translation component
+ */
+ public AffineTransform(double m00, double m10, double m01,
+ double m11, double m02, double m12)
+ {
+ this.m00 = m00;
+ this.m10 = m10;
+ this.m01 = m01;
+ this.m11 = m11;
+ this.m02 = m02;
+ this.m12 = m12;
+ updateType();
+ }
+
+ /**
+ * Construct a transform from a sequence of double entries. The array must
+ * have at least 4 entries, which has a translation factor of 0; or 6
+ * entries, for specifying all parameters:
+ * <pre>
+ * [ d[0] d[2] (d[4]) ]
+ * [ d[1] d[3] (d[5]) ]
+ * [ 0 0 1 ]
+ * </pre>
+ *
+ * @param d the matrix to copy from, with at least 4 (6) entries
+ * @throws NullPointerException if d is null
+ * @throws ArrayIndexOutOfBoundsException if d is too small
+ */
+ public AffineTransform(double[] d)
+ {
+ m00 = d[0];
+ m10 = d[1];
+ m01 = d[2];
+ m11 = d[3];
+ if (d.length >= 6)
+ {
+ m02 = d[4];
+ m12 = d[5];
+ }
+ updateType();
+ }
+
+ /**
+ * Returns a translation transform:
+ * <pre>
+ * [ 1 0 tx ]
+ * [ 0 1 ty ]
+ * [ 0 0 1 ]
+ * </pre>
+ *
+ * @param tx the x translation distance
+ * @param ty the y translation distance
+ * @return the translating transform
+ */
+ public static AffineTransform getTranslateInstance(double tx, double ty)
+ {
+ AffineTransform t = new AffineTransform();
+ t.m02 = tx;
+ t.m12 = ty;
+ t.type = (tx == 0 && ty == 0) ? TYPE_UNIFORM_SCALE : TYPE_TRANSLATION;
+ return t;
+ }
+
+ /**
+ * Returns a rotation transform. A positive angle (in radians) rotates
+ * the positive x-axis to the positive y-axis:
+ * <pre>
+ * [ cos(theta) -sin(theta) 0 ]
+ * [ sin(theta) cos(theta) 0 ]
+ * [ 0 0 1 ]
+ * </pre>
+ *
+ * @param theta the rotation angle
+ * @return the rotating transform
+ */
+ public static AffineTransform getRotateInstance(double theta)
+ {
+ AffineTransform t = new AffineTransform();
+ t.setToRotation(theta);
+ return t;
+ }
+
+ /**
+ * Returns a rotation transform about a point. A positive angle (in radians)
+ * rotates the positive x-axis to the positive y-axis. This is the same
+ * as calling:
+ * <pre>
+ * AffineTransform tx = new AffineTransform();
+ * tx.setToTranslation(x, y);
+ * tx.rotate(theta);
+ * tx.translate(-x, -y);
+ * </pre>
+ *
+ * <p>The resulting matrix is:
+ * <pre>
+ * [ cos(theta) -sin(theta) x-x*cos+y*sin ]
+ * [ sin(theta) cos(theta) y-x*sin-y*cos ]
+ * [ 0 0 1 ]
+ * </pre>
+ *
+ * @param theta the rotation angle
+ * @param x the x coordinate of the pivot point
+ * @param y the y coordinate of the pivot point
+ * @return the rotating transform
+ */
+ public static AffineTransform getRotateInstance(double theta,
+ double x, double y)
+ {
+ AffineTransform t = new AffineTransform();
+ t.setToTranslation(x, y);
+ t.rotate(theta);
+ t.translate(-x, -y);
+ return t;
+ }
+
+ /**
+ * Returns a scaling transform:
+ * <pre>
+ * [ sx 0 0 ]
+ * [ 0 sy 0 ]
+ * [ 0 0 1 ]
+ * </pre>
+ *
+ * @param sx the x scaling factor
+ * @param sy the y scaling factor
+ * @return the scaling transform
+ */
+ public static AffineTransform getScaleInstance(double sx, double sy)
+ {
+ AffineTransform t = new AffineTransform();
+ t.setToScale(sx, sy);
+ return t;
+ }
+
+ /**
+ * Returns a shearing transform (points are shifted in the x direction based
+ * on a factor of their y coordinate, and in the y direction as a factor of
+ * their x coordinate):
+ * <pre>
+ * [ 1 shx 0 ]
+ * [ shy 1 0 ]
+ * [ 0 0 1 ]
+ * </pre>
+ *
+ * @param shx the x shearing factor
+ * @param shy the y shearing factor
+ * @return the shearing transform
+ */
+ public static AffineTransform getShearInstance(double shx, double shy)
+ {
+ AffineTransform t = new AffineTransform();
+ t.setToShear(shx, shy);
+ return t;
+ }
+
+ /**
+ * Returns the type of this transform. The result is always valid, although
+ * it may not be the simplest interpretation (in other words, there are
+ * sequences of transforms which reduce to something simpler, which this
+ * does not always detect). The result is either TYPE_GENERAL_TRANSFORM,
+ * or a bit-wise combination of TYPE_TRANSLATION, the mutually exclusive
+ * TYPE_*_ROTATIONs, and the mutually exclusive TYPE_*_SCALEs.
+ *
+ * @return The type.
+ *
+ * @see #TYPE_IDENTITY
+ * @see #TYPE_TRANSLATION
+ * @see #TYPE_UNIFORM_SCALE
+ * @see #TYPE_GENERAL_SCALE
+ * @see #TYPE_QUADRANT_ROTATION
+ * @see #TYPE_GENERAL_ROTATION
+ * @see #TYPE_GENERAL_TRANSFORM
+ */
+ public int getType()
+ {
+ return type;
+ }
+
+ /**
+ * Return the determinant of this transform matrix. If the determinant is
+ * non-zero, the transform is invertible; otherwise operations which require
+ * an inverse throw a NoninvertibleTransformException. A result very near
+ * zero, due to rounding errors, may indicate that inversion results do not
+ * carry enough precision to be meaningful.
+ *
+ * <p>If this is a uniform scale transformation, the determinant also
+ * represents the squared value of the scale. Otherwise, it carries little
+ * additional meaning. The determinant is calculated as:
+ * <pre>
+ * | m00 m01 m02 |
+ * | m10 m11 m12 | = m00 * m11 - m01 * m10
+ * | 0 0 1 |
+ * </pre>
+ *
+ * @return the determinant
+ * @see #createInverse()
+ */
+ public double getDeterminant()
+ {
+ return m00 * m11 - m01 * m10;
+ }
+
+ /**
+ * Return the matrix of values used in this transform. If the matrix has
+ * fewer than 6 entries, only the scale and shear factors are returned;
+ * otherwise the translation factors are copied as well. The resulting
+ * values are:
+ * <pre>
+ * [ d[0] d[2] (d[4]) ]
+ * [ d[1] d[3] (d[5]) ]
+ * [ 0 0 1 ]
+ * </pre>
+ *
+ * @param d the matrix to store the results into; with 4 (6) entries
+ * @throws NullPointerException if d is null
+ * @throws ArrayIndexOutOfBoundsException if d is too small
+ */
+ public void getMatrix(double[] d)
+ {
+ d[0] = m00;
+ d[1] = m10;
+ d[2] = m01;
+ d[3] = m11;
+ if (d.length >= 6)
+ {
+ d[4] = m02;
+ d[5] = m12;
+ }
+ }
+
+ /**
+ * Returns the X coordinate scaling factor of the matrix.
+ *
+ * @return m00
+ * @see #getMatrix(double[])
+ */
+ public double getScaleX()
+ {
+ return m00;
+ }
+
+ /**
+ * Returns the Y coordinate scaling factor of the matrix.
+ *
+ * @return m11
+ * @see #getMatrix(double[])
+ */
+ public double getScaleY()
+ {
+ return m11;
+ }
+
+ /**
+ * Returns the X coordinate shearing factor of the matrix.
+ *
+ * @return m01
+ * @see #getMatrix(double[])
+ */
+ public double getShearX()
+ {
+ return m01;
+ }
+
+ /**
+ * Returns the Y coordinate shearing factor of the matrix.
+ *
+ * @return m10
+ * @see #getMatrix(double[])
+ */
+ public double getShearY()
+ {
+ return m10;
+ }
+
+ /**
+ * Returns the X coordinate translation factor of the matrix.
+ *
+ * @return m02
+ * @see #getMatrix(double[])
+ */
+ public double getTranslateX()
+ {
+ return m02;
+ }
+
+ /**
+ * Returns the Y coordinate translation factor of the matrix.
+ *
+ * @return m12
+ * @see #getMatrix(double[])
+ */
+ public double getTranslateY()
+ {
+ return m12;
+ }
+
+ /**
+ * Concatenate a translation onto this transform. This is equivalent, but
+ * more efficient than
+ * <code>concatenate(AffineTransform.getTranslateInstance(tx, ty))</code>.
+ *
+ * @param tx the x translation distance
+ * @param ty the y translation distance
+ * @see #getTranslateInstance(double, double)
+ * @see #concatenate(AffineTransform)
+ */
+ public void translate(double tx, double ty)
+ {
+ m02 += tx * m00 + ty * m01;
+ m12 += tx * m10 + ty * m11;
+ updateType();
+ }
+
+ /**
+ * Concatenate a rotation onto this transform. This is equivalent, but
+ * more efficient than
+ * <code>concatenate(AffineTransform.getRotateInstance(theta))</code>.
+ *
+ * @param theta the rotation angle
+ * @see #getRotateInstance(double)
+ * @see #concatenate(AffineTransform)
+ */
+ public void rotate(double theta)
+ {
+ double c = Math.cos(theta);
+ double s = Math.sin(theta);
+ double n00 = m00 * c + m01 * s;
+ double n01 = m00 * -s + m01 * c;
+ double n10 = m10 * c + m11 * s;
+ double n11 = m10 * -s + m11 * c;
+ m00 = n00;
+ m01 = n01;
+ m10 = n10;
+ m11 = n11;
+ updateType();
+ }
+
+ /**
+ * Concatenate a rotation about a point onto this transform. This is
+ * equivalent, but more efficient than
+ * <code>concatenate(AffineTransform.getRotateInstance(theta, x, y))</code>.
+ *
+ * @param theta the rotation angle
+ * @param x the x coordinate of the pivot point
+ * @param y the y coordinate of the pivot point
+ * @see #getRotateInstance(double, double, double)
+ * @see #concatenate(AffineTransform)
+ */
+ public void rotate(double theta, double x, double y)
+ {
+ translate(x, y);
+ rotate(theta);
+ translate(-x, -y);
+ }
+
+ /**
+ * Concatenate a scale onto this transform. This is equivalent, but more
+ * efficient than
+ * <code>concatenate(AffineTransform.getScaleInstance(sx, sy))</code>.
+ *
+ * @param sx the x scaling factor
+ * @param sy the y scaling factor
+ * @see #getScaleInstance(double, double)
+ * @see #concatenate(AffineTransform)
+ */
+ public void scale(double sx, double sy)
+ {
+ m00 *= sx;
+ m01 *= sy;
+ m10 *= sx;
+ m11 *= sy;
+ updateType();
+ }
+
+ /**
+ * Concatenate a shearing onto this transform. This is equivalent, but more
+ * efficient than
+ * <code>concatenate(AffineTransform.getShearInstance(sx, sy))</code>.
+ *
+ * @param shx the x shearing factor
+ * @param shy the y shearing factor
+ * @see #getShearInstance(double, double)
+ * @see #concatenate(AffineTransform)
+ */
+ public void shear(double shx, double shy)
+ {
+ double n00 = m00 + (shy * m01);
+ double n01 = m01 + (shx * m00);
+ double n10 = m10 + (shy * m11);
+ double n11 = m11 + (shx * m10);
+ m00 = n00;
+ m01 = n01;
+ m10 = n10;
+ m11 = n11;
+ updateType();
+ }
+
+ /**
+ * Reset this transform to the identity (no transformation):
+ * <pre>
+ * [ 1 0 0 ]
+ * [ 0 1 0 ]
+ * [ 0 0 1 ]
+ * </pre>
+ */
+ public void setToIdentity()
+ {
+ m00 = m11 = 1;
+ m01 = m02 = m10 = m12 = 0;
+ type = TYPE_IDENTITY;
+ }
+
+ /**
+ * Set this transform to a translation:
+ * <pre>
+ * [ 1 0 tx ]
+ * [ 0 1 ty ]
+ * [ 0 0 1 ]
+ * </pre>
+ *
+ * @param tx the x translation distance
+ * @param ty the y translation distance
+ */
+ public void setToTranslation(double tx, double ty)
+ {
+ m00 = m11 = 1;
+ m01 = m10 = 0;
+ m02 = tx;
+ m12 = ty;
+ type = (tx == 0 && ty == 0) ? TYPE_UNIFORM_SCALE : TYPE_TRANSLATION;
+ }
+
+ /**
+ * Set this transform to a rotation. A positive angle (in radians) rotates
+ * the positive x-axis to the positive y-axis:
+ * <pre>
+ * [ cos(theta) -sin(theta) 0 ]
+ * [ sin(theta) cos(theta) 0 ]
+ * [ 0 0 1 ]
+ * </pre>
+ *
+ * @param theta the rotation angle
+ */
+ public void setToRotation(double theta)
+ {
+ double c = Math.cos(theta);
+ double s = Math.sin(theta);
+ m00 = c;
+ m01 = -s;
+ m02 = 0;
+ m10 = s;
+ m11 = c;
+ m12 = 0;
+ type = (c == 1 ? TYPE_IDENTITY
+ : c == 0 || c == -1 ? TYPE_QUADRANT_ROTATION
+ : TYPE_GENERAL_ROTATION);
+ }
+
+ /**
+ * Set this transform to a rotation about a point. A positive angle (in
+ * radians) rotates the positive x-axis to the positive y-axis. This is the
+ * same as calling:
+ * <pre>
+ * tx.setToTranslation(x, y);
+ * tx.rotate(theta);
+ * tx.translate(-x, -y);
+ * </pre>
+ *
+ * <p>The resulting matrix is:
+ * <pre>
+ * [ cos(theta) -sin(theta) x-x*cos+y*sin ]
+ * [ sin(theta) cos(theta) y-x*sin-y*cos ]
+ * [ 0 0 1 ]
+ * </pre>
+ *
+ * @param theta the rotation angle
+ * @param x the x coordinate of the pivot point
+ * @param y the y coordinate of the pivot point
+ */
+ public void setToRotation(double theta, double x, double y)
+ {
+ double c = Math.cos(theta);
+ double s = Math.sin(theta);
+ m00 = c;
+ m01 = -s;
+ m02 = x - x * c + y * s;
+ m10 = s;
+ m11 = c;
+ m12 = y - x * s - y * c;
+ updateType();
+ }
+
+ /**
+ * Set this transform to a scale:
+ * <pre>
+ * [ sx 0 0 ]
+ * [ 0 sy 0 ]
+ * [ 0 0 1 ]
+ * </pre>
+ *
+ * @param sx the x scaling factor
+ * @param sy the y scaling factor
+ */
+ public void setToScale(double sx, double sy)
+ {
+ m00 = sx;
+ m01 = m02 = m10 = m12 = 0;
+ m11 = sy;
+ type = (sx != sy ? TYPE_GENERAL_SCALE
+ : sx == 1 ? TYPE_IDENTITY : TYPE_UNIFORM_SCALE);
+ }
+
+ /**
+ * Set this transform to a shear (points are shifted in the x direction based
+ * on a factor of their y coordinate, and in the y direction as a factor of
+ * their x coordinate):
+ * <pre>
+ * [ 1 shx 0 ]
+ * [ shy 1 0 ]
+ * [ 0 0 1 ]
+ * </pre>
+ *
+ * @param shx the x shearing factor
+ * @param shy the y shearing factor
+ */
+ public void setToShear(double shx, double shy)
+ {
+ m00 = m11 = 1;
+ m01 = shx;
+ m10 = shy;
+ m02 = m12 = 0;
+ updateType();
+ }
+
+ /**
+ * Set this transform to a copy of the given one.
+ *
+ * @param tx the transform to copy
+ * @throws NullPointerException if tx is null
+ */
+ public void setTransform(AffineTransform tx)
+ {
+ m00 = tx.m00;
+ m01 = tx.m01;
+ m02 = tx.m02;
+ m10 = tx.m10;
+ m11 = tx.m11;
+ m12 = tx.m12;
+ type = tx.type;
+ }
+
+ /**
+ * Set this transform to the given values:
+ * <pre>
+ * [ m00 m01 m02 ]
+ * [ m10 m11 m12 ]
+ * [ 0 0 1 ]
+ * </pre>
+ *
+ * @param m00 the x scaling component
+ * @param m10 the y shearing component
+ * @param m01 the x shearing component
+ * @param m11 the y scaling component
+ * @param m02 the x translation component
+ * @param m12 the y translation component
+ */
+ public void setTransform(double m00, double m10, double m01,
+ double m11, double m02, double m12)
+ {
+ this.m00 = m00;
+ this.m10 = m10;
+ this.m01 = m01;
+ this.m11 = m11;
+ this.m02 = m02;
+ this.m12 = m12;
+ updateType();
+ }
+
+ /**
+ * Set this transform to the result of performing the original version of
+ * this followed by tx. This is commonly used when chaining transformations
+ * from one space to another. In matrix form:
+ * <pre>
+ * [ this ] = [ this ] x [ tx ]
+ * </pre>
+ *
+ * @param tx the transform to concatenate
+ * @throws NullPointerException if tx is null
+ * @see #preConcatenate(AffineTransform)
+ */
+ public void concatenate(AffineTransform tx)
+ {
+ double n00 = m00 * tx.m00 + m01 * tx.m10;
+ double n01 = m00 * tx.m01 + m01 * tx.m11;
+ double n02 = m00 * tx.m02 + m01 * tx.m12 + m02;
+ double n10 = m10 * tx.m00 + m11 * tx.m10;
+ double n11 = m10 * tx.m01 + m11 * tx.m11;
+ double n12 = m10 * tx.m02 + m11 * tx.m12 + m12;
+ m00 = n00;
+ m01 = n01;
+ m02 = n02;
+ m10 = n10;
+ m11 = n11;
+ m12 = n12;
+ updateType();
+ }
+
+ /**
+ * Set this transform to the result of performing tx followed by the
+ * original version of this. This is less common than normal concatenation,
+ * but can still be used to chain transformations from one space to another.
+ * In matrix form:
+ * <pre>
+ * [ this ] = [ tx ] x [ this ]
+ * </pre>
+ *
+ * @param tx the transform to concatenate
+ * @throws NullPointerException if tx is null
+ * @see #concatenate(AffineTransform)
+ */
+ public void preConcatenate(AffineTransform tx)
+ {
+ double n00 = tx.m00 * m00 + tx.m01 * m10;
+ double n01 = tx.m00 * m01 + tx.m01 * m11;
+ double n02 = tx.m00 * m02 + tx.m01 * m12 + tx.m02;
+ double n10 = tx.m10 * m00 + tx.m11 * m10;
+ double n11 = tx.m10 * m01 + tx.m11 * m11;
+ double n12 = tx.m10 * m02 + tx.m11 * m12 + tx.m12;
+ m00 = n00;
+ m01 = n01;
+ m02 = n02;
+ m10 = n10;
+ m11 = n11;
+ m12 = n12;
+ updateType();
+ }
+
+ /**
+ * Returns a transform, which if concatenated to this one, will result in
+ * the identity transform. This is useful for undoing transformations, but
+ * is only possible if the original transform has an inverse (ie. does not
+ * map multiple points to the same line or point). A transform exists only
+ * if getDeterminant() has a non-zero value.
+ *
+ * The inverse is calculated as:
+ *
+ * <pre>
+ *
+ * Let A be the matrix for which we want to find the inverse:
+ *
+ * A = [ m00 m01 m02 ]
+ * [ m10 m11 m12 ]
+ * [ 0 0 1 ]
+ *
+ *
+ * 1
+ * inverse (A) = --- x adjoint(A)
+ * det
+ *
+ *
+ *
+ * = 1 [ m11 -m01 m01*m12-m02*m11 ]
+ * --- x [ -m10 m00 -m00*m12+m10*m02 ]
+ * det [ 0 0 m00*m11-m10*m01 ]
+ *
+ *
+ *
+ * = [ m11/det -m01/det m01*m12-m02*m11/det ]
+ * [ -m10/det m00/det -m00*m12+m10*m02/det ]
+ * [ 0 0 1 ]
+ *
+ *
+ * </pre>
+ *
+ *
+ *
+ * @return a new inverse transform
+ * @throws NoninvertibleTransformException if inversion is not possible
+ * @see #getDeterminant()
+ */
+ public AffineTransform createInverse()
+ throws NoninvertibleTransformException
+ {
+ double det = getDeterminant();
+ if (det == 0)
+ throw new NoninvertibleTransformException("can't invert transform");
+
+ double im00 = m11 / det;
+ double im10 = -m10 / det;
+ double im01 = -m01 / det;
+ double im11 = m00 / det;
+ double im02 = (m01 * m12 - m02 * m11) / det;
+ double im12 = (-m00 * m12 + m10 * m02) / det;
+
+ return new AffineTransform (im00, im10, im01, im11, im02, im12);
+ }
+
+ /**
+ * Perform this transformation on the given source point, and store the
+ * result in the destination (creating it if necessary). It is safe for
+ * src and dst to be the same.
+ *
+ * @param src the source point
+ * @param dst the destination, or null
+ * @return the transformation of src, in dst if it was non-null
+ * @throws NullPointerException if src is null
+ */
+ public Point2D transform(Point2D src, Point2D dst)
+ {
+ if (dst == null)
+ dst = new Point2D.Double();
+ double x = src.getX();
+ double y = src.getY();
+ double nx = m00 * x + m01 * y + m02;
+ double ny = m10 * x + m11 * y + m12;
+ dst.setLocation(nx, ny);
+ return dst;
+ }
+
+ /**
+ * Perform this transformation on an array of points, storing the results
+ * in another (possibly same) array. This will not create a destination
+ * array, but will create points for the null entries of the destination.
+ * The transformation is done sequentially. While having a single source
+ * and destination point be the same is safe, you should be aware that
+ * duplicate references to the same point in the source, and having the
+ * source overlap the destination, may result in your source points changing
+ * from a previous transform before it is their turn to be evaluated.
+ *
+ * @param src the array of source points
+ * @param srcOff the starting offset into src
+ * @param dst the array of destination points (may have null entries)
+ * @param dstOff the starting offset into dst
+ * @param num the number of points to transform
+ * @throws NullPointerException if src or dst is null, or src has null
+ * entries
+ * @throws ArrayIndexOutOfBoundsException if array bounds are exceeded
+ * @throws ArrayStoreException if new points are incompatible with dst
+ */
+ public void transform(Point2D[] src, int srcOff,
+ Point2D[] dst, int dstOff, int num)
+ {
+ while (--num >= 0)
+ dst[dstOff] = transform(src[srcOff++], dst[dstOff++]);
+ }
+
+ /**
+ * Perform this transformation on an array of points, in (x,y) pairs,
+ * storing the results in another (possibly same) array. This will not
+ * create a destination array. All sources are copied before the
+ * transformation, so that no result will overwrite a point that has not yet
+ * been evaluated.
+ *
+ * @param srcPts the array of source points
+ * @param srcOff the starting offset into src
+ * @param dstPts the array of destination points
+ * @param dstOff the starting offset into dst
+ * @param num the number of points to transform
+ * @throws NullPointerException if src or dst is null
+ * @throws ArrayIndexOutOfBoundsException if array bounds are exceeded
+ */
+ public void transform(float[] srcPts, int srcOff,
+ float[] dstPts, int dstOff, int num)
+ {
+ if (srcPts == dstPts && dstOff > srcOff
+ && num > 1 && srcOff + 2 * num > dstOff)
+ {
+ float[] f = new float[2 * num];
+ System.arraycopy(srcPts, srcOff, f, 0, 2 * num);
+ srcPts = f;
+ }
+ while (--num >= 0)
+ {
+ float x = srcPts[srcOff++];
+ float y = srcPts[srcOff++];
+ dstPts[dstOff++] = (float) (m00 * x + m01 * y + m02);
+ dstPts[dstOff++] = (float) (m10 * x + m11 * y + m12);
+ }
+ }
+
+ /**
+ * Perform this transformation on an array of points, in (x,y) pairs,
+ * storing the results in another (possibly same) array. This will not
+ * create a destination array. All sources are copied before the
+ * transformation, so that no result will overwrite a point that has not yet
+ * been evaluated.
+ *
+ * @param srcPts the array of source points
+ * @param srcOff the starting offset into src
+ * @param dstPts the array of destination points
+ * @param dstOff the starting offset into dst
+ * @param num the number of points to transform
+ * @throws NullPointerException if src or dst is null
+ * @throws ArrayIndexOutOfBoundsException if array bounds are exceeded
+ */
+ public void transform(double[] srcPts, int srcOff,
+ double[] dstPts, int dstOff, int num)
+ {
+ if (srcPts == dstPts && dstOff > srcOff
+ && num > 1 && srcOff + 2 * num > dstOff)
+ {
+ double[] d = new double[2 * num];
+ System.arraycopy(srcPts, srcOff, d, 0, 2 * num);
+ srcPts = d;
+ }
+ while (--num >= 0)
+ {
+ double x = srcPts[srcOff++];
+ double y = srcPts[srcOff++];
+ dstPts[dstOff++] = m00 * x + m01 * y + m02;
+ dstPts[dstOff++] = m10 * x + m11 * y + m12;
+ }
+ }
+
+ /**
+ * Perform this transformation on an array of points, in (x,y) pairs,
+ * storing the results in another array. This will not create a destination
+ * array.
+ *
+ * @param srcPts the array of source points
+ * @param srcOff the starting offset into src
+ * @param dstPts the array of destination points
+ * @param dstOff the starting offset into dst
+ * @param num the number of points to transform
+ * @throws NullPointerException if src or dst is null
+ * @throws ArrayIndexOutOfBoundsException if array bounds are exceeded
+ */
+ public void transform(float[] srcPts, int srcOff,
+ double[] dstPts, int dstOff, int num)
+ {
+ while (--num >= 0)
+ {
+ float x = srcPts[srcOff++];
+ float y = srcPts[srcOff++];
+ dstPts[dstOff++] = m00 * x + m01 * y + m02;
+ dstPts[dstOff++] = m10 * x + m11 * y + m12;
+ }
+ }
+
+ /**
+ * Perform this transformation on an array of points, in (x,y) pairs,
+ * storing the results in another array. This will not create a destination
+ * array.
+ *
+ * @param srcPts the array of source points
+ * @param srcOff the starting offset into src
+ * @param dstPts the array of destination points
+ * @param dstOff the starting offset into dst
+ * @param num the number of points to transform
+ * @throws NullPointerException if src or dst is null
+ * @throws ArrayIndexOutOfBoundsException if array bounds are exceeded
+ */
+ public void transform(double[] srcPts, int srcOff,
+ float[] dstPts, int dstOff, int num)
+ {
+ while (--num >= 0)
+ {
+ double x = srcPts[srcOff++];
+ double y = srcPts[srcOff++];
+ dstPts[dstOff++] = (float) (m00 * x + m01 * y + m02);
+ dstPts[dstOff++] = (float) (m10 * x + m11 * y + m12);
+ }
+ }
+
+ /**
+ * Perform the inverse of this transformation on the given source point,
+ * and store the result in the destination (creating it if necessary). It
+ * is safe for src and dst to be the same.
+ *
+ * @param src the source point
+ * @param dst the destination, or null
+ * @return the inverse transformation of src, in dst if it was non-null
+ * @throws NullPointerException if src is null
+ * @throws NoninvertibleTransformException if the inverse does not exist
+ * @see #getDeterminant()
+ */
+ public Point2D inverseTransform(Point2D src, Point2D dst)
+ throws NoninvertibleTransformException
+ {
+ return createInverse().transform(src, dst);
+ }
+
+ /**
+ * Perform the inverse of this transformation on an array of points, in
+ * (x,y) pairs, storing the results in another (possibly same) array. This
+ * will not create a destination array. All sources are copied before the
+ * transformation, so that no result will overwrite a point that has not yet
+ * been evaluated.
+ *
+ * @param srcPts the array of source points
+ * @param srcOff the starting offset into src
+ * @param dstPts the array of destination points
+ * @param dstOff the starting offset into dst
+ * @param num the number of points to transform
+ * @throws NullPointerException if src or dst is null
+ * @throws ArrayIndexOutOfBoundsException if array bounds are exceeded
+ * @throws NoninvertibleTransformException if the inverse does not exist
+ * @see #getDeterminant()
+ */
+ public void inverseTransform(double[] srcPts, int srcOff,
+ double[] dstPts, int dstOff, int num)
+ throws NoninvertibleTransformException
+ {
+ createInverse().transform(srcPts, srcOff, dstPts, dstOff, num);
+ }
+
+ /**
+ * Perform this transformation, less any translation, on the given source
+ * point, and store the result in the destination (creating it if
+ * necessary). It is safe for src and dst to be the same. The reduced
+ * transform is equivalent to:
+ * <pre>
+ * [ x' ] = [ m00 m01 ] [ x ] = [ m00 * x + m01 * y ]
+ * [ y' ] [ m10 m11 ] [ y ] = [ m10 * x + m11 * y ]
+ * </pre>
+ *
+ * @param src the source point
+ * @param dst the destination, or null
+ * @return the delta transformation of src, in dst if it was non-null
+ * @throws NullPointerException if src is null
+ */
+ public Point2D deltaTransform(Point2D src, Point2D dst)
+ {
+ if (dst == null)
+ dst = new Point2D.Double();
+ double x = src.getX();
+ double y = src.getY();
+ double nx = m00 * x + m01 * y;
+ double ny = m10 * x + m11 * y;
+ dst.setLocation(nx, ny);
+ return dst;
+ }
+
+ /**
+ * Perform this transformation, less any translation, on an array of points,
+ * in (x,y) pairs, storing the results in another (possibly same) array.
+ * This will not create a destination array. All sources are copied before
+ * the transformation, so that no result will overwrite a point that has
+ * not yet been evaluated. The reduced transform is equivalent to:
+ * <pre>
+ * [ x' ] = [ m00 m01 ] [ x ] = [ m00 * x + m01 * y ]
+ * [ y' ] [ m10 m11 ] [ y ] = [ m10 * x + m11 * y ]
+ * </pre>
+ *
+ * @param srcPts the array of source points
+ * @param srcOff the starting offset into src
+ * @param dstPts the array of destination points
+ * @param dstOff the starting offset into dst
+ * @param num the number of points to transform
+ * @throws NullPointerException if src or dst is null
+ * @throws ArrayIndexOutOfBoundsException if array bounds are exceeded
+ */
+ public void deltaTransform(double[] srcPts, int srcOff,
+ double[] dstPts, int dstOff,
+ int num)
+ {
+ if (srcPts == dstPts && dstOff > srcOff
+ && num > 1 && srcOff + 2 * num > dstOff)
+ {
+ double[] d = new double[2 * num];
+ System.arraycopy(srcPts, srcOff, d, 0, 2 * num);
+ srcPts = d;
+ }
+ while (--num >= 0)
+ {
+ double x = srcPts[srcOff++];
+ double y = srcPts[srcOff++];
+ dstPts[dstOff++] = m00 * x + m01 * y;
+ dstPts[dstOff++] = m10 * x + m11 * y;
+ }
+ }
+
+ /**
+ * Return a new Shape, based on the given one, where the path of the shape
+ * has been transformed by this transform. Notice that this uses GeneralPath,
+ * which only stores points in float precision.
+ *
+ * @param src the shape source to transform
+ * @return the shape, transformed by this, <code>null</code> if src is
+ * <code>null</code>.
+ * @see GeneralPath#transform(AffineTransform)
+ */
+ public Shape createTransformedShape(Shape src)
+ {
+ if(src == null)
+ return null;
+ GeneralPath p = new GeneralPath(src);
+ p.transform(this);
+ return p;
+ }
+
+ /**
+ * Returns a string representation of the transform, in the format:
+ * <code>"AffineTransform[[" + m00 + ", " + m01 + ", " + m02 + "], ["
+ * + m10 + ", " + m11 + ", " + m12 + "]]"</code>.
+ *
+ * @return the string representation
+ */
+ public String toString()
+ {
+ return "AffineTransform[[" + m00 + ", " + m01 + ", " + m02 + "], ["
+ + m10 + ", " + m11 + ", " + m12 + "]]";
+ }
+
+ /**
+ * Tests if this transformation is the identity:
+ * <pre>
+ * [ 1 0 0 ]
+ * [ 0 1 0 ]
+ * [ 0 0 1 ]
+ * </pre>
+ *
+ * @return true if this is the identity transform
+ */
+ public boolean isIdentity()
+ {
+ // Rather than rely on type, check explicitly.
+ return (m00 == 1 && m01 == 0 && m02 == 0
+ && m10 == 0 && m11 == 1 && m12 == 0);
+ }
+
+ /**
+ * Create a new transform of the same run-time type, with the same
+ * transforming properties as this one.
+ *
+ * @return the clone
+ */
+ public Object clone()
+ {
+ try
+ {
+ return super.clone();
+ }
+ catch (CloneNotSupportedException e)
+ {
+ throw (Error) new InternalError().initCause(e); // Impossible
+ }
+ }
+
+ /**
+ * Return the hashcode for this transformation. The formula is not
+ * documented, but appears to be the same as:
+ * <pre>
+ * long l = Double.doubleToLongBits(getScaleX());
+ * l = l * 31 + Double.doubleToLongBits(getShearX());
+ * l = l * 31 + Double.doubleToLongBits(getTranslateX());
+ * l = l * 31 + Double.doubleToLongBits(getShearY());
+ * l = l * 31 + Double.doubleToLongBits(getScaleY());
+ * l = l * 31 + Double.doubleToLongBits(getTranslateY());
+ * return (int) ((l >> 32) ^ l);
+ * </pre>
+ *
+ * @return the hashcode
+ */
+ public int hashCode()
+ {
+ long l = Double.doubleToLongBits(m00);
+ l = l * 31 + Double.doubleToLongBits(m01);
+ l = l * 31 + Double.doubleToLongBits(m02);
+ l = l * 31 + Double.doubleToLongBits(m10);
+ l = l * 31 + Double.doubleToLongBits(m11);
+ l = l * 31 + Double.doubleToLongBits(m12);
+ return (int) ((l >> 32) ^ l);
+ }
+
+ /**
+ * Compares two transforms for equality. This returns true if they have the
+ * same matrix values.
+ *
+ * @param obj the transform to compare
+ * @return true if it is equal
+ */
+ public boolean equals(Object obj)
+ {
+ if (! (obj instanceof AffineTransform))
+ return false;
+ AffineTransform t = (AffineTransform) obj;
+ return (m00 == t.m00 && m01 == t.m01 && m02 == t.m02
+ && m10 == t.m10 && m11 == t.m11 && m12 == t.m12);
+ }
+
+ /**
+ * Helper to decode the type from the matrix. This is not guaranteed
+ * to find the optimal type, but at least it will be valid.
+ */
+ private void updateType()
+ {
+ double det = getDeterminant();
+ if (det == 0)
+ {
+ type = TYPE_GENERAL_TRANSFORM;
+ return;
+ }
+ // Scale (includes rotation by PI) or translation.
+ if (m01 == 0 && m10 == 0)
+ {
+ if (m00 == m11)
+ type = m00 == 1 ? TYPE_IDENTITY : TYPE_UNIFORM_SCALE;
+ else
+ type = TYPE_GENERAL_SCALE;
+ if (m02 != 0 || m12 != 0)
+ type |= TYPE_TRANSLATION;
+ }
+ // Rotation.
+ else if (m00 == m11 && m01 == -m10)
+ {
+ type = m00 == 0 ? TYPE_QUADRANT_ROTATION : TYPE_GENERAL_ROTATION;
+ if (det != 1)
+ type |= TYPE_UNIFORM_SCALE;
+ if (m02 != 0 || m12 != 0)
+ type |= TYPE_TRANSLATION;
+ }
+ else
+ type = TYPE_GENERAL_TRANSFORM;
+ }
+
+ /**
+ * Reads a transform from an object stream.
+ *
+ * @param s the stream to read from
+ * @throws ClassNotFoundException if there is a problem deserializing
+ * @throws IOException if there is a problem deserializing
+ */
+ private void readObject(ObjectInputStream s)
+ throws ClassNotFoundException, IOException
+ {
+ s.defaultReadObject();
+ updateType();
+ }
+} // class AffineTransform