summaryrefslogtreecommitdiff
path: root/libjava/classpath/java/awt/geom
diff options
context:
space:
mode:
authorupstream source tree <ports@midipix.org>2015-03-15 20:14:05 -0400
committerupstream source tree <ports@midipix.org>2015-03-15 20:14:05 -0400
commit554fd8c5195424bdbcabf5de30fdc183aba391bd (patch)
tree976dc5ab7fddf506dadce60ae936f43f58787092 /libjava/classpath/java/awt/geom
downloadcbb-gcc-4.6.4-554fd8c5195424bdbcabf5de30fdc183aba391bd.tar.bz2
cbb-gcc-4.6.4-554fd8c5195424bdbcabf5de30fdc183aba391bd.tar.xz
obtained gcc-4.6.4.tar.bz2 from upstream website;upstream
verified gcc-4.6.4.tar.bz2.sig; imported gcc-4.6.4 source tree from verified upstream tarball. downloading a git-generated archive based on the 'upstream' tag should provide you with a source tree that is binary identical to the one extracted from the above tarball. if you have obtained the source via the command 'git clone', however, do note that line-endings of files in your working directory might differ from line-endings of the respective files in the upstream repository.
Diffstat (limited to 'libjava/classpath/java/awt/geom')
-rw-r--r--libjava/classpath/java/awt/geom/AffineTransform.java1489
-rw-r--r--libjava/classpath/java/awt/geom/Arc2D.java1413
-rw-r--r--libjava/classpath/java/awt/geom/Area.java3312
-rw-r--r--libjava/classpath/java/awt/geom/CubicCurve2D.java1724
-rw-r--r--libjava/classpath/java/awt/geom/Dimension2D.java118
-rw-r--r--libjava/classpath/java/awt/geom/Ellipse2D.java413
-rw-r--r--libjava/classpath/java/awt/geom/FlatteningPathIterator.java579
-rw-r--r--libjava/classpath/java/awt/geom/GeneralPath.java992
-rw-r--r--libjava/classpath/java/awt/geom/IllegalPathStateException.java71
-rw-r--r--libjava/classpath/java/awt/geom/Line2D.java1182
-rw-r--r--libjava/classpath/java/awt/geom/NoninvertibleTransformException.java65
-rw-r--r--libjava/classpath/java/awt/geom/PathIterator.java189
-rw-r--r--libjava/classpath/java/awt/geom/Point2D.java396
-rw-r--r--libjava/classpath/java/awt/geom/QuadCurve2D.java1467
-rw-r--r--libjava/classpath/java/awt/geom/Rectangle2D.java992
-rw-r--r--libjava/classpath/java/awt/geom/RectangularShape.java382
-rw-r--r--libjava/classpath/java/awt/geom/RoundRectangle2D.java584
-rw-r--r--libjava/classpath/java/awt/geom/doc-files/Area-1.pngbin0 -> 21447 bytes
-rw-r--r--libjava/classpath/java/awt/geom/doc-files/CubicCurve2D-1.pngbin0 -> 6280 bytes
-rw-r--r--libjava/classpath/java/awt/geom/doc-files/CubicCurve2D-2.pngbin0 -> 5791 bytes
-rw-r--r--libjava/classpath/java/awt/geom/doc-files/CubicCurve2D-3.pngbin0 -> 13168 bytes
-rw-r--r--libjava/classpath/java/awt/geom/doc-files/CubicCurve2D-4.pngbin0 -> 7839 bytes
-rw-r--r--libjava/classpath/java/awt/geom/doc-files/CubicCurve2D-5.pngbin0 -> 5112 bytes
-rw-r--r--libjava/classpath/java/awt/geom/doc-files/Ellipse-1.pngbin0 -> 19426 bytes
-rw-r--r--libjava/classpath/java/awt/geom/doc-files/FlatteningPathIterator-1.html481
-rw-r--r--libjava/classpath/java/awt/geom/doc-files/GeneralPath-1.pngbin0 -> 13111 bytes
-rw-r--r--libjava/classpath/java/awt/geom/doc-files/QuadCurve2D-1.pngbin0 -> 6363 bytes
-rw-r--r--libjava/classpath/java/awt/geom/doc-files/QuadCurve2D-2.pngbin0 -> 5872 bytes
-rw-r--r--libjava/classpath/java/awt/geom/doc-files/QuadCurve2D-3.pngbin0 -> 12334 bytes
-rw-r--r--libjava/classpath/java/awt/geom/doc-files/QuadCurve2D-4.pngbin0 -> 7797 bytes
-rw-r--r--libjava/classpath/java/awt/geom/doc-files/QuadCurve2D-5.pngbin0 -> 4757 bytes
-rw-r--r--libjava/classpath/java/awt/geom/package.html46
32 files changed, 15895 insertions, 0 deletions
diff --git a/libjava/classpath/java/awt/geom/AffineTransform.java b/libjava/classpath/java/awt/geom/AffineTransform.java
new file mode 100644
index 000000000..42590efce
--- /dev/null
+++ b/libjava/classpath/java/awt/geom/AffineTransform.java
@@ -0,0 +1,1489 @@
+/* AffineTransform.java -- transform coordinates between two 2-D spaces
+ Copyright (C) 2000, 2001, 2002, 2004 Free Software Foundation
+
+This file is part of GNU Classpath.
+
+GNU Classpath is free software; you can redistribute it and/or modify
+it under the terms of the GNU General Public License as published by
+the Free Software Foundation; either version 2, or (at your option)
+any later version.
+
+GNU Classpath is distributed in the hope that it will be useful, but
+WITHOUT ANY WARRANTY; without even the implied warranty of
+MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
+General Public License for more details.
+
+You should have received a copy of the GNU General Public License
+along with GNU Classpath; see the file COPYING. If not, write to the
+Free Software Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA
+02110-1301 USA.
+
+Linking this library statically or dynamically with other modules is
+making a combined work based on this library. Thus, the terms and
+conditions of the GNU General Public License cover the whole
+combination.
+
+As a special exception, the copyright holders of this library give you
+permission to link this library with independent modules to produce an
+executable, regardless of the license terms of these independent
+modules, and to copy and distribute the resulting executable under
+terms of your choice, provided that you also meet, for each linked
+independent module, the terms and conditions of the license of that
+module. An independent module is a module which is not derived from
+or based on this library. If you modify this library, you may extend
+this exception to your version of the library, but you are not
+obligated to do so. If you do not wish to do so, delete this
+exception statement from your version. */
+
+
+package java.awt.geom;
+
+import java.awt.Shape;
+import java.io.IOException;
+import java.io.ObjectInputStream;
+import java.io.Serializable;
+
+/**
+ * This class represents an affine transformation between two coordinate
+ * spaces in 2 dimensions. Such a transform preserves the "straightness"
+ * and "parallelness" of lines. The transform is built from a sequence of
+ * translations, scales, flips, rotations, and shears.
+ *
+ * <p>The transformation can be represented using matrix math on a 3x3 array.
+ * Given (x,y), the transformation (x',y') can be found by:
+ * <pre>
+ * [ x'] [ m00 m01 m02 ] [ x ] [ m00*x + m01*y + m02 ]
+ * [ y'] = [ m10 m11 m12 ] [ y ] = [ m10*x + m11*y + m12 ]
+ * [ 1 ] [ 0 0 1 ] [ 1 ] [ 1 ]
+ * </pre>
+ * The bottom row of the matrix is constant, so a transform can be uniquely
+ * represented (as in {@link #toString()}) by
+ * "[[m00, m01, m02], [m10, m11, m12]]".
+ *
+ * @author Tom Tromey (tromey@cygnus.com)
+ * @author Eric Blake (ebb9@email.byu.edu)
+ * @since 1.2
+ * @status partially updated to 1.4, still has some problems
+ */
+public class AffineTransform implements Cloneable, Serializable
+{
+ /**
+ * Compatible with JDK 1.2+.
+ */
+ private static final long serialVersionUID = 1330973210523860834L;
+
+ /**
+ * The transformation is the identity (x' = x, y' = y). All other transforms
+ * have either a combination of the appropriate transform flag bits for
+ * their type, or the type GENERAL_TRANSFORM.
+ *
+ * @see #TYPE_TRANSLATION
+ * @see #TYPE_UNIFORM_SCALE
+ * @see #TYPE_GENERAL_SCALE
+ * @see #TYPE_FLIP
+ * @see #TYPE_QUADRANT_ROTATION
+ * @see #TYPE_GENERAL_ROTATION
+ * @see #TYPE_GENERAL_TRANSFORM
+ * @see #getType()
+ */
+ public static final int TYPE_IDENTITY = 0;
+
+ /**
+ * The transformation includes a translation - shifting in the x or y
+ * direction without changing length or angles.
+ *
+ * @see #TYPE_IDENTITY
+ * @see #TYPE_UNIFORM_SCALE
+ * @see #TYPE_GENERAL_SCALE
+ * @see #TYPE_FLIP
+ * @see #TYPE_QUADRANT_ROTATION
+ * @see #TYPE_GENERAL_ROTATION
+ * @see #TYPE_GENERAL_TRANSFORM
+ * @see #getType()
+ */
+ public static final int TYPE_TRANSLATION = 1;
+
+ /**
+ * The transformation includes a uniform scale - length is scaled in both
+ * the x and y directions by the same amount, without affecting angles.
+ * This is mutually exclusive with TYPE_GENERAL_SCALE.
+ *
+ * @see #TYPE_IDENTITY
+ * @see #TYPE_TRANSLATION
+ * @see #TYPE_GENERAL_SCALE
+ * @see #TYPE_FLIP
+ * @see #TYPE_QUADRANT_ROTATION
+ * @see #TYPE_GENERAL_ROTATION
+ * @see #TYPE_GENERAL_TRANSFORM
+ * @see #TYPE_MASK_SCALE
+ * @see #getType()
+ */
+ public static final int TYPE_UNIFORM_SCALE = 2;
+
+ /**
+ * The transformation includes a general scale - length is scaled in either
+ * or both the x and y directions, but by different amounts; without
+ * affecting angles. This is mutually exclusive with TYPE_UNIFORM_SCALE.
+ *
+ * @see #TYPE_IDENTITY
+ * @see #TYPE_TRANSLATION
+ * @see #TYPE_UNIFORM_SCALE
+ * @see #TYPE_FLIP
+ * @see #TYPE_QUADRANT_ROTATION
+ * @see #TYPE_GENERAL_ROTATION
+ * @see #TYPE_GENERAL_TRANSFORM
+ * @see #TYPE_MASK_SCALE
+ * @see #getType()
+ */
+ public static final int TYPE_GENERAL_SCALE = 4;
+
+ /**
+ * This constant checks if either variety of scale transform is performed.
+ *
+ * @see #TYPE_UNIFORM_SCALE
+ * @see #TYPE_GENERAL_SCALE
+ */
+ public static final int TYPE_MASK_SCALE = 6;
+
+ /**
+ * The transformation includes a flip about an axis, swapping between
+ * right-handed and left-handed coordinate systems. In a right-handed
+ * system, the positive x-axis rotates counter-clockwise to the positive
+ * y-axis; in a left-handed system it rotates clockwise.
+ *
+ * @see #TYPE_IDENTITY
+ * @see #TYPE_TRANSLATION
+ * @see #TYPE_UNIFORM_SCALE
+ * @see #TYPE_GENERAL_SCALE
+ * @see #TYPE_QUADRANT_ROTATION
+ * @see #TYPE_GENERAL_ROTATION
+ * @see #TYPE_GENERAL_TRANSFORM
+ * @see #getType()
+ */
+ public static final int TYPE_FLIP = 64;
+
+ /**
+ * The transformation includes a rotation of a multiple of 90 degrees (PI/2
+ * radians). Angles are rotated, but length is preserved. This is mutually
+ * exclusive with TYPE_GENERAL_ROTATION.
+ *
+ * @see #TYPE_IDENTITY
+ * @see #TYPE_TRANSLATION
+ * @see #TYPE_UNIFORM_SCALE
+ * @see #TYPE_GENERAL_SCALE
+ * @see #TYPE_FLIP
+ * @see #TYPE_GENERAL_ROTATION
+ * @see #TYPE_GENERAL_TRANSFORM
+ * @see #TYPE_MASK_ROTATION
+ * @see #getType()
+ */
+ public static final int TYPE_QUADRANT_ROTATION = 8;
+
+ /**
+ * The transformation includes a rotation by an arbitrary angle. Angles are
+ * rotated, but length is preserved. This is mutually exclusive with
+ * TYPE_QUADRANT_ROTATION.
+ *
+ * @see #TYPE_IDENTITY
+ * @see #TYPE_TRANSLATION
+ * @see #TYPE_UNIFORM_SCALE
+ * @see #TYPE_GENERAL_SCALE
+ * @see #TYPE_FLIP
+ * @see #TYPE_QUADRANT_ROTATION
+ * @see #TYPE_GENERAL_TRANSFORM
+ * @see #TYPE_MASK_ROTATION
+ * @see #getType()
+ */
+ public static final int TYPE_GENERAL_ROTATION = 16;
+
+ /**
+ * This constant checks if either variety of rotation is performed.
+ *
+ * @see #TYPE_QUADRANT_ROTATION
+ * @see #TYPE_GENERAL_ROTATION
+ */
+ public static final int TYPE_MASK_ROTATION = 24;
+
+ /**
+ * The transformation is an arbitrary conversion of coordinates which
+ * could not be decomposed into the other TYPEs.
+ *
+ * @see #TYPE_IDENTITY
+ * @see #TYPE_TRANSLATION
+ * @see #TYPE_UNIFORM_SCALE
+ * @see #TYPE_GENERAL_SCALE
+ * @see #TYPE_FLIP
+ * @see #TYPE_QUADRANT_ROTATION
+ * @see #TYPE_GENERAL_ROTATION
+ * @see #getType()
+ */
+ public static final int TYPE_GENERAL_TRANSFORM = 32;
+
+ /**
+ * The X coordinate scaling element of the transform matrix.
+ *
+ * @serial matrix[0,0]
+ */
+ private double m00;
+
+ /**
+ * The Y coordinate shearing element of the transform matrix.
+ *
+ * @serial matrix[1,0]
+ */
+ private double m10;
+
+ /**
+ * The X coordinate shearing element of the transform matrix.
+ *
+ * @serial matrix[0,1]
+ */
+ private double m01;
+
+ /**
+ * The Y coordinate scaling element of the transform matrix.
+ *
+ * @serial matrix[1,1]
+ */
+ private double m11;
+
+ /**
+ * The X coordinate translation element of the transform matrix.
+ *
+ * @serial matrix[0,2]
+ */
+ private double m02;
+
+ /**
+ * The Y coordinate translation element of the transform matrix.
+ *
+ * @serial matrix[1,2]
+ */
+ private double m12;
+
+ /** The type of this transform. */
+ private transient int type;
+
+ /**
+ * Construct a new identity transform:
+ * <pre>
+ * [ 1 0 0 ]
+ * [ 0 1 0 ]
+ * [ 0 0 1 ]
+ * </pre>
+ */
+ public AffineTransform()
+ {
+ m00 = m11 = 1;
+ }
+
+ /**
+ * Create a new transform which copies the given one.
+ *
+ * @param tx the transform to copy
+ * @throws NullPointerException if tx is null
+ */
+ public AffineTransform(AffineTransform tx)
+ {
+ setTransform(tx);
+ }
+
+ /**
+ * Construct a transform with the given matrix entries:
+ * <pre>
+ * [ m00 m01 m02 ]
+ * [ m10 m11 m12 ]
+ * [ 0 0 1 ]
+ * </pre>
+ *
+ * @param m00 the x scaling component
+ * @param m10 the y shearing component
+ * @param m01 the x shearing component
+ * @param m11 the y scaling component
+ * @param m02 the x translation component
+ * @param m12 the y translation component
+ */
+ public AffineTransform(float m00, float m10,
+ float m01, float m11,
+ float m02, float m12)
+ {
+ this.m00 = m00;
+ this.m10 = m10;
+ this.m01 = m01;
+ this.m11 = m11;
+ this.m02 = m02;
+ this.m12 = m12;
+ updateType();
+ }
+
+ /**
+ * Construct a transform from a sequence of float entries. The array must
+ * have at least 4 entries, which has a translation factor of 0; or 6
+ * entries, for specifying all parameters:
+ * <pre>
+ * [ f[0] f[2] (f[4]) ]
+ * [ f[1] f[3] (f[5]) ]
+ * [ 0 0 1 ]
+ * </pre>
+ *
+ * @param f the matrix to copy from, with at least 4 (6) entries
+ * @throws NullPointerException if f is null
+ * @throws ArrayIndexOutOfBoundsException if f is too small
+ */
+ public AffineTransform(float[] f)
+ {
+ m00 = f[0];
+ m10 = f[1];
+ m01 = f[2];
+ m11 = f[3];
+ if (f.length >= 6)
+ {
+ m02 = f[4];
+ m12 = f[5];
+ }
+ updateType();
+ }
+
+ /**
+ * Construct a transform with the given matrix entries:
+ * <pre>
+ * [ m00 m01 m02 ]
+ * [ m10 m11 m12 ]
+ * [ 0 0 1 ]
+ * </pre>
+ *
+ * @param m00 the x scaling component
+ * @param m10 the y shearing component
+ * @param m01 the x shearing component
+ * @param m11 the y scaling component
+ * @param m02 the x translation component
+ * @param m12 the y translation component
+ */
+ public AffineTransform(double m00, double m10, double m01,
+ double m11, double m02, double m12)
+ {
+ this.m00 = m00;
+ this.m10 = m10;
+ this.m01 = m01;
+ this.m11 = m11;
+ this.m02 = m02;
+ this.m12 = m12;
+ updateType();
+ }
+
+ /**
+ * Construct a transform from a sequence of double entries. The array must
+ * have at least 4 entries, which has a translation factor of 0; or 6
+ * entries, for specifying all parameters:
+ * <pre>
+ * [ d[0] d[2] (d[4]) ]
+ * [ d[1] d[3] (d[5]) ]
+ * [ 0 0 1 ]
+ * </pre>
+ *
+ * @param d the matrix to copy from, with at least 4 (6) entries
+ * @throws NullPointerException if d is null
+ * @throws ArrayIndexOutOfBoundsException if d is too small
+ */
+ public AffineTransform(double[] d)
+ {
+ m00 = d[0];
+ m10 = d[1];
+ m01 = d[2];
+ m11 = d[3];
+ if (d.length >= 6)
+ {
+ m02 = d[4];
+ m12 = d[5];
+ }
+ updateType();
+ }
+
+ /**
+ * Returns a translation transform:
+ * <pre>
+ * [ 1 0 tx ]
+ * [ 0 1 ty ]
+ * [ 0 0 1 ]
+ * </pre>
+ *
+ * @param tx the x translation distance
+ * @param ty the y translation distance
+ * @return the translating transform
+ */
+ public static AffineTransform getTranslateInstance(double tx, double ty)
+ {
+ AffineTransform t = new AffineTransform();
+ t.m02 = tx;
+ t.m12 = ty;
+ t.type = (tx == 0 && ty == 0) ? TYPE_UNIFORM_SCALE : TYPE_TRANSLATION;
+ return t;
+ }
+
+ /**
+ * Returns a rotation transform. A positive angle (in radians) rotates
+ * the positive x-axis to the positive y-axis:
+ * <pre>
+ * [ cos(theta) -sin(theta) 0 ]
+ * [ sin(theta) cos(theta) 0 ]
+ * [ 0 0 1 ]
+ * </pre>
+ *
+ * @param theta the rotation angle
+ * @return the rotating transform
+ */
+ public static AffineTransform getRotateInstance(double theta)
+ {
+ AffineTransform t = new AffineTransform();
+ t.setToRotation(theta);
+ return t;
+ }
+
+ /**
+ * Returns a rotation transform about a point. A positive angle (in radians)
+ * rotates the positive x-axis to the positive y-axis. This is the same
+ * as calling:
+ * <pre>
+ * AffineTransform tx = new AffineTransform();
+ * tx.setToTranslation(x, y);
+ * tx.rotate(theta);
+ * tx.translate(-x, -y);
+ * </pre>
+ *
+ * <p>The resulting matrix is:
+ * <pre>
+ * [ cos(theta) -sin(theta) x-x*cos+y*sin ]
+ * [ sin(theta) cos(theta) y-x*sin-y*cos ]
+ * [ 0 0 1 ]
+ * </pre>
+ *
+ * @param theta the rotation angle
+ * @param x the x coordinate of the pivot point
+ * @param y the y coordinate of the pivot point
+ * @return the rotating transform
+ */
+ public static AffineTransform getRotateInstance(double theta,
+ double x, double y)
+ {
+ AffineTransform t = new AffineTransform();
+ t.setToTranslation(x, y);
+ t.rotate(theta);
+ t.translate(-x, -y);
+ return t;
+ }
+
+ /**
+ * Returns a scaling transform:
+ * <pre>
+ * [ sx 0 0 ]
+ * [ 0 sy 0 ]
+ * [ 0 0 1 ]
+ * </pre>
+ *
+ * @param sx the x scaling factor
+ * @param sy the y scaling factor
+ * @return the scaling transform
+ */
+ public static AffineTransform getScaleInstance(double sx, double sy)
+ {
+ AffineTransform t = new AffineTransform();
+ t.setToScale(sx, sy);
+ return t;
+ }
+
+ /**
+ * Returns a shearing transform (points are shifted in the x direction based
+ * on a factor of their y coordinate, and in the y direction as a factor of
+ * their x coordinate):
+ * <pre>
+ * [ 1 shx 0 ]
+ * [ shy 1 0 ]
+ * [ 0 0 1 ]
+ * </pre>
+ *
+ * @param shx the x shearing factor
+ * @param shy the y shearing factor
+ * @return the shearing transform
+ */
+ public static AffineTransform getShearInstance(double shx, double shy)
+ {
+ AffineTransform t = new AffineTransform();
+ t.setToShear(shx, shy);
+ return t;
+ }
+
+ /**
+ * Returns the type of this transform. The result is always valid, although
+ * it may not be the simplest interpretation (in other words, there are
+ * sequences of transforms which reduce to something simpler, which this
+ * does not always detect). The result is either TYPE_GENERAL_TRANSFORM,
+ * or a bit-wise combination of TYPE_TRANSLATION, the mutually exclusive
+ * TYPE_*_ROTATIONs, and the mutually exclusive TYPE_*_SCALEs.
+ *
+ * @return The type.
+ *
+ * @see #TYPE_IDENTITY
+ * @see #TYPE_TRANSLATION
+ * @see #TYPE_UNIFORM_SCALE
+ * @see #TYPE_GENERAL_SCALE
+ * @see #TYPE_QUADRANT_ROTATION
+ * @see #TYPE_GENERAL_ROTATION
+ * @see #TYPE_GENERAL_TRANSFORM
+ */
+ public int getType()
+ {
+ return type;
+ }
+
+ /**
+ * Return the determinant of this transform matrix. If the determinant is
+ * non-zero, the transform is invertible; otherwise operations which require
+ * an inverse throw a NoninvertibleTransformException. A result very near
+ * zero, due to rounding errors, may indicate that inversion results do not
+ * carry enough precision to be meaningful.
+ *
+ * <p>If this is a uniform scale transformation, the determinant also
+ * represents the squared value of the scale. Otherwise, it carries little
+ * additional meaning. The determinant is calculated as:
+ * <pre>
+ * | m00 m01 m02 |
+ * | m10 m11 m12 | = m00 * m11 - m01 * m10
+ * | 0 0 1 |
+ * </pre>
+ *
+ * @return the determinant
+ * @see #createInverse()
+ */
+ public double getDeterminant()
+ {
+ return m00 * m11 - m01 * m10;
+ }
+
+ /**
+ * Return the matrix of values used in this transform. If the matrix has
+ * fewer than 6 entries, only the scale and shear factors are returned;
+ * otherwise the translation factors are copied as well. The resulting
+ * values are:
+ * <pre>
+ * [ d[0] d[2] (d[4]) ]
+ * [ d[1] d[3] (d[5]) ]
+ * [ 0 0 1 ]
+ * </pre>
+ *
+ * @param d the matrix to store the results into; with 4 (6) entries
+ * @throws NullPointerException if d is null
+ * @throws ArrayIndexOutOfBoundsException if d is too small
+ */
+ public void getMatrix(double[] d)
+ {
+ d[0] = m00;
+ d[1] = m10;
+ d[2] = m01;
+ d[3] = m11;
+ if (d.length >= 6)
+ {
+ d[4] = m02;
+ d[5] = m12;
+ }
+ }
+
+ /**
+ * Returns the X coordinate scaling factor of the matrix.
+ *
+ * @return m00
+ * @see #getMatrix(double[])
+ */
+ public double getScaleX()
+ {
+ return m00;
+ }
+
+ /**
+ * Returns the Y coordinate scaling factor of the matrix.
+ *
+ * @return m11
+ * @see #getMatrix(double[])
+ */
+ public double getScaleY()
+ {
+ return m11;
+ }
+
+ /**
+ * Returns the X coordinate shearing factor of the matrix.
+ *
+ * @return m01
+ * @see #getMatrix(double[])
+ */
+ public double getShearX()
+ {
+ return m01;
+ }
+
+ /**
+ * Returns the Y coordinate shearing factor of the matrix.
+ *
+ * @return m10
+ * @see #getMatrix(double[])
+ */
+ public double getShearY()
+ {
+ return m10;
+ }
+
+ /**
+ * Returns the X coordinate translation factor of the matrix.
+ *
+ * @return m02
+ * @see #getMatrix(double[])
+ */
+ public double getTranslateX()
+ {
+ return m02;
+ }
+
+ /**
+ * Returns the Y coordinate translation factor of the matrix.
+ *
+ * @return m12
+ * @see #getMatrix(double[])
+ */
+ public double getTranslateY()
+ {
+ return m12;
+ }
+
+ /**
+ * Concatenate a translation onto this transform. This is equivalent, but
+ * more efficient than
+ * <code>concatenate(AffineTransform.getTranslateInstance(tx, ty))</code>.
+ *
+ * @param tx the x translation distance
+ * @param ty the y translation distance
+ * @see #getTranslateInstance(double, double)
+ * @see #concatenate(AffineTransform)
+ */
+ public void translate(double tx, double ty)
+ {
+ m02 += tx * m00 + ty * m01;
+ m12 += tx * m10 + ty * m11;
+ updateType();
+ }
+
+ /**
+ * Concatenate a rotation onto this transform. This is equivalent, but
+ * more efficient than
+ * <code>concatenate(AffineTransform.getRotateInstance(theta))</code>.
+ *
+ * @param theta the rotation angle
+ * @see #getRotateInstance(double)
+ * @see #concatenate(AffineTransform)
+ */
+ public void rotate(double theta)
+ {
+ double c = Math.cos(theta);
+ double s = Math.sin(theta);
+ double n00 = m00 * c + m01 * s;
+ double n01 = m00 * -s + m01 * c;
+ double n10 = m10 * c + m11 * s;
+ double n11 = m10 * -s + m11 * c;
+ m00 = n00;
+ m01 = n01;
+ m10 = n10;
+ m11 = n11;
+ updateType();
+ }
+
+ /**
+ * Concatenate a rotation about a point onto this transform. This is
+ * equivalent, but more efficient than
+ * <code>concatenate(AffineTransform.getRotateInstance(theta, x, y))</code>.
+ *
+ * @param theta the rotation angle
+ * @param x the x coordinate of the pivot point
+ * @param y the y coordinate of the pivot point
+ * @see #getRotateInstance(double, double, double)
+ * @see #concatenate(AffineTransform)
+ */
+ public void rotate(double theta, double x, double y)
+ {
+ translate(x, y);
+ rotate(theta);
+ translate(-x, -y);
+ }
+
+ /**
+ * Concatenate a scale onto this transform. This is equivalent, but more
+ * efficient than
+ * <code>concatenate(AffineTransform.getScaleInstance(sx, sy))</code>.
+ *
+ * @param sx the x scaling factor
+ * @param sy the y scaling factor
+ * @see #getScaleInstance(double, double)
+ * @see #concatenate(AffineTransform)
+ */
+ public void scale(double sx, double sy)
+ {
+ m00 *= sx;
+ m01 *= sy;
+ m10 *= sx;
+ m11 *= sy;
+ updateType();
+ }
+
+ /**
+ * Concatenate a shearing onto this transform. This is equivalent, but more
+ * efficient than
+ * <code>concatenate(AffineTransform.getShearInstance(sx, sy))</code>.
+ *
+ * @param shx the x shearing factor
+ * @param shy the y shearing factor
+ * @see #getShearInstance(double, double)
+ * @see #concatenate(AffineTransform)
+ */
+ public void shear(double shx, double shy)
+ {
+ double n00 = m00 + (shy * m01);
+ double n01 = m01 + (shx * m00);
+ double n10 = m10 + (shy * m11);
+ double n11 = m11 + (shx * m10);
+ m00 = n00;
+ m01 = n01;
+ m10 = n10;
+ m11 = n11;
+ updateType();
+ }
+
+ /**
+ * Reset this transform to the identity (no transformation):
+ * <pre>
+ * [ 1 0 0 ]
+ * [ 0 1 0 ]
+ * [ 0 0 1 ]
+ * </pre>
+ */
+ public void setToIdentity()
+ {
+ m00 = m11 = 1;
+ m01 = m02 = m10 = m12 = 0;
+ type = TYPE_IDENTITY;
+ }
+
+ /**
+ * Set this transform to a translation:
+ * <pre>
+ * [ 1 0 tx ]
+ * [ 0 1 ty ]
+ * [ 0 0 1 ]
+ * </pre>
+ *
+ * @param tx the x translation distance
+ * @param ty the y translation distance
+ */
+ public void setToTranslation(double tx, double ty)
+ {
+ m00 = m11 = 1;
+ m01 = m10 = 0;
+ m02 = tx;
+ m12 = ty;
+ type = (tx == 0 && ty == 0) ? TYPE_UNIFORM_SCALE : TYPE_TRANSLATION;
+ }
+
+ /**
+ * Set this transform to a rotation. A positive angle (in radians) rotates
+ * the positive x-axis to the positive y-axis:
+ * <pre>
+ * [ cos(theta) -sin(theta) 0 ]
+ * [ sin(theta) cos(theta) 0 ]
+ * [ 0 0 1 ]
+ * </pre>
+ *
+ * @param theta the rotation angle
+ */
+ public void setToRotation(double theta)
+ {
+ double c = Math.cos(theta);
+ double s = Math.sin(theta);
+ m00 = c;
+ m01 = -s;
+ m02 = 0;
+ m10 = s;
+ m11 = c;
+ m12 = 0;
+ type = (c == 1 ? TYPE_IDENTITY
+ : c == 0 || c == -1 ? TYPE_QUADRANT_ROTATION
+ : TYPE_GENERAL_ROTATION);
+ }
+
+ /**
+ * Set this transform to a rotation about a point. A positive angle (in
+ * radians) rotates the positive x-axis to the positive y-axis. This is the
+ * same as calling:
+ * <pre>
+ * tx.setToTranslation(x, y);
+ * tx.rotate(theta);
+ * tx.translate(-x, -y);
+ * </pre>
+ *
+ * <p>The resulting matrix is:
+ * <pre>
+ * [ cos(theta) -sin(theta) x-x*cos+y*sin ]
+ * [ sin(theta) cos(theta) y-x*sin-y*cos ]
+ * [ 0 0 1 ]
+ * </pre>
+ *
+ * @param theta the rotation angle
+ * @param x the x coordinate of the pivot point
+ * @param y the y coordinate of the pivot point
+ */
+ public void setToRotation(double theta, double x, double y)
+ {
+ double c = Math.cos(theta);
+ double s = Math.sin(theta);
+ m00 = c;
+ m01 = -s;
+ m02 = x - x * c + y * s;
+ m10 = s;
+ m11 = c;
+ m12 = y - x * s - y * c;
+ updateType();
+ }
+
+ /**
+ * Set this transform to a scale:
+ * <pre>
+ * [ sx 0 0 ]
+ * [ 0 sy 0 ]
+ * [ 0 0 1 ]
+ * </pre>
+ *
+ * @param sx the x scaling factor
+ * @param sy the y scaling factor
+ */
+ public void setToScale(double sx, double sy)
+ {
+ m00 = sx;
+ m01 = m02 = m10 = m12 = 0;
+ m11 = sy;
+ type = (sx != sy ? TYPE_GENERAL_SCALE
+ : sx == 1 ? TYPE_IDENTITY : TYPE_UNIFORM_SCALE);
+ }
+
+ /**
+ * Set this transform to a shear (points are shifted in the x direction based
+ * on a factor of their y coordinate, and in the y direction as a factor of
+ * their x coordinate):
+ * <pre>
+ * [ 1 shx 0 ]
+ * [ shy 1 0 ]
+ * [ 0 0 1 ]
+ * </pre>
+ *
+ * @param shx the x shearing factor
+ * @param shy the y shearing factor
+ */
+ public void setToShear(double shx, double shy)
+ {
+ m00 = m11 = 1;
+ m01 = shx;
+ m10 = shy;
+ m02 = m12 = 0;
+ updateType();
+ }
+
+ /**
+ * Set this transform to a copy of the given one.
+ *
+ * @param tx the transform to copy
+ * @throws NullPointerException if tx is null
+ */
+ public void setTransform(AffineTransform tx)
+ {
+ m00 = tx.m00;
+ m01 = tx.m01;
+ m02 = tx.m02;
+ m10 = tx.m10;
+ m11 = tx.m11;
+ m12 = tx.m12;
+ type = tx.type;
+ }
+
+ /**
+ * Set this transform to the given values:
+ * <pre>
+ * [ m00 m01 m02 ]
+ * [ m10 m11 m12 ]
+ * [ 0 0 1 ]
+ * </pre>
+ *
+ * @param m00 the x scaling component
+ * @param m10 the y shearing component
+ * @param m01 the x shearing component
+ * @param m11 the y scaling component
+ * @param m02 the x translation component
+ * @param m12 the y translation component
+ */
+ public void setTransform(double m00, double m10, double m01,
+ double m11, double m02, double m12)
+ {
+ this.m00 = m00;
+ this.m10 = m10;
+ this.m01 = m01;
+ this.m11 = m11;
+ this.m02 = m02;
+ this.m12 = m12;
+ updateType();
+ }
+
+ /**
+ * Set this transform to the result of performing the original version of
+ * this followed by tx. This is commonly used when chaining transformations
+ * from one space to another. In matrix form:
+ * <pre>
+ * [ this ] = [ this ] x [ tx ]
+ * </pre>
+ *
+ * @param tx the transform to concatenate
+ * @throws NullPointerException if tx is null
+ * @see #preConcatenate(AffineTransform)
+ */
+ public void concatenate(AffineTransform tx)
+ {
+ double n00 = m00 * tx.m00 + m01 * tx.m10;
+ double n01 = m00 * tx.m01 + m01 * tx.m11;
+ double n02 = m00 * tx.m02 + m01 * tx.m12 + m02;
+ double n10 = m10 * tx.m00 + m11 * tx.m10;
+ double n11 = m10 * tx.m01 + m11 * tx.m11;
+ double n12 = m10 * tx.m02 + m11 * tx.m12 + m12;
+ m00 = n00;
+ m01 = n01;
+ m02 = n02;
+ m10 = n10;
+ m11 = n11;
+ m12 = n12;
+ updateType();
+ }
+
+ /**
+ * Set this transform to the result of performing tx followed by the
+ * original version of this. This is less common than normal concatenation,
+ * but can still be used to chain transformations from one space to another.
+ * In matrix form:
+ * <pre>
+ * [ this ] = [ tx ] x [ this ]
+ * </pre>
+ *
+ * @param tx the transform to concatenate
+ * @throws NullPointerException if tx is null
+ * @see #concatenate(AffineTransform)
+ */
+ public void preConcatenate(AffineTransform tx)
+ {
+ double n00 = tx.m00 * m00 + tx.m01 * m10;
+ double n01 = tx.m00 * m01 + tx.m01 * m11;
+ double n02 = tx.m00 * m02 + tx.m01 * m12 + tx.m02;
+ double n10 = tx.m10 * m00 + tx.m11 * m10;
+ double n11 = tx.m10 * m01 + tx.m11 * m11;
+ double n12 = tx.m10 * m02 + tx.m11 * m12 + tx.m12;
+ m00 = n00;
+ m01 = n01;
+ m02 = n02;
+ m10 = n10;
+ m11 = n11;
+ m12 = n12;
+ updateType();
+ }
+
+ /**
+ * Returns a transform, which if concatenated to this one, will result in
+ * the identity transform. This is useful for undoing transformations, but
+ * is only possible if the original transform has an inverse (ie. does not
+ * map multiple points to the same line or point). A transform exists only
+ * if getDeterminant() has a non-zero value.
+ *
+ * The inverse is calculated as:
+ *
+ * <pre>
+ *
+ * Let A be the matrix for which we want to find the inverse:
+ *
+ * A = [ m00 m01 m02 ]
+ * [ m10 m11 m12 ]
+ * [ 0 0 1 ]
+ *
+ *
+ * 1
+ * inverse (A) = --- x adjoint(A)
+ * det
+ *
+ *
+ *
+ * = 1 [ m11 -m01 m01*m12-m02*m11 ]
+ * --- x [ -m10 m00 -m00*m12+m10*m02 ]
+ * det [ 0 0 m00*m11-m10*m01 ]
+ *
+ *
+ *
+ * = [ m11/det -m01/det m01*m12-m02*m11/det ]
+ * [ -m10/det m00/det -m00*m12+m10*m02/det ]
+ * [ 0 0 1 ]
+ *
+ *
+ * </pre>
+ *
+ *
+ *
+ * @return a new inverse transform
+ * @throws NoninvertibleTransformException if inversion is not possible
+ * @see #getDeterminant()
+ */
+ public AffineTransform createInverse()
+ throws NoninvertibleTransformException
+ {
+ double det = getDeterminant();
+ if (det == 0)
+ throw new NoninvertibleTransformException("can't invert transform");
+
+ double im00 = m11 / det;
+ double im10 = -m10 / det;
+ double im01 = -m01 / det;
+ double im11 = m00 / det;
+ double im02 = (m01 * m12 - m02 * m11) / det;
+ double im12 = (-m00 * m12 + m10 * m02) / det;
+
+ return new AffineTransform (im00, im10, im01, im11, im02, im12);
+ }
+
+ /**
+ * Perform this transformation on the given source point, and store the
+ * result in the destination (creating it if necessary). It is safe for
+ * src and dst to be the same.
+ *
+ * @param src the source point
+ * @param dst the destination, or null
+ * @return the transformation of src, in dst if it was non-null
+ * @throws NullPointerException if src is null
+ */
+ public Point2D transform(Point2D src, Point2D dst)
+ {
+ if (dst == null)
+ dst = new Point2D.Double();
+ double x = src.getX();
+ double y = src.getY();
+ double nx = m00 * x + m01 * y + m02;
+ double ny = m10 * x + m11 * y + m12;
+ dst.setLocation(nx, ny);
+ return dst;
+ }
+
+ /**
+ * Perform this transformation on an array of points, storing the results
+ * in another (possibly same) array. This will not create a destination
+ * array, but will create points for the null entries of the destination.
+ * The transformation is done sequentially. While having a single source
+ * and destination point be the same is safe, you should be aware that
+ * duplicate references to the same point in the source, and having the
+ * source overlap the destination, may result in your source points changing
+ * from a previous transform before it is their turn to be evaluated.
+ *
+ * @param src the array of source points
+ * @param srcOff the starting offset into src
+ * @param dst the array of destination points (may have null entries)
+ * @param dstOff the starting offset into dst
+ * @param num the number of points to transform
+ * @throws NullPointerException if src or dst is null, or src has null
+ * entries
+ * @throws ArrayIndexOutOfBoundsException if array bounds are exceeded
+ * @throws ArrayStoreException if new points are incompatible with dst
+ */
+ public void transform(Point2D[] src, int srcOff,
+ Point2D[] dst, int dstOff, int num)
+ {
+ while (--num >= 0)
+ dst[dstOff] = transform(src[srcOff++], dst[dstOff++]);
+ }
+
+ /**
+ * Perform this transformation on an array of points, in (x,y) pairs,
+ * storing the results in another (possibly same) array. This will not
+ * create a destination array. All sources are copied before the
+ * transformation, so that no result will overwrite a point that has not yet
+ * been evaluated.
+ *
+ * @param srcPts the array of source points
+ * @param srcOff the starting offset into src
+ * @param dstPts the array of destination points
+ * @param dstOff the starting offset into dst
+ * @param num the number of points to transform
+ * @throws NullPointerException if src or dst is null
+ * @throws ArrayIndexOutOfBoundsException if array bounds are exceeded
+ */
+ public void transform(float[] srcPts, int srcOff,
+ float[] dstPts, int dstOff, int num)
+ {
+ if (srcPts == dstPts && dstOff > srcOff
+ && num > 1 && srcOff + 2 * num > dstOff)
+ {
+ float[] f = new float[2 * num];
+ System.arraycopy(srcPts, srcOff, f, 0, 2 * num);
+ srcPts = f;
+ }
+ while (--num >= 0)
+ {
+ float x = srcPts[srcOff++];
+ float y = srcPts[srcOff++];
+ dstPts[dstOff++] = (float) (m00 * x + m01 * y + m02);
+ dstPts[dstOff++] = (float) (m10 * x + m11 * y + m12);
+ }
+ }
+
+ /**
+ * Perform this transformation on an array of points, in (x,y) pairs,
+ * storing the results in another (possibly same) array. This will not
+ * create a destination array. All sources are copied before the
+ * transformation, so that no result will overwrite a point that has not yet
+ * been evaluated.
+ *
+ * @param srcPts the array of source points
+ * @param srcOff the starting offset into src
+ * @param dstPts the array of destination points
+ * @param dstOff the starting offset into dst
+ * @param num the number of points to transform
+ * @throws NullPointerException if src or dst is null
+ * @throws ArrayIndexOutOfBoundsException if array bounds are exceeded
+ */
+ public void transform(double[] srcPts, int srcOff,
+ double[] dstPts, int dstOff, int num)
+ {
+ if (srcPts == dstPts && dstOff > srcOff
+ && num > 1 && srcOff + 2 * num > dstOff)
+ {
+ double[] d = new double[2 * num];
+ System.arraycopy(srcPts, srcOff, d, 0, 2 * num);
+ srcPts = d;
+ }
+ while (--num >= 0)
+ {
+ double x = srcPts[srcOff++];
+ double y = srcPts[srcOff++];
+ dstPts[dstOff++] = m00 * x + m01 * y + m02;
+ dstPts[dstOff++] = m10 * x + m11 * y + m12;
+ }
+ }
+
+ /**
+ * Perform this transformation on an array of points, in (x,y) pairs,
+ * storing the results in another array. This will not create a destination
+ * array.
+ *
+ * @param srcPts the array of source points
+ * @param srcOff the starting offset into src
+ * @param dstPts the array of destination points
+ * @param dstOff the starting offset into dst
+ * @param num the number of points to transform
+ * @throws NullPointerException if src or dst is null
+ * @throws ArrayIndexOutOfBoundsException if array bounds are exceeded
+ */
+ public void transform(float[] srcPts, int srcOff,
+ double[] dstPts, int dstOff, int num)
+ {
+ while (--num >= 0)
+ {
+ float x = srcPts[srcOff++];
+ float y = srcPts[srcOff++];
+ dstPts[dstOff++] = m00 * x + m01 * y + m02;
+ dstPts[dstOff++] = m10 * x + m11 * y + m12;
+ }
+ }
+
+ /**
+ * Perform this transformation on an array of points, in (x,y) pairs,
+ * storing the results in another array. This will not create a destination
+ * array.
+ *
+ * @param srcPts the array of source points
+ * @param srcOff the starting offset into src
+ * @param dstPts the array of destination points
+ * @param dstOff the starting offset into dst
+ * @param num the number of points to transform
+ * @throws NullPointerException if src or dst is null
+ * @throws ArrayIndexOutOfBoundsException if array bounds are exceeded
+ */
+ public void transform(double[] srcPts, int srcOff,
+ float[] dstPts, int dstOff, int num)
+ {
+ while (--num >= 0)
+ {
+ double x = srcPts[srcOff++];
+ double y = srcPts[srcOff++];
+ dstPts[dstOff++] = (float) (m00 * x + m01 * y + m02);
+ dstPts[dstOff++] = (float) (m10 * x + m11 * y + m12);
+ }
+ }
+
+ /**
+ * Perform the inverse of this transformation on the given source point,
+ * and store the result in the destination (creating it if necessary). It
+ * is safe for src and dst to be the same.
+ *
+ * @param src the source point
+ * @param dst the destination, or null
+ * @return the inverse transformation of src, in dst if it was non-null
+ * @throws NullPointerException if src is null
+ * @throws NoninvertibleTransformException if the inverse does not exist
+ * @see #getDeterminant()
+ */
+ public Point2D inverseTransform(Point2D src, Point2D dst)
+ throws NoninvertibleTransformException
+ {
+ return createInverse().transform(src, dst);
+ }
+
+ /**
+ * Perform the inverse of this transformation on an array of points, in
+ * (x,y) pairs, storing the results in another (possibly same) array. This
+ * will not create a destination array. All sources are copied before the
+ * transformation, so that no result will overwrite a point that has not yet
+ * been evaluated.
+ *
+ * @param srcPts the array of source points
+ * @param srcOff the starting offset into src
+ * @param dstPts the array of destination points
+ * @param dstOff the starting offset into dst
+ * @param num the number of points to transform
+ * @throws NullPointerException if src or dst is null
+ * @throws ArrayIndexOutOfBoundsException if array bounds are exceeded
+ * @throws NoninvertibleTransformException if the inverse does not exist
+ * @see #getDeterminant()
+ */
+ public void inverseTransform(double[] srcPts, int srcOff,
+ double[] dstPts, int dstOff, int num)
+ throws NoninvertibleTransformException
+ {
+ createInverse().transform(srcPts, srcOff, dstPts, dstOff, num);
+ }
+
+ /**
+ * Perform this transformation, less any translation, on the given source
+ * point, and store the result in the destination (creating it if
+ * necessary). It is safe for src and dst to be the same. The reduced
+ * transform is equivalent to:
+ * <pre>
+ * [ x' ] = [ m00 m01 ] [ x ] = [ m00 * x + m01 * y ]
+ * [ y' ] [ m10 m11 ] [ y ] = [ m10 * x + m11 * y ]
+ * </pre>
+ *
+ * @param src the source point
+ * @param dst the destination, or null
+ * @return the delta transformation of src, in dst if it was non-null
+ * @throws NullPointerException if src is null
+ */
+ public Point2D deltaTransform(Point2D src, Point2D dst)
+ {
+ if (dst == null)
+ dst = new Point2D.Double();
+ double x = src.getX();
+ double y = src.getY();
+ double nx = m00 * x + m01 * y;
+ double ny = m10 * x + m11 * y;
+ dst.setLocation(nx, ny);
+ return dst;
+ }
+
+ /**
+ * Perform this transformation, less any translation, on an array of points,
+ * in (x,y) pairs, storing the results in another (possibly same) array.
+ * This will not create a destination array. All sources are copied before
+ * the transformation, so that no result will overwrite a point that has
+ * not yet been evaluated. The reduced transform is equivalent to:
+ * <pre>
+ * [ x' ] = [ m00 m01 ] [ x ] = [ m00 * x + m01 * y ]
+ * [ y' ] [ m10 m11 ] [ y ] = [ m10 * x + m11 * y ]
+ * </pre>
+ *
+ * @param srcPts the array of source points
+ * @param srcOff the starting offset into src
+ * @param dstPts the array of destination points
+ * @param dstOff the starting offset into dst
+ * @param num the number of points to transform
+ * @throws NullPointerException if src or dst is null
+ * @throws ArrayIndexOutOfBoundsException if array bounds are exceeded
+ */
+ public void deltaTransform(double[] srcPts, int srcOff,
+ double[] dstPts, int dstOff,
+ int num)
+ {
+ if (srcPts == dstPts && dstOff > srcOff
+ && num > 1 && srcOff + 2 * num > dstOff)
+ {
+ double[] d = new double[2 * num];
+ System.arraycopy(srcPts, srcOff, d, 0, 2 * num);
+ srcPts = d;
+ }
+ while (--num >= 0)
+ {
+ double x = srcPts[srcOff++];
+ double y = srcPts[srcOff++];
+ dstPts[dstOff++] = m00 * x + m01 * y;
+ dstPts[dstOff++] = m10 * x + m11 * y;
+ }
+ }
+
+ /**
+ * Return a new Shape, based on the given one, where the path of the shape
+ * has been transformed by this transform. Notice that this uses GeneralPath,
+ * which only stores points in float precision.
+ *
+ * @param src the shape source to transform
+ * @return the shape, transformed by this, <code>null</code> if src is
+ * <code>null</code>.
+ * @see GeneralPath#transform(AffineTransform)
+ */
+ public Shape createTransformedShape(Shape src)
+ {
+ if(src == null)
+ return null;
+ GeneralPath p = new GeneralPath(src);
+ p.transform(this);
+ return p;
+ }
+
+ /**
+ * Returns a string representation of the transform, in the format:
+ * <code>"AffineTransform[[" + m00 + ", " + m01 + ", " + m02 + "], ["
+ * + m10 + ", " + m11 + ", " + m12 + "]]"</code>.
+ *
+ * @return the string representation
+ */
+ public String toString()
+ {
+ return "AffineTransform[[" + m00 + ", " + m01 + ", " + m02 + "], ["
+ + m10 + ", " + m11 + ", " + m12 + "]]";
+ }
+
+ /**
+ * Tests if this transformation is the identity:
+ * <pre>
+ * [ 1 0 0 ]
+ * [ 0 1 0 ]
+ * [ 0 0 1 ]
+ * </pre>
+ *
+ * @return true if this is the identity transform
+ */
+ public boolean isIdentity()
+ {
+ // Rather than rely on type, check explicitly.
+ return (m00 == 1 && m01 == 0 && m02 == 0
+ && m10 == 0 && m11 == 1 && m12 == 0);
+ }
+
+ /**
+ * Create a new transform of the same run-time type, with the same
+ * transforming properties as this one.
+ *
+ * @return the clone
+ */
+ public Object clone()
+ {
+ try
+ {
+ return super.clone();
+ }
+ catch (CloneNotSupportedException e)
+ {
+ throw (Error) new InternalError().initCause(e); // Impossible
+ }
+ }
+
+ /**
+ * Return the hashcode for this transformation. The formula is not
+ * documented, but appears to be the same as:
+ * <pre>
+ * long l = Double.doubleToLongBits(getScaleX());
+ * l = l * 31 + Double.doubleToLongBits(getShearX());
+ * l = l * 31 + Double.doubleToLongBits(getTranslateX());
+ * l = l * 31 + Double.doubleToLongBits(getShearY());
+ * l = l * 31 + Double.doubleToLongBits(getScaleY());
+ * l = l * 31 + Double.doubleToLongBits(getTranslateY());
+ * return (int) ((l >> 32) ^ l);
+ * </pre>
+ *
+ * @return the hashcode
+ */
+ public int hashCode()
+ {
+ long l = Double.doubleToLongBits(m00);
+ l = l * 31 + Double.doubleToLongBits(m01);
+ l = l * 31 + Double.doubleToLongBits(m02);
+ l = l * 31 + Double.doubleToLongBits(m10);
+ l = l * 31 + Double.doubleToLongBits(m11);
+ l = l * 31 + Double.doubleToLongBits(m12);
+ return (int) ((l >> 32) ^ l);
+ }
+
+ /**
+ * Compares two transforms for equality. This returns true if they have the
+ * same matrix values.
+ *
+ * @param obj the transform to compare
+ * @return true if it is equal
+ */
+ public boolean equals(Object obj)
+ {
+ if (! (obj instanceof AffineTransform))
+ return false;
+ AffineTransform t = (AffineTransform) obj;
+ return (m00 == t.m00 && m01 == t.m01 && m02 == t.m02
+ && m10 == t.m10 && m11 == t.m11 && m12 == t.m12);
+ }
+
+ /**
+ * Helper to decode the type from the matrix. This is not guaranteed
+ * to find the optimal type, but at least it will be valid.
+ */
+ private void updateType()
+ {
+ double det = getDeterminant();
+ if (det == 0)
+ {
+ type = TYPE_GENERAL_TRANSFORM;
+ return;
+ }
+ // Scale (includes rotation by PI) or translation.
+ if (m01 == 0 && m10 == 0)
+ {
+ if (m00 == m11)
+ type = m00 == 1 ? TYPE_IDENTITY : TYPE_UNIFORM_SCALE;
+ else
+ type = TYPE_GENERAL_SCALE;
+ if (m02 != 0 || m12 != 0)
+ type |= TYPE_TRANSLATION;
+ }
+ // Rotation.
+ else if (m00 == m11 && m01 == -m10)
+ {
+ type = m00 == 0 ? TYPE_QUADRANT_ROTATION : TYPE_GENERAL_ROTATION;
+ if (det != 1)
+ type |= TYPE_UNIFORM_SCALE;
+ if (m02 != 0 || m12 != 0)
+ type |= TYPE_TRANSLATION;
+ }
+ else
+ type = TYPE_GENERAL_TRANSFORM;
+ }
+
+ /**
+ * Reads a transform from an object stream.
+ *
+ * @param s the stream to read from
+ * @throws ClassNotFoundException if there is a problem deserializing
+ * @throws IOException if there is a problem deserializing
+ */
+ private void readObject(ObjectInputStream s)
+ throws ClassNotFoundException, IOException
+ {
+ s.defaultReadObject();
+ updateType();
+ }
+} // class AffineTransform
diff --git a/libjava/classpath/java/awt/geom/Arc2D.java b/libjava/classpath/java/awt/geom/Arc2D.java
new file mode 100644
index 000000000..928c5cfc8
--- /dev/null
+++ b/libjava/classpath/java/awt/geom/Arc2D.java
@@ -0,0 +1,1413 @@
+/* Arc2D.java -- represents an arc in 2-D space
+ Copyright (C) 2002, 2003, 2004 Free Software Foundation
+
+This file is part of GNU Classpath.
+
+GNU Classpath is free software; you can redistribute it and/or modify
+it under the terms of the GNU General Public License as published by
+the Free Software Foundation; either version 2, or (at your option)
+any later version.
+
+GNU Classpath is distributed in the hope that it will be useful, but
+WITHOUT ANY WARRANTY; without even the implied warranty of
+MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
+General Public License for more details.
+
+You should have received a copy of the GNU General Public License
+along with GNU Classpath; see the file COPYING. If not, write to the
+Free Software Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA
+02110-1301 USA.
+
+Linking this library statically or dynamically with other modules is
+making a combined work based on this library. Thus, the terms and
+conditions of the GNU General Public License cover the whole
+combination.
+
+As a special exception, the copyright holders of this library give you
+permission to link this library with independent modules to produce an
+executable, regardless of the license terms of these independent
+modules, and to copy and distribute the resulting executable under
+terms of your choice, provided that you also meet, for each linked
+independent module, the terms and conditions of the license of that
+module. An independent module is a module which is not derived from
+or based on this library. If you modify this library, you may extend
+this exception to your version of the library, but you are not
+obligated to do so. If you do not wish to do so, delete this
+exception statement from your version. */
+
+package java.awt.geom;
+
+import java.util.NoSuchElementException;
+
+
+/**
+ * This class represents all arcs (segments of an ellipse in 2-D space). The
+ * arcs are defined by starting angle and extent (arc length) in degrees, as
+ * opposed to radians (like the rest of Java), and can be open, chorded, or
+ * wedge shaped. The angles are skewed according to the ellipse, so that 45
+ * degrees always points to the upper right corner (positive x, negative y)
+ * of the bounding rectangle. A positive extent draws a counterclockwise arc,
+ * and while the angle can be any value, the path iterator only traverses the
+ * first 360 degrees. Storage is up to the subclasses.
+ *
+ * @author Eric Blake (ebb9@email.byu.edu)
+ * @author Sven de Marothy (sven@physto.se)
+ * @since 1.2
+ */
+public abstract class Arc2D extends RectangularShape
+{
+ /**
+ * An open arc, with no segment connecting the endpoints. This type of
+ * arc still contains the same points as a chorded version.
+ */
+ public static final int OPEN = 0;
+
+ /**
+ * A closed arc with a single segment connecting the endpoints (a chord).
+ */
+ public static final int CHORD = 1;
+
+ /**
+ * A closed arc with two segments, one from each endpoint, meeting at the
+ * center of the ellipse.
+ */
+ public static final int PIE = 2;
+
+ /** The closure type of this arc. This is package-private to avoid an
+ * accessor method. */
+ int type;
+
+ /**
+ * Create a new arc, with the specified closure type.
+ *
+ * @param type one of {@link #OPEN}, {@link #CHORD}, or {@link #PIE}.
+ * @throws IllegalArgumentException if type is invalid
+ */
+ protected Arc2D(int type)
+ {
+ if (type < OPEN || type > PIE)
+ throw new IllegalArgumentException();
+ this.type = type;
+ }
+
+ /**
+ * Get the starting angle of the arc in degrees.
+ *
+ * @return the starting angle
+ * @see #setAngleStart(double)
+ */
+ public abstract double getAngleStart();
+
+ /**
+ * Get the extent angle of the arc in degrees.
+ *
+ * @return the extent angle
+ * @see #setAngleExtent(double)
+ */
+ public abstract double getAngleExtent();
+
+ /**
+ * Return the closure type of the arc.
+ *
+ * @return the closure type
+ * @see #OPEN
+ * @see #CHORD
+ * @see #PIE
+ * @see #setArcType(int)
+ */
+ public int getArcType()
+ {
+ return type;
+ }
+
+ /**
+ * Returns the starting point of the arc.
+ *
+ * @return the start point
+ */
+ public Point2D getStartPoint()
+ {
+ double angle = Math.toRadians(getAngleStart());
+ double rx = getWidth() / 2;
+ double ry = getHeight() / 2;
+ double x = getX() + rx + rx * Math.cos(angle);
+ double y = getY() + ry - ry * Math.sin(angle);
+ return new Point2D.Double(x, y);
+ }
+
+ /**
+ * Returns the ending point of the arc.
+ *
+ * @return the end point
+ */
+ public Point2D getEndPoint()
+ {
+ double angle = Math.toRadians(getAngleStart() + getAngleExtent());
+ double rx = getWidth() / 2;
+ double ry = getHeight() / 2;
+ double x = getX() + rx + rx * Math.cos(angle);
+ double y = getY() + ry - ry * Math.sin(angle);
+ return new Point2D.Double(x, y);
+ }
+
+ /**
+ * Set the parameters of the arc. The angles are in degrees, and a positive
+ * extent sweeps counterclockwise (from the positive x-axis to the negative
+ * y-axis).
+ *
+ * @param x the new x coordinate of the upper left of the bounding box
+ * @param y the new y coordinate of the upper left of the bounding box
+ * @param w the new width of the bounding box
+ * @param h the new height of the bounding box
+ * @param start the start angle, in degrees
+ * @param extent the arc extent, in degrees
+ * @param type one of {@link #OPEN}, {@link #CHORD}, or {@link #PIE}
+ * @throws IllegalArgumentException if type is invalid
+ */
+ public abstract void setArc(double x, double y, double w, double h,
+ double start, double extent, int type);
+
+ /**
+ * Set the parameters of the arc. The angles are in degrees, and a positive
+ * extent sweeps counterclockwise (from the positive x-axis to the negative
+ * y-axis).
+ *
+ * @param p the upper left point of the bounding box
+ * @param d the dimensions of the bounding box
+ * @param start the start angle, in degrees
+ * @param extent the arc extent, in degrees
+ * @param type one of {@link #OPEN}, {@link #CHORD}, or {@link #PIE}
+ * @throws IllegalArgumentException if type is invalid
+ * @throws NullPointerException if p or d is null
+ */
+ public void setArc(Point2D p, Dimension2D d, double start, double extent,
+ int type)
+ {
+ setArc(p.getX(), p.getY(), d.getWidth(), d.getHeight(), start, extent, type);
+ }
+
+ /**
+ * Set the parameters of the arc. The angles are in degrees, and a positive
+ * extent sweeps counterclockwise (from the positive x-axis to the negative
+ * y-axis).
+ *
+ * @param r the new bounding box
+ * @param start the start angle, in degrees
+ * @param extent the arc extent, in degrees
+ * @param type one of {@link #OPEN}, {@link #CHORD}, or {@link #PIE}
+ * @throws IllegalArgumentException if type is invalid
+ * @throws NullPointerException if r is null
+ */
+ public void setArc(Rectangle2D r, double start, double extent, int type)
+ {
+ setArc(r.getX(), r.getY(), r.getWidth(), r.getHeight(), start, extent, type);
+ }
+
+ /**
+ * Set the parameters of the arc from the given one.
+ *
+ * @param a the arc to copy
+ * @throws NullPointerException if a is null
+ */
+ public void setArc(Arc2D a)
+ {
+ setArc(a.getX(), a.getY(), a.getWidth(), a.getHeight(), a.getAngleStart(),
+ a.getAngleExtent(), a.getArcType());
+ }
+
+ /**
+ * Set the parameters of the arc. The angles are in degrees, and a positive
+ * extent sweeps counterclockwise (from the positive x-axis to the negative
+ * y-axis). This controls the center point and radius, so the arc will be
+ * circular.
+ *
+ * @param x the x coordinate of the center of the circle
+ * @param y the y coordinate of the center of the circle
+ * @param r the radius of the circle
+ * @param start the start angle, in degrees
+ * @param extent the arc extent, in degrees
+ * @param type one of {@link #OPEN}, {@link #CHORD}, or {@link #PIE}
+ * @throws IllegalArgumentException if type is invalid
+ */
+ public void setArcByCenter(double x, double y, double r, double start,
+ double extent, int type)
+ {
+ setArc(x - r, y - r, r + r, r + r, start, extent, type);
+ }
+
+ /**
+ * Sets the parameters of the arc by finding the tangents of two lines, and
+ * using the specified radius. The arc will be circular, will begin on the
+ * tangent point of the line extending from p1 to p2, and will end on the
+ * tangent point of the line extending from p2 to p3.
+ *
+ * XXX What happens if the points are colinear, or the radius negative?
+ *
+ * @param p1 the first point
+ * @param p2 the tangent line intersection point
+ * @param p3 the third point
+ * @param r the radius of the arc
+ * @throws NullPointerException if any point is null
+ */
+ public void setArcByTangent(Point2D p1, Point2D p2, Point2D p3, double r)
+ {
+ if ((p2.getX() - p1.getX()) * (p3.getY() - p1.getY())
+ - (p3.getX() - p1.getX()) * (p2.getY() - p1.getY()) > 0)
+ {
+ Point2D p = p3;
+ p3 = p1;
+ p1 = p;
+ }
+
+ // normalized tangent vectors
+ double dx1 = (p1.getX() - p2.getX()) / p1.distance(p2);
+ double dy1 = (p1.getY() - p2.getY()) / p1.distance(p2);
+ double dx2 = (p2.getX() - p3.getX()) / p3.distance(p2);
+ double dy2 = (p2.getY() - p3.getY()) / p3.distance(p2);
+ double theta1 = Math.atan2(dx1, dy1);
+ double theta2 = Math.atan2(dx2, dy2);
+
+ double dx = r * Math.cos(theta2) - r * Math.cos(theta1);
+ double dy = -r * Math.sin(theta2) + r * Math.sin(theta1);
+
+ if (theta1 < 0)
+ theta1 += 2 * Math.PI;
+ if (theta2 < 0)
+ theta2 += 2 * Math.PI;
+ if (theta2 < theta1)
+ theta2 += 2 * Math.PI;
+
+ // Vectors of the lines, not normalized, note we change
+ // the direction of line 2.
+ dx1 = p1.getX() - p2.getX();
+ dy1 = p1.getY() - p2.getY();
+ dx2 = p3.getX() - p2.getX();
+ dy2 = p3.getY() - p2.getY();
+
+ // Calculate the tangent point to the second line
+ double t2 = -(dx1 * dy - dy1 * dx) / (dx2 * dy1 - dx1 * dy2);
+ double x2 = t2 * (p3.getX() - p2.getX()) + p2.getX();
+ double y2 = t2 * (p3.getY() - p2.getY()) + p2.getY();
+
+ // calculate the center point
+ double x = x2 - r * Math.cos(theta2);
+ double y = y2 + r * Math.sin(theta2);
+
+ setArc(x - r, y - r, 2 * r, 2 * r, Math.toDegrees(theta1),
+ Math.toDegrees(theta2 - theta1), getArcType());
+ }
+
+ /**
+ * Set the start, in degrees.
+ *
+ * @param start the new start angle
+ * @see #getAngleStart()
+ */
+ public abstract void setAngleStart(double start);
+
+ /**
+ * Set the extent, in degrees.
+ *
+ * @param extent the new extent angle
+ * @see #getAngleExtent()
+ */
+ public abstract void setAngleExtent(double extent);
+
+ /**
+ * Sets the starting angle to the angle of the given point relative to
+ * the center of the arc. The extent remains constant; in other words,
+ * this rotates the arc.
+ *
+ * @param p the new start point
+ * @throws NullPointerException if p is null
+ * @see #getStartPoint()
+ * @see #getAngleStart()
+ */
+ public void setAngleStart(Point2D p)
+ {
+ // Normalize.
+ double x = p.getX() - (getX() + getWidth() / 2);
+ double y = p.getY() - (getY() + getHeight() / 2);
+ setAngleStart(Math.toDegrees(Math.atan2(-y, x)));
+ }
+
+ /**
+ * Sets the starting and extent angles to those of the given points
+ * relative to the center of the arc. The arc will be non-empty, and will
+ * extend counterclockwise.
+ *
+ * @param x1 the first x coordinate
+ * @param y1 the first y coordinate
+ * @param x2 the second x coordinate
+ * @param y2 the second y coordinate
+ * @see #setAngleStart(Point2D)
+ */
+ public void setAngles(double x1, double y1, double x2, double y2)
+ {
+ // Normalize the points.
+ double mx = getX();
+ double my = getY();
+ double mw = getWidth();
+ double mh = getHeight();
+ x1 = x1 - (mx + mw / 2);
+ y1 = y1 - (my + mh / 2);
+ x2 = x2 - (mx + mw / 2);
+ y2 = y2 - (my + mh / 2);
+ double start = Math.toDegrees(Math.atan2(-y1, x1));
+ double extent = Math.toDegrees(Math.atan2(-y2, x2)) - start;
+ if (extent < 0)
+ extent += 360;
+ setAngleStart(start);
+ setAngleExtent(extent);
+ }
+
+ /**
+ * Sets the starting and extent angles to those of the given points
+ * relative to the center of the arc. The arc will be non-empty, and will
+ * extend counterclockwise.
+ *
+ * @param p1 the first point
+ * @param p2 the second point
+ * @throws NullPointerException if either point is null
+ * @see #setAngleStart(Point2D)
+ */
+ public void setAngles(Point2D p1, Point2D p2)
+ {
+ setAngles(p1.getX(), p1.getY(), p2.getX(), p2.getY());
+ }
+
+ /**
+ * Set the closure type of this arc.
+ *
+ * @param type one of {@link #OPEN}, {@link #CHORD}, or {@link #PIE}
+ * @throws IllegalArgumentException if type is invalid
+ * @see #getArcType()
+ */
+ public void setArcType(int type)
+ {
+ if (type < OPEN || type > PIE)
+ throw new IllegalArgumentException();
+ this.type = type;
+ }
+
+ /**
+ * Sets the location and bounds of the ellipse of which this arc is a part.
+ *
+ * @param x the new x coordinate
+ * @param y the new y coordinate
+ * @param w the new width
+ * @param h the new height
+ * @see #getFrame()
+ */
+ public void setFrame(double x, double y, double w, double h)
+ {
+ setArc(x, y, w, h, getAngleStart(), getAngleExtent(), type);
+ }
+
+ /**
+ * Gets the bounds of the arc. This is much tighter than
+ * <code>getBounds</code>, as it takes into consideration the start and
+ * end angles, and the center point of a pie wedge, rather than just the
+ * overall ellipse.
+ *
+ * @return the bounds of the arc
+ * @see #getBounds()
+ */
+ public Rectangle2D getBounds2D()
+ {
+ double extent = getAngleExtent();
+ if (Math.abs(extent) >= 360)
+ return makeBounds(getX(), getY(), getWidth(), getHeight());
+
+ // Find the minimal bounding box. This determined by its extrema,
+ // which are the center, the endpoints of the arc, and any local
+ // maximum contained by the arc.
+ double rX = getWidth() / 2;
+ double rY = getHeight() / 2;
+ double centerX = getX() + rX;
+ double centerY = getY() + rY;
+
+ Point2D p1 = getStartPoint();
+ Rectangle2D result = makeBounds(p1.getX(), p1.getY(), 0, 0);
+ result.add(getEndPoint());
+
+ if (type == PIE)
+ result.add(centerX, centerY);
+ if (containsAngle(0))
+ result.add(centerX + rX, centerY);
+ if (containsAngle(90))
+ result.add(centerX, centerY - rY);
+ if (containsAngle(180))
+ result.add(centerX - rX, centerY);
+ if (containsAngle(270))
+ result.add(centerX, centerY + rY);
+
+ return result;
+ }
+
+ /**
+ * Construct a bounding box in a precision appropriate for the subclass.
+ *
+ * @param x the x coordinate
+ * @param y the y coordinate
+ * @param w the width
+ * @param h the height
+ * @return the rectangle for use in getBounds2D
+ */
+ protected abstract Rectangle2D makeBounds(double x, double y, double w,
+ double h);
+
+ /**
+ * Tests if the given angle, in degrees, is included in the arc.
+ * All angles are normalized to be between 0 and 360 degrees.
+ *
+ * @param a the angle to test
+ * @return true if it is contained
+ */
+ public boolean containsAngle(double a)
+ {
+ double start = getAngleStart();
+ double extent = getAngleExtent();
+ double end = start + extent;
+
+ if (extent == 0)
+ return false;
+
+ if (extent >= 360 || extent <= -360)
+ return true;
+
+ if (extent < 0)
+ {
+ end = start;
+ start += extent;
+ }
+
+ start %= 360;
+ while (start < 0)
+ start += 360;
+
+ end %= 360;
+ while (end < start)
+ end += 360;
+
+ a %= 360;
+ while (a < start)
+ a += 360;
+
+ return a >= start && a < end; // starting angle included, ending angle not
+ }
+
+ /**
+ * Determines if the arc contains the given point. If the bounding box
+ * is empty, then this will return false.
+ *
+ * The area considered 'inside' an arc of type OPEN is the same as the
+ * area inside an equivalent filled CHORD-type arc. The area considered
+ * 'inside' a CHORD-type arc is the same as the filled area.
+ *
+ * @param x the x coordinate to test
+ * @param y the y coordinate to test
+ * @return true if the point is inside the arc
+ */
+ public boolean contains(double x, double y)
+ {
+ double w = getWidth();
+ double h = getHeight();
+ double extent = getAngleExtent();
+ if (w <= 0 || h <= 0 || extent == 0)
+ return false;
+
+ double mx = getX() + w / 2;
+ double my = getY() + h / 2;
+ double dx = (x - mx) * 2 / w;
+ double dy = (y - my) * 2 / h;
+ if ((dx * dx + dy * dy) >= 1.0)
+ return false;
+
+ double angle = Math.toDegrees(Math.atan2(-dy, dx));
+ if (getArcType() == PIE)
+ return containsAngle(angle);
+
+ double a1 = Math.toRadians(getAngleStart());
+ double a2 = Math.toRadians(getAngleStart() + extent);
+ double x1 = mx + getWidth() * Math.cos(a1) / 2;
+ double y1 = my - getHeight() * Math.sin(a1) / 2;
+ double x2 = mx + getWidth() * Math.cos(a2) / 2;
+ double y2 = my - getHeight() * Math.sin(a2) / 2;
+ double sgn = ((x2 - x1) * (my - y1) - (mx - x1) * (y2 - y1)) * ((x2 - x1) * (y
+ - y1) - (x - x1) * (y2 - y1));
+
+ if (Math.abs(extent) > 180)
+ {
+ if (containsAngle(angle))
+ return true;
+ return sgn > 0;
+ }
+ else
+ {
+ if (! containsAngle(angle))
+ return false;
+ return sgn < 0;
+ }
+ }
+
+ /**
+ * Tests if a given rectangle intersects the area of the arc.
+ *
+ * For a definition of the 'inside' area, see the contains() method.
+ * @see #contains(double, double)
+ *
+ * @param x the x coordinate of the rectangle
+ * @param y the y coordinate of the rectangle
+ * @param w the width of the rectangle
+ * @param h the height of the rectangle
+ * @return true if the two shapes share common points
+ */
+ public boolean intersects(double x, double y, double w, double h)
+ {
+ double extent = getAngleExtent();
+ if (extent == 0)
+ return false;
+
+ if (contains(x, y) || contains(x, y + h) || contains(x + w, y)
+ || contains(x + w, y + h))
+ return true;
+
+ Rectangle2D rect = new Rectangle2D.Double(x, y, w, h);
+
+ double a = getWidth() / 2.0;
+ double b = getHeight() / 2.0;
+
+ double mx = getX() + a;
+ double my = getY() + b;
+ double x1 = mx + a * Math.cos(Math.toRadians(getAngleStart()));
+ double y1 = my - b * Math.sin(Math.toRadians(getAngleStart()));
+ double x2 = mx + a * Math.cos(Math.toRadians(getAngleStart() + extent));
+ double y2 = my - b * Math.sin(Math.toRadians(getAngleStart() + extent));
+
+ if (getArcType() != CHORD)
+ {
+ // check intersections against the pie radii
+ if (rect.intersectsLine(mx, my, x1, y1))
+ return true;
+ if (rect.intersectsLine(mx, my, x2, y2))
+ return true;
+ }
+ else// check the chord
+ if (rect.intersectsLine(x1, y1, x2, y2))
+ return true;
+
+ // Check the Arc segment against the four edges
+ double dx;
+
+ // Check the Arc segment against the four edges
+ double dy;
+ dy = y - my;
+ dx = a * Math.sqrt(1 - ((dy * dy) / (b * b)));
+ if (! java.lang.Double.isNaN(dx))
+ {
+ if (mx + dx >= x && mx + dx <= x + w
+ && containsAngle(Math.toDegrees(Math.atan2(-dy, dx))))
+ return true;
+ if (mx - dx >= x && mx - dx <= x + w
+ && containsAngle(Math.toDegrees(Math.atan2(-dy, -dx))))
+ return true;
+ }
+ dy = (y + h) - my;
+ dx = a * Math.sqrt(1 - ((dy * dy) / (b * b)));
+ if (! java.lang.Double.isNaN(dx))
+ {
+ if (mx + dx >= x && mx + dx <= x + w
+ && containsAngle(Math.toDegrees(Math.atan2(-dy, dx))))
+ return true;
+ if (mx - dx >= x && mx - dx <= x + w
+ && containsAngle(Math.toDegrees(Math.atan2(-dy, -dx))))
+ return true;
+ }
+ dx = x - mx;
+ dy = b * Math.sqrt(1 - ((dx * dx) / (a * a)));
+ if (! java.lang.Double.isNaN(dy))
+ {
+ if (my + dy >= y && my + dy <= y + h
+ && containsAngle(Math.toDegrees(Math.atan2(-dy, dx))))
+ return true;
+ if (my - dy >= y && my - dy <= y + h
+ && containsAngle(Math.toDegrees(Math.atan2(dy, dx))))
+ return true;
+ }
+
+ dx = (x + w) - mx;
+ dy = b * Math.sqrt(1 - ((dx * dx) / (a * a)));
+ if (! java.lang.Double.isNaN(dy))
+ {
+ if (my + dy >= y && my + dy <= y + h
+ && containsAngle(Math.toDegrees(Math.atan2(-dy, dx))))
+ return true;
+ if (my - dy >= y && my - dy <= y + h
+ && containsAngle(Math.toDegrees(Math.atan2(dy, dx))))
+ return true;
+ }
+
+ // Check whether the arc is contained within the box
+ if (rect.contains(mx, my))
+ return true;
+
+ return false;
+ }
+
+ /**
+ * Tests if a given rectangle is contained in the area of the arc.
+ *
+ * @param x the x coordinate of the rectangle
+ * @param y the y coordinate of the rectangle
+ * @param w the width of the rectangle
+ * @param h the height of the rectangle
+ * @return true if the arc contains the rectangle
+ */
+ public boolean contains(double x, double y, double w, double h)
+ {
+ double extent = getAngleExtent();
+ if (extent == 0)
+ return false;
+
+ if (! (contains(x, y) && contains(x, y + h) && contains(x + w, y)
+ && contains(x + w, y + h)))
+ return false;
+
+ Rectangle2D rect = new Rectangle2D.Double(x, y, w, h);
+
+ double a = getWidth() / 2.0;
+ double b = getHeight() / 2.0;
+
+ double mx = getX() + a;
+ double my = getY() + b;
+ double x1 = mx + a * Math.cos(Math.toRadians(getAngleStart()));
+ double y1 = my - b * Math.sin(Math.toRadians(getAngleStart()));
+ double x2 = mx + a * Math.cos(Math.toRadians(getAngleStart() + extent));
+ double y2 = my - b * Math.sin(Math.toRadians(getAngleStart() + extent));
+ if (getArcType() != CHORD)
+ {
+ // check intersections against the pie radii
+ if (rect.intersectsLine(mx, my, x1, y1))
+ return false;
+
+ if (rect.intersectsLine(mx, my, x2, y2))
+ return false;
+ }
+ else if (rect.intersectsLine(x1, y1, x2, y2))
+ return false;
+ return true;
+ }
+
+ /**
+ * Tests if a given rectangle is contained in the area of the arc.
+ *
+ * @param r the rectangle
+ * @return true if the arc contains the rectangle
+ */
+ public boolean contains(Rectangle2D r)
+ {
+ return contains(r.getX(), r.getY(), r.getWidth(), r.getHeight());
+ }
+
+ /**
+ * Returns an iterator over this arc, with an optional transformation.
+ * This iterator is threadsafe, so future modifications to the arc do not
+ * affect the iteration.
+ *
+ * @param at the transformation, or null
+ * @return a path iterator
+ */
+ public PathIterator getPathIterator(AffineTransform at)
+ {
+ return new ArcIterator(this, at);
+ }
+
+ /**
+ * This class is used to iterate over an arc. Since ellipses are a subclass
+ * of arcs, this is used by Ellipse2D as well.
+ *
+ * @author Eric Blake (ebb9@email.byu.edu)
+ */
+ static final class ArcIterator implements PathIterator
+ {
+ /** The current iteration. */
+ private int current;
+
+ /** The last iteration. */
+ private final int limit;
+
+ /** The optional transformation. */
+ private final AffineTransform xform;
+
+ /** The x coordinate of the bounding box. */
+ private final double x;
+
+ /** The y coordinate of the bounding box. */
+ private final double y;
+
+ /** The width of the bounding box. */
+ private final double w;
+
+ /** The height of the bounding box. */
+ private final double h;
+
+ /** The start angle, in radians (not degrees). */
+ private final double start;
+
+ /** The extent angle, in radians (not degrees). */
+ private final double extent;
+
+ /** The arc closure type. */
+ private final int type;
+
+ /**
+ * Construct a new iterator over an arc.
+ *
+ * @param a the arc
+ * @param xform the transform
+ */
+ public ArcIterator(Arc2D a, AffineTransform xform)
+ {
+ this.xform = xform;
+ x = a.getX();
+ y = a.getY();
+ w = a.getWidth();
+ h = a.getHeight();
+ double start = Math.toRadians(a.getAngleStart());
+ double extent = Math.toRadians(a.getAngleExtent());
+
+ this.start = start;
+ this.extent = extent;
+
+ type = a.type;
+ if (w < 0 || h < 0)
+ limit = -1;
+ else if (extent == 0)
+ limit = type;
+ else if (Math.abs(extent) <= Math.PI / 2.0)
+ limit = type + 1;
+ else if (Math.abs(extent) <= Math.PI)
+ limit = type + 2;
+ else if (Math.abs(extent) <= 3.0 * (Math.PI / 2.0))
+ limit = type + 3;
+ else
+ limit = type + 4;
+ }
+
+ /**
+ * Construct a new iterator over an ellipse.
+ *
+ * @param e the ellipse
+ * @param xform the transform
+ */
+ public ArcIterator(Ellipse2D e, AffineTransform xform)
+ {
+ this.xform = xform;
+ x = e.getX();
+ y = e.getY();
+ w = e.getWidth();
+ h = e.getHeight();
+ start = 0;
+ extent = 2 * Math.PI;
+ type = CHORD;
+ limit = (w < 0 || h < 0) ? -1 : 5;
+ }
+
+ /**
+ * Return the winding rule.
+ *
+ * @return {@link PathIterator#WIND_NON_ZERO}
+ */
+ public int getWindingRule()
+ {
+ return WIND_NON_ZERO;
+ }
+
+ /**
+ * Test if the iteration is complete.
+ *
+ * @return true if more segments exist
+ */
+ public boolean isDone()
+ {
+ return current > limit;
+ }
+
+ /**
+ * Advance the iterator.
+ */
+ public void next()
+ {
+ current++;
+ }
+
+ /**
+ * Put the current segment into the array, and return the segment type.
+ *
+ * @param coords an array of 6 elements
+ * @return the segment type
+ * @throws NullPointerException if coords is null
+ * @throws ArrayIndexOutOfBoundsException if coords is too small
+ */
+ public int currentSegment(float[] coords)
+ {
+ double[] double_coords = new double[6];
+ int code = currentSegment(double_coords);
+ for (int i = 0; i < 6; ++i)
+ coords[i] = (float) double_coords[i];
+ return code;
+ }
+
+ /**
+ * Put the current segment into the array, and return the segment type.
+ *
+ * @param coords an array of 6 elements
+ * @return the segment type
+ * @throws NullPointerException if coords is null
+ * @throws ArrayIndexOutOfBoundsException if coords is too small
+ */
+ public int currentSegment(double[] coords)
+ {
+ double rx = w / 2;
+ double ry = h / 2;
+ double xmid = x + rx;
+ double ymid = y + ry;
+
+ if (current > limit)
+ throw new NoSuchElementException("arc iterator out of bounds");
+
+ if (current == 0)
+ {
+ coords[0] = xmid + rx * Math.cos(start);
+ coords[1] = ymid - ry * Math.sin(start);
+ if (xform != null)
+ xform.transform(coords, 0, coords, 0, 1);
+ return SEG_MOVETO;
+ }
+
+ if (type != OPEN && current == limit)
+ return SEG_CLOSE;
+
+ if ((current == limit - 1) && (type == PIE))
+ {
+ coords[0] = xmid;
+ coords[1] = ymid;
+ if (xform != null)
+ xform.transform(coords, 0, coords, 0, 1);
+ return SEG_LINETO;
+ }
+
+ // note that this produces a cubic approximation of the arc segment,
+ // not a true ellipsoid. there's no ellipsoid path segment code,
+ // unfortunately. the cubic approximation looks about right, though.
+ double kappa = (Math.sqrt(2.0) - 1.0) * (4.0 / 3.0);
+ double quad = (Math.PI / 2.0);
+
+ double curr_begin;
+ double curr_extent;
+ if (extent > 0)
+ {
+ curr_begin = start + (current - 1) * quad;
+ curr_extent = Math.min((start + extent) - curr_begin, quad);
+ }
+ else
+ {
+ curr_begin = start - (current - 1) * quad;
+ curr_extent = Math.max((start + extent) - curr_begin, -quad);
+ }
+
+ double portion_of_a_quadrant = Math.abs(curr_extent / quad);
+
+ double x0 = xmid + rx * Math.cos(curr_begin);
+ double y0 = ymid - ry * Math.sin(curr_begin);
+
+ double x1 = xmid + rx * Math.cos(curr_begin + curr_extent);
+ double y1 = ymid - ry * Math.sin(curr_begin + curr_extent);
+
+ AffineTransform trans = new AffineTransform();
+ double[] cvec = new double[2];
+ double len = kappa * portion_of_a_quadrant;
+ double angle = curr_begin;
+
+ // in a hypothetical "first quadrant" setting, our first control
+ // vector would be sticking up, from [1,0] to [1,kappa].
+ //
+ // let us recall however that in java2d, y coords are upside down
+ // from what one would consider "normal" first quadrant rules, so we
+ // will *subtract* the y value of this control vector from our first
+ // point.
+ cvec[0] = 0;
+ if (extent > 0)
+ cvec[1] = len;
+ else
+ cvec[1] = -len;
+
+ trans.scale(rx, ry);
+ trans.rotate(angle);
+ trans.transform(cvec, 0, cvec, 0, 1);
+ coords[0] = x0 + cvec[0];
+ coords[1] = y0 - cvec[1];
+
+ // control vector #2 would, ideally, be sticking out and to the
+ // right, in a first quadrant arc segment. again, subtraction of y.
+ cvec[0] = 0;
+ if (extent > 0)
+ cvec[1] = -len;
+ else
+ cvec[1] = len;
+
+ trans.rotate(curr_extent);
+ trans.transform(cvec, 0, cvec, 0, 1);
+ coords[2] = x1 + cvec[0];
+ coords[3] = y1 - cvec[1];
+
+ // end point
+ coords[4] = x1;
+ coords[5] = y1;
+
+ if (xform != null)
+ xform.transform(coords, 0, coords, 0, 3);
+
+ return SEG_CUBICTO;
+ }
+ } // class ArcIterator
+
+ /**
+ * This class implements an arc in double precision.
+ *
+ * @author Eric Blake (ebb9@email.byu.edu)
+ * @since 1.2
+ */
+ public static class Double extends Arc2D
+ {
+ /** The x coordinate of the box bounding the ellipse of this arc. */
+ public double x;
+
+ /** The y coordinate of the box bounding the ellipse of this arc. */
+ public double y;
+
+ /** The width of the box bounding the ellipse of this arc. */
+ public double width;
+
+ /** The height of the box bounding the ellipse of this arc. */
+ public double height;
+
+ /** The start angle of this arc, in degrees. */
+ public double start;
+
+ /** The extent angle of this arc, in degrees. */
+ public double extent;
+
+ /**
+ * Create a new, open arc at (0,0) with 0 extent.
+ */
+ public Double()
+ {
+ super(OPEN);
+ }
+
+ /**
+ * Create a new arc of the given type at (0,0) with 0 extent.
+ *
+ * @param type the arc type: {@link #OPEN}, {@link #CHORD}, or {@link #PIE}
+ * @throws IllegalArgumentException if type is invalid
+ */
+ public Double(int type)
+ {
+ super(type);
+ }
+
+ /**
+ * Create a new arc with the given dimensions.
+ *
+ * @param x the x coordinate
+ * @param y the y coordinate
+ * @param w the width
+ * @param h the height
+ * @param start the start angle, in degrees
+ * @param extent the extent, in degrees
+ * @param type the arc type: {@link #OPEN}, {@link #CHORD}, or {@link #PIE}
+ * @throws IllegalArgumentException if type is invalid
+ */
+ public Double(double x, double y, double w, double h, double start,
+ double extent, int type)
+ {
+ super(type);
+ this.x = x;
+ this.y = y;
+ width = w;
+ height = h;
+ this.start = start;
+ this.extent = extent;
+ }
+
+ /**
+ * Create a new arc with the given dimensions.
+ *
+ * @param r the bounding box
+ * @param start the start angle, in degrees
+ * @param extent the extent, in degrees
+ * @param type the arc type: {@link #OPEN}, {@link #CHORD}, or {@link #PIE}
+ * @throws IllegalArgumentException if type is invalid
+ * @throws NullPointerException if r is null
+ */
+ public Double(Rectangle2D r, double start, double extent, int type)
+ {
+ super(type);
+ x = r.getX();
+ y = r.getY();
+ width = r.getWidth();
+ height = r.getHeight();
+ this.start = start;
+ this.extent = extent;
+ }
+
+ /**
+ * Return the x coordinate of the bounding box.
+ *
+ * @return the value of x
+ */
+ public double getX()
+ {
+ return x;
+ }
+
+ /**
+ * Return the y coordinate of the bounding box.
+ *
+ * @return the value of y
+ */
+ public double getY()
+ {
+ return y;
+ }
+
+ /**
+ * Return the width of the bounding box.
+ *
+ * @return the value of width
+ */
+ public double getWidth()
+ {
+ return width;
+ }
+
+ /**
+ * Return the height of the bounding box.
+ *
+ * @return the value of height
+ */
+ public double getHeight()
+ {
+ return height;
+ }
+
+ /**
+ * Return the start angle of the arc, in degrees.
+ *
+ * @return the value of start
+ */
+ public double getAngleStart()
+ {
+ return start;
+ }
+
+ /**
+ * Return the extent of the arc, in degrees.
+ *
+ * @return the value of extent
+ */
+ public double getAngleExtent()
+ {
+ return extent;
+ }
+
+ /**
+ * Tests if the arc contains points.
+ *
+ * @return true if the arc has no interior
+ */
+ public boolean isEmpty()
+ {
+ return width <= 0 || height <= 0;
+ }
+
+ /**
+ * Sets the arc to the given dimensions.
+ *
+ * @param x the x coordinate
+ * @param y the y coordinate
+ * @param w the width
+ * @param h the height
+ * @param start the start angle, in degrees
+ * @param extent the extent, in degrees
+ * @param type the arc type: {@link #OPEN}, {@link #CHORD}, or {@link #PIE}
+ * @throws IllegalArgumentException if type is invalid
+ */
+ public void setArc(double x, double y, double w, double h, double start,
+ double extent, int type)
+ {
+ this.x = x;
+ this.y = y;
+ width = w;
+ height = h;
+ this.start = start;
+ this.extent = extent;
+ setArcType(type);
+ }
+
+ /**
+ * Sets the start angle of the arc.
+ *
+ * @param start the new start angle
+ */
+ public void setAngleStart(double start)
+ {
+ this.start = start;
+ }
+
+ /**
+ * Sets the extent angle of the arc.
+ *
+ * @param extent the new extent angle
+ */
+ public void setAngleExtent(double extent)
+ {
+ this.extent = extent;
+ }
+
+ /**
+ * Creates a tight bounding box given dimensions that more precise than
+ * the bounding box of the ellipse.
+ *
+ * @param x the x coordinate
+ * @param y the y coordinate
+ * @param w the width
+ * @param h the height
+ */
+ protected Rectangle2D makeBounds(double x, double y, double w, double h)
+ {
+ return new Rectangle2D.Double(x, y, w, h);
+ }
+ } // class Double
+
+ /**
+ * This class implements an arc in float precision.
+ *
+ * @author Eric Blake (ebb9@email.byu.edu)
+ * @since 1.2
+ */
+ public static class Float extends Arc2D
+ {
+ /** The x coordinate of the box bounding the ellipse of this arc. */
+ public float x;
+
+ /** The y coordinate of the box bounding the ellipse of this arc. */
+ public float y;
+
+ /** The width of the box bounding the ellipse of this arc. */
+ public float width;
+
+ /** The height of the box bounding the ellipse of this arc. */
+ public float height;
+
+ /** The start angle of this arc, in degrees. */
+ public float start;
+
+ /** The extent angle of this arc, in degrees. */
+ public float extent;
+
+ /**
+ * Create a new, open arc at (0,0) with 0 extent.
+ */
+ public Float()
+ {
+ super(OPEN);
+ }
+
+ /**
+ * Create a new arc of the given type at (0,0) with 0 extent.
+ *
+ * @param type the arc type: {@link #OPEN}, {@link #CHORD}, or {@link #PIE}
+ * @throws IllegalArgumentException if type is invalid
+ */
+ public Float(int type)
+ {
+ super(type);
+ }
+
+ /**
+ * Create a new arc with the given dimensions.
+ *
+ * @param x the x coordinate
+ * @param y the y coordinate
+ * @param w the width
+ * @param h the height
+ * @param start the start angle, in degrees
+ * @param extent the extent, in degrees
+ * @param type the arc type: {@link #OPEN}, {@link #CHORD}, or {@link #PIE}
+ * @throws IllegalArgumentException if type is invalid
+ */
+ public Float(float x, float y, float w, float h, float start,
+ float extent, int type)
+ {
+ super(type);
+ this.x = x;
+ this.y = y;
+ width = w;
+ height = h;
+ this.start = start;
+ this.extent = extent;
+ }
+
+ /**
+ * Create a new arc with the given dimensions.
+ *
+ * @param r the bounding box
+ * @param start the start angle, in degrees
+ * @param extent the extent, in degrees
+ * @param type the arc type: {@link #OPEN}, {@link #CHORD}, or {@link #PIE}
+ * @throws IllegalArgumentException if type is invalid
+ * @throws NullPointerException if r is null
+ */
+ public Float(Rectangle2D r, float start, float extent, int type)
+ {
+ super(type);
+ x = (float) r.getX();
+ y = (float) r.getY();
+ width = (float) r.getWidth();
+ height = (float) r.getHeight();
+ this.start = start;
+ this.extent = extent;
+ }
+
+ /**
+ * Return the x coordinate of the bounding box.
+ *
+ * @return the value of x
+ */
+ public double getX()
+ {
+ return x;
+ }
+
+ /**
+ * Return the y coordinate of the bounding box.
+ *
+ * @return the value of y
+ */
+ public double getY()
+ {
+ return y;
+ }
+
+ /**
+ * Return the width of the bounding box.
+ *
+ * @return the value of width
+ */
+ public double getWidth()
+ {
+ return width;
+ }
+
+ /**
+ * Return the height of the bounding box.
+ *
+ * @return the value of height
+ */
+ public double getHeight()
+ {
+ return height;
+ }
+
+ /**
+ * Return the start angle of the arc, in degrees.
+ *
+ * @return the value of start
+ */
+ public double getAngleStart()
+ {
+ return start;
+ }
+
+ /**
+ * Return the extent of the arc, in degrees.
+ *
+ * @return the value of extent
+ */
+ public double getAngleExtent()
+ {
+ return extent;
+ }
+
+ /**
+ * Tests if the arc contains points.
+ *
+ * @return true if the arc has no interior
+ */
+ public boolean isEmpty()
+ {
+ return width <= 0 || height <= 0;
+ }
+
+ /**
+ * Sets the arc to the given dimensions.
+ *
+ * @param x the x coordinate
+ * @param y the y coordinate
+ * @param w the width
+ * @param h the height
+ * @param start the start angle, in degrees
+ * @param extent the extent, in degrees
+ * @param type the arc type: {@link #OPEN}, {@link #CHORD}, or {@link #PIE}
+ * @throws IllegalArgumentException if type is invalid
+ */
+ public void setArc(double x, double y, double w, double h, double start,
+ double extent, int type)
+ {
+ this.x = (float) x;
+ this.y = (float) y;
+ width = (float) w;
+ height = (float) h;
+ this.start = (float) start;
+ this.extent = (float) extent;
+ setArcType(type);
+ }
+
+ /**
+ * Sets the start angle of the arc.
+ *
+ * @param start the new start angle
+ */
+ public void setAngleStart(double start)
+ {
+ this.start = (float) start;
+ }
+
+ /**
+ * Sets the extent angle of the arc.
+ *
+ * @param extent the new extent angle
+ */
+ public void setAngleExtent(double extent)
+ {
+ this.extent = (float) extent;
+ }
+
+ /**
+ * Creates a tight bounding box given dimensions that more precise than
+ * the bounding box of the ellipse.
+ *
+ * @param x the x coordinate
+ * @param y the y coordinate
+ * @param w the width
+ * @param h the height
+ */
+ protected Rectangle2D makeBounds(double x, double y, double w, double h)
+ {
+ return new Rectangle2D.Float((float) x, (float) y, (float) w, (float) h);
+ }
+ } // class Float
+} // class Arc2D
diff --git a/libjava/classpath/java/awt/geom/Area.java b/libjava/classpath/java/awt/geom/Area.java
new file mode 100644
index 000000000..a1eaf63f3
--- /dev/null
+++ b/libjava/classpath/java/awt/geom/Area.java
@@ -0,0 +1,3312 @@
+/* Area.java -- represents a shape built by constructive area geometry
+ Copyright (C) 2002, 2004 Free Software Foundation
+
+This file is part of GNU Classpath.
+
+GNU Classpath is free software; you can redistribute it and/or modify
+it under the terms of the GNU General Public License as published by
+the Free Software Foundation; either version 2, or (at your option)
+any later version.
+
+GNU Classpath is distributed in the hope that it will be useful, but
+WITHOUT ANY WARRANTY; without even the implied warranty of
+MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
+General Public License for more details.
+
+You should have received a copy of the GNU General Public License
+along with GNU Classpath; see the file COPYING. If not, write to the
+Free Software Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA
+02110-1301 USA.
+
+Linking this library statically or dynamically with other modules is
+making a combined work based on this library. Thus, the terms and
+conditions of the GNU General Public License cover the whole
+combination.
+
+As a special exception, the copyright holders of this library give you
+permission to link this library with independent modules to produce an
+executable, regardless of the license terms of these independent
+modules, and to copy and distribute the resulting executable under
+terms of your choice, provided that you also meet, for each linked
+independent module, the terms and conditions of the license of that
+module. An independent module is a module which is not derived from
+or based on this library. If you modify this library, you may extend
+this exception to your version of the library, but you are not
+obligated to do so. If you do not wish to do so, delete this
+exception statement from your version. */
+
+package java.awt.geom;
+
+import java.awt.Rectangle;
+import java.awt.Shape;
+import java.util.Vector;
+
+
+/**
+ * The Area class represents any area for the purpose of
+ * Constructive Area Geometry (CAG) manipulations. CAG manipulations
+ * work as an area-wise form of boolean logic, where the basic operations are:
+ * <P><li>Add (in boolean algebra: A <B>or</B> B)<BR>
+ * <li>Subtract (in boolean algebra: A <B>and</B> (<B>not</B> B) )<BR>
+ * <li>Intersect (in boolean algebra: A <B>and</B> B)<BR>
+ * <li>Exclusive Or <BR>
+ * <img src="doc-files/Area-1.png" width="342" height="302"
+ * alt="Illustration of CAG operations" /><BR>
+ * Above is an illustration of the CAG operations on two ring shapes.<P>
+ *
+ * The contains and intersects() methods are also more accurate than the
+ * specification of #Shape requires.<P>
+ *
+ * Please note that constructing an Area can be slow
+ * (Self-intersection resolving is proportional to the square of
+ * the number of segments).<P>
+ * @see #add(Area)
+ * @see #subtract(Area)
+ * @see #intersect(Area)
+ * @see #exclusiveOr(Area)
+ *
+ * @author Sven de Marothy (sven@physto.se)
+ *
+ * @since 1.2
+ * @status Works, but could be faster and more reliable.
+ */
+public class Area implements Shape, Cloneable
+{
+ /**
+ * General numerical precision
+ */
+ private static final double EPSILON = 1E-11;
+
+ /**
+ * recursive subdivision epsilon - (see getRecursionDepth)
+ */
+ private static final double RS_EPSILON = 1E-13;
+
+ /**
+ * Snap distance - points within this distance are considered equal
+ */
+ private static final double PE_EPSILON = 1E-11;
+
+ /**
+ * Segment vectors containing solid areas and holes
+ * This is package-private to avoid an accessor method.
+ */
+ Vector solids;
+
+ /**
+ * Segment vectors containing solid areas and holes
+ * This is package-private to avoid an accessor method.
+ */
+ Vector holes;
+
+ /**
+ * Vector (temporary) storing curve-curve intersections
+ */
+ private Vector cc_intersections;
+
+ /**
+ * Winding rule WIND_NON_ZERO used, after construction,
+ * this is irrelevant.
+ */
+ private int windingRule;
+
+ /**
+ * Constructs an empty Area
+ */
+ public Area()
+ {
+ solids = new Vector();
+ holes = new Vector();
+ }
+
+ /**
+ * Constructs an Area from any given Shape. <P>
+ *
+ * If the Shape is self-intersecting, the created Area will consist
+ * of non-self-intersecting subpaths, and any inner paths which
+ * are found redundant in accordance with the Shape's winding rule
+ * will not be included.
+ *
+ * @param s the shape (<code>null</code> not permitted).
+ *
+ * @throws NullPointerException if <code>s</code> is <code>null</code>.
+ */
+ public Area(Shape s)
+ {
+ this();
+
+ Vector p = makeSegment(s);
+
+ // empty path
+ if (p == null)
+ return;
+
+ // delete empty paths
+ for (int i = 0; i < p.size(); i++)
+ if (((Segment) p.elementAt(i)).getSignedArea() == 0.0)
+ p.remove(i--);
+
+ /*
+ * Resolve self intersecting paths into non-intersecting
+ * solids and holes.
+ * Algorithm is as follows:
+ * 1: Create nodes at all self intersections
+ * 2: Put all segments into a list
+ * 3: Grab a segment, follow it, change direction at each node,
+ * removing segments from the list in the process
+ * 4: Repeat (3) until no segments remain in the list
+ * 5: Remove redundant paths and sort into solids and holes
+ */
+ Vector paths = new Vector();
+ Segment v;
+
+ for (int i = 0; i < p.size(); i++)
+ {
+ Segment path = (Segment) p.elementAt(i);
+ createNodesSelf(path);
+ }
+
+ if (p.size() > 1)
+ {
+ for (int i = 0; i < p.size() - 1; i++)
+ for (int j = i + 1; j < p.size(); j++)
+ {
+ Segment path1 = (Segment) p.elementAt(i);
+ Segment path2 = (Segment) p.elementAt(j);
+ createNodes(path1, path2);
+ }
+ }
+
+ // we have intersecting points.
+ Vector segments = new Vector();
+
+ for (int i = 0; i < p.size(); i++)
+ {
+ Segment path = v = (Segment) p.elementAt(i);
+ do
+ {
+ segments.add(v);
+ v = v.next;
+ }
+ while (v != path);
+ }
+
+ paths = weilerAtherton(segments);
+ deleteRedundantPaths(paths);
+ }
+
+ /**
+ * Performs an add (union) operation on this area with another Area.<BR>
+ * @param area - the area to be unioned with this one
+ */
+ public void add(Area area)
+ {
+ if (equals(area))
+ return;
+ if (area.isEmpty())
+ return;
+
+ Area B = (Area) area.clone();
+
+ Vector pathA = new Vector();
+ Vector pathB = new Vector();
+ pathA.addAll(solids);
+ pathA.addAll(holes);
+ pathB.addAll(B.solids);
+ pathB.addAll(B.holes);
+
+ int nNodes = 0;
+
+ for (int i = 0; i < pathA.size(); i++)
+ {
+ Segment a = (Segment) pathA.elementAt(i);
+ for (int j = 0; j < pathB.size(); j++)
+ {
+ Segment b = (Segment) pathB.elementAt(j);
+ nNodes += createNodes(a, b);
+ }
+ }
+
+ Vector paths = new Vector();
+ Segment v;
+
+ // we have intersecting points.
+ Vector segments = new Vector();
+
+ // In a union operation, we keep all
+ // segments of A oustide B and all B outside A
+ for (int i = 0; i < pathA.size(); i++)
+ {
+ v = (Segment) pathA.elementAt(i);
+ Segment path = v;
+ do
+ {
+ if (v.isSegmentOutside(area))
+ segments.add(v);
+ v = v.next;
+ }
+ while (v != path);
+ }
+
+ for (int i = 0; i < pathB.size(); i++)
+ {
+ v = (Segment) pathB.elementAt(i);
+ Segment path = v;
+ do
+ {
+ if (v.isSegmentOutside(this))
+ segments.add(v);
+ v = v.next;
+ }
+ while (v != path);
+ }
+
+ paths = weilerAtherton(segments);
+ deleteRedundantPaths(paths);
+ }
+
+ /**
+ * Performs a subtraction operation on this Area.<BR>
+ * @param area the area to be subtracted from this area.
+ * @throws NullPointerException if <code>area</code> is <code>null</code>.
+ */
+ public void subtract(Area area)
+ {
+ if (isEmpty() || area.isEmpty())
+ return;
+
+ if (equals(area))
+ {
+ reset();
+ return;
+ }
+
+ Vector pathA = new Vector();
+ Area B = (Area) area.clone();
+ pathA.addAll(solids);
+ pathA.addAll(holes);
+
+ // reverse the directions of B paths.
+ setDirection(B.holes, true);
+ setDirection(B.solids, false);
+
+ Vector pathB = new Vector();
+ pathB.addAll(B.solids);
+ pathB.addAll(B.holes);
+
+ int nNodes = 0;
+
+ // create nodes
+ for (int i = 0; i < pathA.size(); i++)
+ {
+ Segment a = (Segment) pathA.elementAt(i);
+ for (int j = 0; j < pathB.size(); j++)
+ {
+ Segment b = (Segment) pathB.elementAt(j);
+ nNodes += createNodes(a, b);
+ }
+ }
+
+ Vector paths = new Vector();
+
+ // we have intersecting points.
+ Vector segments = new Vector();
+
+ // In a subtraction operation, we keep all
+ // segments of A oustide B and all B within A
+ // We outsideness-test only one segment in each path
+ // and the segments before and after any node
+ for (int i = 0; i < pathA.size(); i++)
+ {
+ Segment v = (Segment) pathA.elementAt(i);
+ Segment path = v;
+ if (v.isSegmentOutside(area) && v.node == null)
+ segments.add(v);
+ boolean node = false;
+ do
+ {
+ if ((v.node != null || node))
+ {
+ node = (v.node != null);
+ if (v.isSegmentOutside(area))
+ segments.add(v);
+ }
+ v = v.next;
+ }
+ while (v != path);
+ }
+
+ for (int i = 0; i < pathB.size(); i++)
+ {
+ Segment v = (Segment) pathB.elementAt(i);
+ Segment path = v;
+ if (! v.isSegmentOutside(this) && v.node == null)
+ segments.add(v);
+ v = v.next;
+ boolean node = false;
+ do
+ {
+ if ((v.node != null || node))
+ {
+ node = (v.node != null);
+ if (! v.isSegmentOutside(this))
+ segments.add(v);
+ }
+ v = v.next;
+ }
+ while (v != path);
+ }
+
+ paths = weilerAtherton(segments);
+ deleteRedundantPaths(paths);
+ }
+
+ /**
+ * Performs an intersection operation on this Area.<BR>
+ * @param area - the area to be intersected with this area.
+ * @throws NullPointerException if <code>area</code> is <code>null</code>.
+ */
+ public void intersect(Area area)
+ {
+ if (isEmpty() || area.isEmpty())
+ {
+ reset();
+ return;
+ }
+ if (equals(area))
+ return;
+
+ Vector pathA = new Vector();
+ Area B = (Area) area.clone();
+ pathA.addAll(solids);
+ pathA.addAll(holes);
+
+ Vector pathB = new Vector();
+ pathB.addAll(B.solids);
+ pathB.addAll(B.holes);
+
+ int nNodes = 0;
+
+ // create nodes
+ for (int i = 0; i < pathA.size(); i++)
+ {
+ Segment a = (Segment) pathA.elementAt(i);
+ for (int j = 0; j < pathB.size(); j++)
+ {
+ Segment b = (Segment) pathB.elementAt(j);
+ nNodes += createNodes(a, b);
+ }
+ }
+
+ Vector paths = new Vector();
+
+ // we have intersecting points.
+ Vector segments = new Vector();
+
+ // In an intersection operation, we keep all
+ // segments of A within B and all B within A
+ // (The rest must be redundant)
+ // We outsideness-test only one segment in each path
+ // and the segments before and after any node
+ for (int i = 0; i < pathA.size(); i++)
+ {
+ Segment v = (Segment) pathA.elementAt(i);
+ Segment path = v;
+ if (! v.isSegmentOutside(area) && v.node == null)
+ segments.add(v);
+ boolean node = false;
+ do
+ {
+ if ((v.node != null || node))
+ {
+ node = (v.node != null);
+ if (! v.isSegmentOutside(area))
+ segments.add(v);
+ }
+ v = v.next;
+ }
+ while (v != path);
+ }
+
+ for (int i = 0; i < pathB.size(); i++)
+ {
+ Segment v = (Segment) pathB.elementAt(i);
+ Segment path = v;
+ if (! v.isSegmentOutside(this) && v.node == null)
+ segments.add(v);
+ v = v.next;
+ boolean node = false;
+ do
+ {
+ if ((v.node != null || node))
+ {
+ node = (v.node != null);
+ if (! v.isSegmentOutside(this))
+ segments.add(v);
+ }
+ v = v.next;
+ }
+ while (v != path);
+ }
+
+ paths = weilerAtherton(segments);
+ deleteRedundantPaths(paths);
+ }
+
+ /**
+ * Performs an exclusive-or operation on this Area.<BR>
+ * @param area - the area to be XORed with this area.
+ * @throws NullPointerException if <code>area</code> is <code>null</code>.
+ */
+ public void exclusiveOr(Area area)
+ {
+ if (area.isEmpty())
+ return;
+
+ if (isEmpty())
+ {
+ Area B = (Area) area.clone();
+ solids = B.solids;
+ holes = B.holes;
+ return;
+ }
+ if (equals(area))
+ {
+ reset();
+ return;
+ }
+
+ Vector pathA = new Vector();
+
+ Area B = (Area) area.clone();
+ Vector pathB = new Vector();
+ pathA.addAll(solids);
+ pathA.addAll(holes);
+
+ // reverse the directions of B paths.
+ setDirection(B.holes, true);
+ setDirection(B.solids, false);
+ pathB.addAll(B.solids);
+ pathB.addAll(B.holes);
+
+ int nNodes = 0;
+
+ for (int i = 0; i < pathA.size(); i++)
+ {
+ Segment a = (Segment) pathA.elementAt(i);
+ for (int j = 0; j < pathB.size(); j++)
+ {
+ Segment b = (Segment) pathB.elementAt(j);
+ nNodes += createNodes(a, b);
+ }
+ }
+
+ Vector paths = new Vector();
+ Segment v;
+
+ // we have intersecting points.
+ Vector segments = new Vector();
+
+ // In an XOR operation, we operate on all segments
+ for (int i = 0; i < pathA.size(); i++)
+ {
+ v = (Segment) pathA.elementAt(i);
+ Segment path = v;
+ do
+ {
+ segments.add(v);
+ v = v.next;
+ }
+ while (v != path);
+ }
+
+ for (int i = 0; i < pathB.size(); i++)
+ {
+ v = (Segment) pathB.elementAt(i);
+ Segment path = v;
+ do
+ {
+ segments.add(v);
+ v = v.next;
+ }
+ while (v != path);
+ }
+
+ paths = weilerAtherton(segments);
+ deleteRedundantPaths(paths);
+ }
+
+ /**
+ * Clears the Area object, creating an empty area.
+ */
+ public void reset()
+ {
+ solids = new Vector();
+ holes = new Vector();
+ }
+
+ /**
+ * Returns whether this area encloses any area.
+ * @return true if the object encloses any area.
+ */
+ public boolean isEmpty()
+ {
+ if (solids.size() == 0)
+ return true;
+
+ double totalArea = 0;
+ for (int i = 0; i < solids.size(); i++)
+ totalArea += Math.abs(((Segment) solids.elementAt(i)).getSignedArea());
+ for (int i = 0; i < holes.size(); i++)
+ totalArea -= Math.abs(((Segment) holes.elementAt(i)).getSignedArea());
+ if (totalArea <= EPSILON)
+ return true;
+
+ return false;
+ }
+
+ /**
+ * Determines whether the Area consists entirely of line segments
+ * @return true if the Area lines-only, false otherwise
+ */
+ public boolean isPolygonal()
+ {
+ for (int i = 0; i < holes.size(); i++)
+ if (! ((Segment) holes.elementAt(i)).isPolygonal())
+ return false;
+ for (int i = 0; i < solids.size(); i++)
+ if (! ((Segment) solids.elementAt(i)).isPolygonal())
+ return false;
+ return true;
+ }
+
+ /**
+ * Determines if the Area is rectangular.<P>
+ *
+ * This is strictly qualified. An area is considered rectangular if:<BR>
+ * <li>It consists of a single polygonal path.<BR>
+ * <li>It is oriented parallel/perpendicular to the xy axis<BR>
+ * <li>It must be exactly rectangular, i.e. small errors induced by
+ * transformations may cause a false result, although the area is
+ * visibly rectangular.<P>
+ * @return true if the above criteria are met, false otherwise
+ */
+ public boolean isRectangular()
+ {
+ if (isEmpty())
+ return true;
+
+ if (holes.size() != 0 || solids.size() != 1)
+ return false;
+
+ Segment path = (Segment) solids.elementAt(0);
+ if (! path.isPolygonal())
+ return false;
+
+ int nCorners = 0;
+ Segment s = path;
+ do
+ {
+ Segment s2 = s.next;
+ double d1 = (s.P2.getX() - s.P1.getX())*(s2.P2.getX() - s2.P1.getX())/
+ ((s.P1.distance(s.P2)) * (s2.P1.distance(s2.P2)));
+ double d2 = (s.P2.getY() - s.P1.getY())*(s2.P2.getY() - s2.P1.getY())/
+ ((s.P1.distance(s.P2)) * (s2.P1.distance(s2.P2)));
+ double dotproduct = d1 + d2;
+
+ // For some reason, only rectangles on the XY axis count.
+ if (d1 != 0 && d2 != 0)
+ return false;
+
+ if (Math.abs(dotproduct) == 0) // 90 degree angle
+ nCorners++;
+ else if ((Math.abs(1.0 - dotproduct) > 0)) // 0 degree angle?
+ return false; // if not, return false
+
+ s = s.next;
+ }
+ while (s != path);
+
+ return nCorners == 4;
+ }
+
+ /**
+ * Returns whether the Area consists of more than one simple
+ * (non self-intersecting) subpath.
+ *
+ * @return true if the Area consists of none or one simple subpath,
+ * false otherwise.
+ */
+ public boolean isSingular()
+ {
+ return (holes.size() == 0 && solids.size() <= 1);
+ }
+
+ /**
+ * Returns the bounding box of the Area.<P> Unlike the CubicCurve2D and
+ * QuadraticCurve2D classes, this method will return the tightest possible
+ * bounding box, evaluating the extreme points of each curved segment.<P>
+ * @return the bounding box
+ */
+ public Rectangle2D getBounds2D()
+ {
+ if (solids.size() == 0)
+ return new Rectangle2D.Double(0.0, 0.0, 0.0, 0.0);
+
+ double xmin;
+ double xmax;
+ double ymin;
+ double ymax;
+ xmin = xmax = ((Segment) solids.elementAt(0)).P1.getX();
+ ymin = ymax = ((Segment) solids.elementAt(0)).P1.getY();
+
+ for (int path = 0; path < solids.size(); path++)
+ {
+ Rectangle2D r = ((Segment) solids.elementAt(path)).getPathBounds();
+ xmin = Math.min(r.getMinX(), xmin);
+ ymin = Math.min(r.getMinY(), ymin);
+ xmax = Math.max(r.getMaxX(), xmax);
+ ymax = Math.max(r.getMaxY(), ymax);
+ }
+
+ return (new Rectangle2D.Double(xmin, ymin, (xmax - xmin), (ymax - ymin)));
+ }
+
+ /**
+ * Returns the bounds of this object in Rectangle format.
+ * Please note that this may lead to loss of precision.
+ *
+ * @return The bounds.
+ * @see #getBounds2D()
+ */
+ public Rectangle getBounds()
+ {
+ return getBounds2D().getBounds();
+ }
+
+ /**
+ * Create a new area of the same run-time type with the same contents as
+ * this one.
+ *
+ * @return the clone
+ */
+ public Object clone()
+ {
+ try
+ {
+ Area clone = new Area();
+ for (int i = 0; i < solids.size(); i++)
+ clone.solids.add(((Segment) solids.elementAt(i)).cloneSegmentList());
+ for (int i = 0; i < holes.size(); i++)
+ clone.holes.add(((Segment) holes.elementAt(i)).cloneSegmentList());
+ return clone;
+ }
+ catch (CloneNotSupportedException e)
+ {
+ throw (Error) new InternalError().initCause(e); // Impossible
+ }
+ }
+
+ /**
+ * Compares two Areas.
+ *
+ * @param area the area to compare against this area (<code>null</code>
+ * permitted).
+ * @return <code>true</code> if the areas are equal, and <code>false</code>
+ * otherwise.
+ */
+ public boolean equals(Area area)
+ {
+ if (area == null)
+ return false;
+
+ if (! getBounds2D().equals(area.getBounds2D()))
+ return false;
+
+ if (solids.size() != area.solids.size()
+ || holes.size() != area.holes.size())
+ return false;
+
+ Vector pathA = new Vector();
+ pathA.addAll(solids);
+ pathA.addAll(holes);
+ Vector pathB = new Vector();
+ pathB.addAll(area.solids);
+ pathB.addAll(area.holes);
+
+ int nPaths = pathA.size();
+ boolean[][] match = new boolean[2][nPaths];
+
+ for (int i = 0; i < nPaths; i++)
+ {
+ for (int j = 0; j < nPaths; j++)
+ {
+ Segment p1 = (Segment) pathA.elementAt(i);
+ Segment p2 = (Segment) pathB.elementAt(j);
+ if (! match[0][i] && ! match[1][j])
+ if (p1.pathEquals(p2))
+ match[0][i] = match[1][j] = true;
+ }
+ }
+
+ boolean result = true;
+ for (int i = 0; i < nPaths; i++)
+ result = result && match[0][i] && match[1][i];
+ return result;
+ }
+
+ /**
+ * Transforms this area by the AffineTransform at.
+ *
+ * @param at the transform.
+ */
+ public void transform(AffineTransform at)
+ {
+ for (int i = 0; i < solids.size(); i++)
+ ((Segment) solids.elementAt(i)).transformSegmentList(at);
+ for (int i = 0; i < holes.size(); i++)
+ ((Segment) holes.elementAt(i)).transformSegmentList(at);
+
+ // Note that the orientation is not invariant under inversion
+ if ((at.getType() & AffineTransform.TYPE_FLIP) != 0)
+ {
+ setDirection(holes, false);
+ setDirection(solids, true);
+ }
+ }
+
+ /**
+ * Returns a new Area equal to this one, transformed
+ * by the AffineTransform at.
+ * @param at the transform.
+ * @return the transformed area
+ * @throws NullPointerException if <code>at</code> is <code>null</code>.
+ */
+ public Area createTransformedArea(AffineTransform at)
+ {
+ Area a = (Area) clone();
+ a.transform(at);
+ return a;
+ }
+
+ /**
+ * Determines if the point (x,y) is contained within this Area.
+ *
+ * @param x the x-coordinate of the point.
+ * @param y the y-coordinate of the point.
+ * @return true if the point is contained, false otherwise.
+ */
+ public boolean contains(double x, double y)
+ {
+ int n = 0;
+ for (int i = 0; i < solids.size(); i++)
+ if (((Segment) solids.elementAt(i)).contains(x, y))
+ n++;
+
+ for (int i = 0; i < holes.size(); i++)
+ if (((Segment) holes.elementAt(i)).contains(x, y))
+ n--;
+
+ return (n != 0);
+ }
+
+ /**
+ * Determines if the Point2D p is contained within this Area.
+ *
+ * @param p the point.
+ * @return <code>true</code> if the point is contained, <code>false</code>
+ * otherwise.
+ * @throws NullPointerException if <code>p</code> is <code>null</code>.
+ */
+ public boolean contains(Point2D p)
+ {
+ return contains(p.getX(), p.getY());
+ }
+
+ /**
+ * Determines if the rectangle specified by (x,y) as the upper-left
+ * and with width w and height h is completely contained within this Area,
+ * returns false otherwise.<P>
+ *
+ * This method should always produce the correct results, unlike for other
+ * classes in geom.
+ *
+ * @param x the x-coordinate of the rectangle.
+ * @param y the y-coordinate of the rectangle.
+ * @param w the width of the the rectangle.
+ * @param h the height of the rectangle.
+ * @return <code>true</code> if the rectangle is considered contained
+ */
+ public boolean contains(double x, double y, double w, double h)
+ {
+ LineSegment[] l = new LineSegment[4];
+ l[0] = new LineSegment(x, y, x + w, y);
+ l[1] = new LineSegment(x, y + h, x + w, y + h);
+ l[2] = new LineSegment(x, y, x, y + h);
+ l[3] = new LineSegment(x + w, y, x + w, y + h);
+
+ // Since every segment in the area must a contour
+ // between inside/outside segments, ANY intersection
+ // will mean the rectangle is not entirely contained.
+ for (int i = 0; i < 4; i++)
+ {
+ for (int path = 0; path < solids.size(); path++)
+ {
+ Segment v;
+ Segment start;
+ start = v = (Segment) solids.elementAt(path);
+ do
+ {
+ if (l[i].hasIntersections(v))
+ return false;
+ v = v.next;
+ }
+ while (v != start);
+ }
+ for (int path = 0; path < holes.size(); path++)
+ {
+ Segment v;
+ Segment start;
+ start = v = (Segment) holes.elementAt(path);
+ do
+ {
+ if (l[i].hasIntersections(v))
+ return false;
+ v = v.next;
+ }
+ while (v != start);
+ }
+ }
+
+ // Is any point inside?
+ if (! contains(x, y))
+ return false;
+
+ // Final hoop: Is the rectangle non-intersecting and inside,
+ // but encloses a hole?
+ Rectangle2D r = new Rectangle2D.Double(x, y, w, h);
+ for (int path = 0; path < holes.size(); path++)
+ if (! ((Segment) holes.elementAt(path)).isSegmentOutside(r))
+ return false;
+
+ return true;
+ }
+
+ /**
+ * Determines if the Rectangle2D specified by r is completely contained
+ * within this Area, returns false otherwise.<P>
+ *
+ * This method should always produce the correct results, unlike for other
+ * classes in geom.
+ *
+ * @param r the rectangle.
+ * @return <code>true</code> if the rectangle is considered contained
+ *
+ * @throws NullPointerException if <code>r</code> is <code>null</code>.
+ */
+ public boolean contains(Rectangle2D r)
+ {
+ return contains(r.getX(), r.getY(), r.getWidth(), r.getHeight());
+ }
+
+ /**
+ * Determines if the rectangle specified by (x,y) as the upper-left
+ * and with width w and height h intersects any part of this Area.
+ *
+ * @param x the x-coordinate for the rectangle.
+ * @param y the y-coordinate for the rectangle.
+ * @param w the width of the rectangle.
+ * @param h the height of the rectangle.
+ * @return <code>true</code> if the rectangle intersects the area,
+ * <code>false</code> otherwise.
+ */
+ public boolean intersects(double x, double y, double w, double h)
+ {
+ if (solids.size() == 0)
+ return false;
+
+ LineSegment[] l = new LineSegment[4];
+ l[0] = new LineSegment(x, y, x + w, y);
+ l[1] = new LineSegment(x, y + h, x + w, y + h);
+ l[2] = new LineSegment(x, y, x, y + h);
+ l[3] = new LineSegment(x + w, y, x + w, y + h);
+
+ // Return true on any intersection
+ for (int i = 0; i < 4; i++)
+ {
+ for (int path = 0; path < solids.size(); path++)
+ {
+ Segment v;
+ Segment start;
+ start = v = (Segment) solids.elementAt(path);
+ do
+ {
+ if (l[i].hasIntersections(v))
+ return true;
+ v = v.next;
+ }
+ while (v != start);
+ }
+ for (int path = 0; path < holes.size(); path++)
+ {
+ Segment v;
+ Segment start;
+ start = v = (Segment) holes.elementAt(path);
+ do
+ {
+ if (l[i].hasIntersections(v))
+ return true;
+ v = v.next;
+ }
+ while (v != start);
+ }
+ }
+
+ // Non-intersecting, Is any point inside?
+ if (contains(x + w * 0.5, y + h * 0.5))
+ return true;
+
+ // What if the rectangle encloses the whole shape?
+ Point2D p = ((Segment) solids.elementAt(0)).getMidPoint();
+ if ((new Rectangle2D.Double(x, y, w, h)).contains(p))
+ return true;
+ return false;
+ }
+
+ /**
+ * Determines if the Rectangle2D specified by r intersects any
+ * part of this Area.
+ * @param r the rectangle to test intersection with (<code>null</code>
+ * not permitted).
+ * @return <code>true</code> if the rectangle intersects the area,
+ * <code>false</code> otherwise.
+ * @throws NullPointerException if <code>r</code> is <code>null</code>.
+ */
+ public boolean intersects(Rectangle2D r)
+ {
+ return intersects(r.getX(), r.getY(), r.getWidth(), r.getHeight());
+ }
+
+ /**
+ * Returns a PathIterator object defining the contour of this Area,
+ * transformed by at.
+ *
+ * @param at the transform.
+ * @return A path iterator.
+ */
+ public PathIterator getPathIterator(AffineTransform at)
+ {
+ return (new AreaIterator(at));
+ }
+
+ /**
+ * Returns a flattened PathIterator object defining the contour of this
+ * Area, transformed by at and with a defined flatness.
+ *
+ * @param at the transform.
+ * @param flatness the flatness.
+ * @return A path iterator.
+ */
+ public PathIterator getPathIterator(AffineTransform at, double flatness)
+ {
+ return new FlatteningPathIterator(getPathIterator(at), flatness);
+ }
+
+ //---------------------------------------------------------------------
+ // Non-public methods and classes
+
+ /**
+ * Private pathiterator object.
+ */
+ private class AreaIterator implements PathIterator
+ {
+ private Vector segments;
+ private int index;
+ private AffineTransform at;
+
+ // Simple compound type for segments
+ class IteratorSegment
+ {
+ int type;
+ double[] coords;
+
+ IteratorSegment()
+ {
+ coords = new double[6];
+ }
+ }
+
+ /**
+ * The contructor here does most of the work,
+ * creates a vector of IteratorSegments, which can
+ * readily be returned
+ */
+ public AreaIterator(AffineTransform at)
+ {
+ this.at = at;
+ index = 0;
+ segments = new Vector();
+ Vector allpaths = new Vector();
+ allpaths.addAll(solids);
+ allpaths.addAll(holes);
+
+ for (int i = 0; i < allpaths.size(); i++)
+ {
+ Segment v = (Segment) allpaths.elementAt(i);
+ Segment start = v;
+
+ IteratorSegment is = new IteratorSegment();
+ is.type = SEG_MOVETO;
+ is.coords[0] = start.P1.getX();
+ is.coords[1] = start.P1.getY();
+ segments.add(is);
+
+ do
+ {
+ is = new IteratorSegment();
+ is.type = v.pathIteratorFormat(is.coords);
+ segments.add(is);
+ v = v.next;
+ }
+ while (v != start);
+
+ is = new IteratorSegment();
+ is.type = SEG_CLOSE;
+ segments.add(is);
+ }
+ }
+
+ public int currentSegment(double[] coords)
+ {
+ IteratorSegment s = (IteratorSegment) segments.elementAt(index);
+ if (at != null)
+ at.transform(s.coords, 0, coords, 0, 3);
+ else
+ for (int i = 0; i < 6; i++)
+ coords[i] = s.coords[i];
+ return (s.type);
+ }
+
+ public int currentSegment(float[] coords)
+ {
+ IteratorSegment s = (IteratorSegment) segments.elementAt(index);
+ double[] d = new double[6];
+ if (at != null)
+ {
+ at.transform(s.coords, 0, d, 0, 3);
+ for (int i = 0; i < 6; i++)
+ coords[i] = (float) d[i];
+ }
+ else
+ for (int i = 0; i < 6; i++)
+ coords[i] = (float) s.coords[i];
+ return (s.type);
+ }
+
+ // Note that the winding rule should not matter here,
+ // EVEN_ODD is chosen because it renders faster.
+ public int getWindingRule()
+ {
+ return (PathIterator.WIND_EVEN_ODD);
+ }
+
+ public boolean isDone()
+ {
+ return (index >= segments.size());
+ }
+
+ public void next()
+ {
+ index++;
+ }
+ }
+
+ /**
+ * Performs the fundamental task of the Weiler-Atherton algorithm,
+ * traverse a list of segments, for each segment:
+ * Follow it, removing segments from the list and switching paths
+ * at each node. Do so until the starting segment is reached.
+ *
+ * Returns a Vector of the resulting paths.
+ */
+ private Vector weilerAtherton(Vector segments)
+ {
+ Vector paths = new Vector();
+ while (segments.size() > 0)
+ {
+ // Iterate over the path
+ Segment start = (Segment) segments.elementAt(0);
+ Segment s = start;
+ do
+ {
+ segments.remove(s);
+ if (s.node != null)
+ { // switch over
+ s.next = s.node;
+ s.node = null;
+ }
+ s = s.next; // continue
+ }
+ while (s != start);
+
+ paths.add(start);
+ }
+ return paths;
+ }
+
+ /**
+ * A small wrapper class to store intersection points
+ */
+ private class Intersection
+ {
+ Point2D p; // the 2D point of intersection
+ double ta; // the parametric value on a
+ double tb; // the parametric value on b
+ Segment seg; // segment placeholder for node setting
+
+ public Intersection(Point2D p, double ta, double tb)
+ {
+ this.p = p;
+ this.ta = ta;
+ this.tb = tb;
+ }
+ }
+
+ /**
+ * Returns the recursion depth necessary to approximate the
+ * curve by line segments within the error RS_EPSILON.
+ *
+ * This is done with Wang's formula:
+ * L0 = max{0<=i<=N-2}(|xi - 2xi+1 + xi+2|,|yi - 2yi+1 + yi+2|)
+ * r0 = log4(sqrt(2)*N*(N-1)*L0/8e)
+ * Where e is the maximum distance error (RS_EPSILON)
+ */
+ private int getRecursionDepth(CubicSegment curve)
+ {
+ double x0 = curve.P1.getX();
+ double y0 = curve.P1.getY();
+
+ double x1 = curve.cp1.getX();
+ double y1 = curve.cp1.getY();
+
+ double x2 = curve.cp2.getX();
+ double y2 = curve.cp2.getY();
+
+ double x3 = curve.P2.getX();
+ double y3 = curve.P2.getY();
+
+ double L0 = Math.max(Math.max(Math.abs(x0 - 2 * x1 + x2),
+ Math.abs(x1 - 2 * x2 + x3)),
+ Math.max(Math.abs(y0 - 2 * y1 + y2),
+ Math.abs(y1 - 2 * y2 + y3)));
+
+ double f = Math.sqrt(2) * 6.0 * L0 / (8.0 * RS_EPSILON);
+
+ int r0 = (int) Math.ceil(Math.log(f) / Math.log(4.0));
+ return (r0);
+ }
+
+ /**
+ * Performs recursive subdivision:
+ * @param c1 - curve 1
+ * @param c2 - curve 2
+ * @param depth1 - recursion depth of curve 1
+ * @param depth2 - recursion depth of curve 2
+ * @param t1 - global parametric value of the first curve's starting point
+ * @param t2 - global parametric value of the second curve's starting point
+ * @param w1 - global parametric length of curve 1
+ * @param w2 - global parametric length of curve 2
+ *
+ * The final four parameters are for keeping track of the parametric
+ * value of the curve. For a full curve t = 0, w = 1, w is halved with
+ * each subdivision.
+ */
+ private void recursiveSubdivide(CubicCurve2D c1, CubicCurve2D c2,
+ int depth1, int depth2, double t1,
+ double t2, double w1, double w2)
+ {
+ boolean flat1 = depth1 <= 0;
+ boolean flat2 = depth2 <= 0;
+
+ if (flat1 && flat2)
+ {
+ double xlk = c1.getP2().getX() - c1.getP1().getX();
+ double ylk = c1.getP2().getY() - c1.getP1().getY();
+
+ double xnm = c2.getP2().getX() - c2.getP1().getX();
+ double ynm = c2.getP2().getY() - c2.getP1().getY();
+
+ double xmk = c2.getP1().getX() - c1.getP1().getX();
+ double ymk = c2.getP1().getY() - c1.getP1().getY();
+ double det = xnm * ylk - ynm * xlk;
+
+ if (det + 1.0 == 1.0)
+ return;
+
+ double detinv = 1.0 / det;
+ double s = (xnm * ymk - ynm * xmk) * detinv;
+ double t = (xlk * ymk - ylk * xmk) * detinv;
+ if ((s < 0.0) || (s > 1.0) || (t < 0.0) || (t > 1.0))
+ return;
+
+ double[] temp = new double[2];
+ temp[0] = t1 + s * w1;
+ temp[1] = t2 + t * w1;
+ cc_intersections.add(temp);
+ return;
+ }
+
+ CubicCurve2D.Double c11 = new CubicCurve2D.Double();
+ CubicCurve2D.Double c12 = new CubicCurve2D.Double();
+ CubicCurve2D.Double c21 = new CubicCurve2D.Double();
+ CubicCurve2D.Double c22 = new CubicCurve2D.Double();
+
+ if (! flat1 && ! flat2)
+ {
+ depth1--;
+ depth2--;
+ w1 = w1 * 0.5;
+ w2 = w2 * 0.5;
+ c1.subdivide(c11, c12);
+ c2.subdivide(c21, c22);
+ if (c11.getBounds2D().intersects(c21.getBounds2D()))
+ recursiveSubdivide(c11, c21, depth1, depth2, t1, t2, w1, w2);
+ if (c11.getBounds2D().intersects(c22.getBounds2D()))
+ recursiveSubdivide(c11, c22, depth1, depth2, t1, t2 + w2, w1, w2);
+ if (c12.getBounds2D().intersects(c21.getBounds2D()))
+ recursiveSubdivide(c12, c21, depth1, depth2, t1 + w1, t2, w1, w2);
+ if (c12.getBounds2D().intersects(c22.getBounds2D()))
+ recursiveSubdivide(c12, c22, depth1, depth2, t1 + w1, t2 + w2, w1, w2);
+ return;
+ }
+
+ if (! flat1)
+ {
+ depth1--;
+ c1.subdivide(c11, c12);
+ w1 = w1 * 0.5;
+ if (c11.getBounds2D().intersects(c2.getBounds2D()))
+ recursiveSubdivide(c11, c2, depth1, depth2, t1, t2, w1, w2);
+ if (c12.getBounds2D().intersects(c2.getBounds2D()))
+ recursiveSubdivide(c12, c2, depth1, depth2, t1 + w1, t2, w1, w2);
+ return;
+ }
+
+ depth2--;
+ c2.subdivide(c21, c22);
+ w2 = w2 * 0.5;
+ if (c1.getBounds2D().intersects(c21.getBounds2D()))
+ recursiveSubdivide(c1, c21, depth1, depth2, t1, t2, w1, w2);
+ if (c1.getBounds2D().intersects(c22.getBounds2D()))
+ recursiveSubdivide(c1, c22, depth1, depth2, t1, t2 + w2, w1, w2);
+ }
+
+ /**
+ * Returns a set of interesections between two Cubic segments
+ * Or null if no intersections were found.
+ *
+ * The method used to find the intersection is recursive midpoint
+ * subdivision. Outline description:
+ *
+ * 1) Check if the bounding boxes of the curves intersect,
+ * 2) If so, divide the curves in the middle and test the bounding
+ * boxes again,
+ * 3) Repeat until a maximum recursion depth has been reached, where
+ * the intersecting curves can be approximated by line segments.
+ *
+ * This is a reasonably accurate method, although the recursion depth
+ * is typically around 20, the bounding-box tests allow for significant
+ * pruning of the subdivision tree.
+ *
+ * This is package-private to avoid an accessor method.
+ */
+ Intersection[] cubicCubicIntersect(CubicSegment curve1, CubicSegment curve2)
+ {
+ Rectangle2D r1 = curve1.getBounds();
+ Rectangle2D r2 = curve2.getBounds();
+
+ if (! r1.intersects(r2))
+ return null;
+
+ cc_intersections = new Vector();
+ recursiveSubdivide(curve1.getCubicCurve2D(), curve2.getCubicCurve2D(),
+ getRecursionDepth(curve1), getRecursionDepth(curve2),
+ 0.0, 0.0, 1.0, 1.0);
+
+ if (cc_intersections.size() == 0)
+ return null;
+
+ Intersection[] results = new Intersection[cc_intersections.size()];
+ for (int i = 0; i < cc_intersections.size(); i++)
+ {
+ double[] temp = (double[]) cc_intersections.elementAt(i);
+ results[i] = new Intersection(curve1.evaluatePoint(temp[0]), temp[0],
+ temp[1]);
+ }
+ cc_intersections = null;
+ return (results);
+ }
+
+ /**
+ * Returns the intersections between a line and a quadratic bezier
+ * Or null if no intersections are found1
+ * This is done through combining the line's equation with the
+ * parametric form of the Bezier and solving the resulting quadratic.
+ * This is package-private to avoid an accessor method.
+ */
+ Intersection[] lineQuadIntersect(LineSegment l, QuadSegment c)
+ {
+ double[] y = new double[3];
+ double[] x = new double[3];
+ double[] r = new double[3];
+ int nRoots;
+ double x0 = c.P1.getX();
+ double y0 = c.P1.getY();
+ double x1 = c.cp.getX();
+ double y1 = c.cp.getY();
+ double x2 = c.P2.getX();
+ double y2 = c.P2.getY();
+
+ double lx0 = l.P1.getX();
+ double ly0 = l.P1.getY();
+ double lx1 = l.P2.getX();
+ double ly1 = l.P2.getY();
+ double dx = lx1 - lx0;
+ double dy = ly1 - ly0;
+
+ // form r(t) = y(t) - x(t) for the bezier
+ y[0] = y0;
+ y[1] = 2 * (y1 - y0);
+ y[2] = (y2 - 2 * y1 + y0);
+
+ x[0] = x0;
+ x[1] = 2 * (x1 - x0);
+ x[2] = (x2 - 2 * x1 + x0);
+
+ // a point, not a line
+ if (dy == 0 && dx == 0)
+ return null;
+
+ // line on y axis
+ if (dx == 0 || (dy / dx) > 1.0)
+ {
+ double k = dx / dy;
+ x[0] -= lx0;
+ y[0] -= ly0;
+ y[0] *= k;
+ y[1] *= k;
+ y[2] *= k;
+ }
+ else
+ {
+ double k = dy / dx;
+ x[0] -= lx0;
+ y[0] -= ly0;
+ x[0] *= k;
+ x[1] *= k;
+ x[2] *= k;
+ }
+
+ for (int i = 0; i < 3; i++)
+ r[i] = y[i] - x[i];
+
+ if ((nRoots = QuadCurve2D.solveQuadratic(r)) > 0)
+ {
+ Intersection[] temp = new Intersection[nRoots];
+ int intersections = 0;
+ for (int i = 0; i < nRoots; i++)
+ {
+ double t = r[i];
+ if (t >= 0.0 && t <= 1.0)
+ {
+ Point2D p = c.evaluatePoint(t);
+
+ // if the line is on an axis, snap the point to that axis.
+ if (dx == 0)
+ p.setLocation(lx0, p.getY());
+ if (dy == 0)
+ p.setLocation(p.getX(), ly0);
+
+ if (p.getX() <= Math.max(lx0, lx1)
+ && p.getX() >= Math.min(lx0, lx1)
+ && p.getY() <= Math.max(ly0, ly1)
+ && p.getY() >= Math.min(ly0, ly1))
+ {
+ double lineparameter = p.distance(l.P1) / l.P2.distance(l.P1);
+ temp[i] = new Intersection(p, lineparameter, t);
+ intersections++;
+ }
+ }
+ else
+ temp[i] = null;
+ }
+ if (intersections == 0)
+ return null;
+
+ Intersection[] rValues = new Intersection[intersections];
+
+ for (int i = 0; i < nRoots; i++)
+ if (temp[i] != null)
+ rValues[--intersections] = temp[i];
+ return (rValues);
+ }
+ return null;
+ }
+
+ /**
+ * Returns the intersections between a line and a cubic segment
+ * This is done through combining the line's equation with the
+ * parametric form of the Bezier and solving the resulting quadratic.
+ * This is package-private to avoid an accessor method.
+ */
+ Intersection[] lineCubicIntersect(LineSegment l, CubicSegment c)
+ {
+ double[] y = new double[4];
+ double[] x = new double[4];
+ double[] r = new double[4];
+ int nRoots;
+ double x0 = c.P1.getX();
+ double y0 = c.P1.getY();
+ double x1 = c.cp1.getX();
+ double y1 = c.cp1.getY();
+ double x2 = c.cp2.getX();
+ double y2 = c.cp2.getY();
+ double x3 = c.P2.getX();
+ double y3 = c.P2.getY();
+
+ double lx0 = l.P1.getX();
+ double ly0 = l.P1.getY();
+ double lx1 = l.P2.getX();
+ double ly1 = l.P2.getY();
+ double dx = lx1 - lx0;
+ double dy = ly1 - ly0;
+
+ // form r(t) = y(t) - x(t) for the bezier
+ y[0] = y0;
+ y[1] = 3 * (y1 - y0);
+ y[2] = 3 * (y2 + y0 - 2 * y1);
+ y[3] = y3 - 3 * y2 + 3 * y1 - y0;
+
+ x[0] = x0;
+ x[1] = 3 * (x1 - x0);
+ x[2] = 3 * (x2 + x0 - 2 * x1);
+ x[3] = x3 - 3 * x2 + 3 * x1 - x0;
+
+ // a point, not a line
+ if (dy == 0 && dx == 0)
+ return null;
+
+ // line on y axis
+ if (dx == 0 || (dy / dx) > 1.0)
+ {
+ double k = dx / dy;
+ x[0] -= lx0;
+ y[0] -= ly0;
+ y[0] *= k;
+ y[1] *= k;
+ y[2] *= k;
+ y[3] *= k;
+ }
+ else
+ {
+ double k = dy / dx;
+ x[0] -= lx0;
+ y[0] -= ly0;
+ x[0] *= k;
+ x[1] *= k;
+ x[2] *= k;
+ x[3] *= k;
+ }
+ for (int i = 0; i < 4; i++)
+ r[i] = y[i] - x[i];
+
+ if ((nRoots = CubicCurve2D.solveCubic(r)) > 0)
+ {
+ Intersection[] temp = new Intersection[nRoots];
+ int intersections = 0;
+ for (int i = 0; i < nRoots; i++)
+ {
+ double t = r[i];
+ if (t >= 0.0 && t <= 1.0)
+ {
+ // if the line is on an axis, snap the point to that axis.
+ Point2D p = c.evaluatePoint(t);
+ if (dx == 0)
+ p.setLocation(lx0, p.getY());
+ if (dy == 0)
+ p.setLocation(p.getX(), ly0);
+
+ if (p.getX() <= Math.max(lx0, lx1)
+ && p.getX() >= Math.min(lx0, lx1)
+ && p.getY() <= Math.max(ly0, ly1)
+ && p.getY() >= Math.min(ly0, ly1))
+ {
+ double lineparameter = p.distance(l.P1) / l.P2.distance(l.P1);
+ temp[i] = new Intersection(p, lineparameter, t);
+ intersections++;
+ }
+ }
+ else
+ temp[i] = null;
+ }
+
+ if (intersections == 0)
+ return null;
+
+ Intersection[] rValues = new Intersection[intersections];
+ for (int i = 0; i < nRoots; i++)
+ if (temp[i] != null)
+ rValues[--intersections] = temp[i];
+ return (rValues);
+ }
+ return null;
+ }
+
+ /**
+ * Returns the intersection between two lines, or null if there is no
+ * intersection.
+ * This is package-private to avoid an accessor method.
+ */
+ Intersection linesIntersect(LineSegment a, LineSegment b)
+ {
+ Point2D P1 = a.P1;
+ Point2D P2 = a.P2;
+ Point2D P3 = b.P1;
+ Point2D P4 = b.P2;
+
+ if (! Line2D.linesIntersect(P1.getX(), P1.getY(), P2.getX(), P2.getY(),
+ P3.getX(), P3.getY(), P4.getX(), P4.getY()))
+ return null;
+
+ double x1 = P1.getX();
+ double y1 = P1.getY();
+ double rx = P2.getX() - x1;
+ double ry = P2.getY() - y1;
+
+ double x2 = P3.getX();
+ double y2 = P3.getY();
+ double sx = P4.getX() - x2;
+ double sy = P4.getY() - y2;
+
+ double determinant = sx * ry - sy * rx;
+ double nom = (sx * (y2 - y1) + sy * (x1 - x2));
+
+ // Parallel lines don't intersect. At least we pretend they don't.
+ if (Math.abs(determinant) < EPSILON)
+ return null;
+
+ nom = nom / determinant;
+
+ if (nom == 0.0)
+ return null;
+ if (nom == 1.0)
+ return null;
+
+ Point2D p = new Point2D.Double(x1 + nom * rx, y1 + nom * ry);
+
+ return new Intersection(p, p.distance(P1) / P1.distance(P2),
+ p.distance(P3) / P3.distance(P4));
+ }
+
+ /**
+ * Determines if two points are equal, within an error margin
+ * 'snap distance'
+ * This is package-private to avoid an accessor method.
+ */
+ boolean pointEquals(Point2D a, Point2D b)
+ {
+ return (a.equals(b) || a.distance(b) < PE_EPSILON);
+ }
+
+ /**
+ * Helper method
+ * Turns a shape into a Vector of Segments
+ */
+ private Vector makeSegment(Shape s)
+ {
+ Vector paths = new Vector();
+ PathIterator pi = s.getPathIterator(null);
+ double[] coords = new double[6];
+ Segment subpath = null;
+ Segment current = null;
+ double cx;
+ double cy;
+ double subpathx;
+ double subpathy;
+ cx = cy = subpathx = subpathy = 0.0;
+
+ this.windingRule = pi.getWindingRule();
+
+ while (! pi.isDone())
+ {
+ Segment v;
+ switch (pi.currentSegment(coords))
+ {
+ case PathIterator.SEG_MOVETO:
+ if (subpath != null)
+ { // close existing open path
+ current.next = new LineSegment(cx, cy, subpathx, subpathy);
+ current = current.next;
+ current.next = subpath;
+ }
+ subpath = null;
+ subpathx = cx = coords[0];
+ subpathy = cy = coords[1];
+ break;
+
+ // replace 'close' with a line-to.
+ case PathIterator.SEG_CLOSE:
+ if (subpath != null && (subpathx != cx || subpathy != cy))
+ {
+ current.next = new LineSegment(cx, cy, subpathx, subpathy);
+ current = current.next;
+ current.next = subpath;
+ cx = subpathx;
+ cy = subpathy;
+ subpath = null;
+ }
+ else if (subpath != null)
+ {
+ current.next = subpath;
+ subpath = null;
+ }
+ break;
+ case PathIterator.SEG_LINETO:
+ if (cx != coords[0] || cy != coords[1])
+ {
+ v = new LineSegment(cx, cy, coords[0], coords[1]);
+ if (subpath == null)
+ {
+ subpath = current = v;
+ paths.add(subpath);
+ }
+ else
+ {
+ current.next = v;
+ current = current.next;
+ }
+ cx = coords[0];
+ cy = coords[1];
+ }
+ break;
+ case PathIterator.SEG_QUADTO:
+ v = new QuadSegment(cx, cy, coords[0], coords[1], coords[2],
+ coords[3]);
+ if (subpath == null)
+ {
+ subpath = current = v;
+ paths.add(subpath);
+ }
+ else
+ {
+ current.next = v;
+ current = current.next;
+ }
+ cx = coords[2];
+ cy = coords[3];
+ break;
+ case PathIterator.SEG_CUBICTO:
+ v = new CubicSegment(cx, cy, coords[0], coords[1], coords[2],
+ coords[3], coords[4], coords[5]);
+ if (subpath == null)
+ {
+ subpath = current = v;
+ paths.add(subpath);
+ }
+ else
+ {
+ current.next = v;
+ current = current.next;
+ }
+
+ // check if the cubic is self-intersecting
+ double[] lpts = ((CubicSegment) v).getLoop();
+ if (lpts != null)
+ {
+ // if it is, break off the loop into its own path.
+ v.subdivideInsert(lpts[0]);
+ v.next.subdivideInsert((lpts[1] - lpts[0]) / (1.0 - lpts[0]));
+
+ CubicSegment loop = (CubicSegment) v.next;
+ v.next = loop.next;
+ loop.next = loop;
+
+ v.P2 = v.next.P1 = loop.P2 = loop.P1; // snap points
+ paths.add(loop);
+ current = v.next;
+ }
+
+ cx = coords[4];
+ cy = coords[5];
+ break;
+ }
+ pi.next();
+ }
+
+ if (subpath != null)
+ { // close any open path
+ if (subpathx != cx || subpathy != cy)
+ {
+ current.next = new LineSegment(cx, cy, subpathx, subpathy);
+ current = current.next;
+ current.next = subpath;
+ }
+ else
+ current.next = subpath;
+ }
+
+ if (paths.size() == 0)
+ return (null);
+
+ return (paths);
+ }
+
+ /**
+ * Find the intersections of two separate closed paths,
+ * A and B, split the segments at the intersection points,
+ * and create nodes pointing from one to the other
+ */
+ private int createNodes(Segment A, Segment B)
+ {
+ int nNodes = 0;
+
+ Segment a = A;
+ Segment b = B;
+
+ do
+ {
+ do
+ {
+ nNodes += a.splitIntersections(b);
+ b = b.next;
+ }
+ while (b != B);
+
+ a = a.next; // move to the next segment
+ }
+ while (a != A); // until one wrap.
+
+ return (nNodes);
+ }
+
+ /**
+ * Find the intersections of a path with itself.
+ * Splits the segments at the intersection points,
+ * and create nodes pointing from one to the other.
+ */
+ private int createNodesSelf(Segment A)
+ {
+ int nNodes = 0;
+ Segment a = A;
+
+ if (A.next == A)
+ return 0;
+
+ do
+ {
+ Segment b = a.next;
+ do
+ {
+ if (b != a) // necessary
+ nNodes += a.splitIntersections(b);
+ b = b.next;
+ }
+ while (b != A);
+ a = a.next; // move to the next segment
+ }
+ while (a != A); // until one wrap.
+
+ return (nNodes);
+ }
+
+ /**
+ * Deletes paths which are redundant from a list, (i.e. solid areas within
+ * solid areas) Clears any nodes. Sorts the remaining paths into solids
+ * and holes, sets their orientation and sets the solids and holes lists.
+ */
+ private void deleteRedundantPaths(Vector paths)
+ {
+ int npaths = paths.size();
+
+ int[][] contains = new int[npaths][npaths];
+ int[][] windingNumbers = new int[npaths][2];
+ int neg;
+ Rectangle2D[] bb = new Rectangle2D[npaths]; // path bounding boxes
+
+ neg = ((windingRule == PathIterator.WIND_NON_ZERO) ? -1 : 1);
+
+ for (int i = 0; i < npaths; i++)
+ bb[i] = ((Segment) paths.elementAt(i)).getPathBounds();
+
+ // Find which path contains which, assign winding numbers
+ for (int i = 0; i < npaths; i++)
+ {
+ Segment pathA = (Segment) paths.elementAt(i);
+ pathA.nullNodes(); // remove any now-redundant nodes, in case.
+ int windingA = pathA.hasClockwiseOrientation() ? 1 : neg;
+
+ for (int j = 0; j < npaths; j++)
+ if (i != j)
+ {
+ Segment pathB = (Segment) paths.elementAt(j);
+
+ // A contains B
+ if (bb[i].intersects(bb[j]))
+ {
+ Segment s = pathB.next;
+ while (s.P1.getY() == s.P2.getY() && s != pathB)
+ s = s.next;
+ Point2D p = s.getMidPoint();
+ if (pathA.contains(p.getX(), p.getY()))
+ contains[i][j] = windingA;
+ }
+ else
+ // A does not contain B
+ contains[i][j] = 0;
+ }
+ else
+ contains[i][j] = windingA; // i == j
+ }
+
+ for (int i = 0; i < npaths; i++)
+ {
+ windingNumbers[i][0] = 0;
+ for (int j = 0; j < npaths; j++)
+ windingNumbers[i][0] += contains[j][i];
+ windingNumbers[i][1] = contains[i][i];
+ }
+
+ Vector solids = new Vector();
+ Vector holes = new Vector();
+
+ if (windingRule == PathIterator.WIND_NON_ZERO)
+ {
+ for (int i = 0; i < npaths; i++)
+ {
+ if (windingNumbers[i][0] == 0)
+ holes.add(paths.elementAt(i));
+ else if (windingNumbers[i][0] - windingNumbers[i][1] == 0
+ && Math.abs(windingNumbers[i][0]) == 1)
+ solids.add(paths.elementAt(i));
+ }
+ }
+ else
+ {
+ windingRule = PathIterator.WIND_NON_ZERO;
+ for (int i = 0; i < npaths; i++)
+ {
+ if ((windingNumbers[i][0] & 1) == 0)
+ holes.add(paths.elementAt(i));
+ else if ((windingNumbers[i][0] & 1) == 1)
+ solids.add(paths.elementAt(i));
+ }
+ }
+
+ setDirection(holes, false);
+ setDirection(solids, true);
+ this.holes = holes;
+ this.solids = solids;
+ }
+
+ /**
+ * Sets the winding direction of a Vector of paths
+ * @param clockwise gives the direction,
+ * true = clockwise, false = counter-clockwise
+ */
+ private void setDirection(Vector paths, boolean clockwise)
+ {
+ Segment v;
+ for (int i = 0; i < paths.size(); i++)
+ {
+ v = (Segment) paths.elementAt(i);
+ if (clockwise != v.hasClockwiseOrientation())
+ v.reverseAll();
+ }
+ }
+
+ /**
+ * Class representing a linked-list of vertices forming a closed polygon,
+ * convex or concave, without holes.
+ */
+ private abstract class Segment implements Cloneable
+ {
+ // segment type, PathIterator segment types are used.
+ Point2D P1;
+ Point2D P2;
+ Segment next;
+ Segment node;
+
+ Segment()
+ {
+ P1 = P2 = null;
+ node = next = null;
+ }
+
+ /**
+ * Reverses the direction of a single segment
+ */
+ abstract void reverseCoords();
+
+ /**
+ * Returns the segment's midpoint
+ */
+ abstract Point2D getMidPoint();
+
+ /**
+ * Returns the bounding box of this segment
+ */
+ abstract Rectangle2D getBounds();
+
+ /**
+ * Transforms a single segment
+ */
+ abstract void transform(AffineTransform at);
+
+ /**
+ * Returns the PathIterator type of a segment
+ */
+ abstract int getType();
+
+ /**
+ */
+ abstract int splitIntersections(Segment b);
+
+ /**
+ * Returns the PathIterator coords of a segment
+ */
+ abstract int pathIteratorFormat(double[] coords);
+
+ /**
+ * Returns the number of intersections on the positive X axis,
+ * with the origin at (x,y), used for contains()-testing
+ *
+ * (Although that could be done by the line-intersect methods,
+ * a dedicated method is better to guarantee consitent handling
+ * of endpoint-special-cases)
+ */
+ abstract int rayCrossing(double x, double y);
+
+ /**
+ * Subdivides the segment at parametric value t, inserting
+ * the new segment into the linked list after this,
+ * such that this becomes [0,t] and this.next becomes [t,1]
+ */
+ abstract void subdivideInsert(double t);
+
+ /**
+ * Returns twice the area of a curve, relative the P1-P2 line
+ * Used for area calculations.
+ */
+ abstract double curveArea();
+
+ /**
+ * Compare two segments.
+ */
+ abstract boolean equals(Segment b);
+
+ /**
+ * Determines if this path of segments contains the point (x,y)
+ */
+ boolean contains(double x, double y)
+ {
+ Segment v = this;
+ int crossings = 0;
+ do
+ {
+ int n = v.rayCrossing(x, y);
+ crossings += n;
+ v = v.next;
+ }
+ while (v != this);
+ return ((crossings & 1) == 1);
+ }
+
+ /**
+ * Nulls all nodes of the path. Clean up any 'hairs'.
+ */
+ void nullNodes()
+ {
+ Segment v = this;
+ do
+ {
+ v.node = null;
+ v = v.next;
+ }
+ while (v != this);
+ }
+
+ /**
+ * Transforms each segment in the closed path
+ */
+ void transformSegmentList(AffineTransform at)
+ {
+ Segment v = this;
+ do
+ {
+ v.transform(at);
+ v = v.next;
+ }
+ while (v != this);
+ }
+
+ /**
+ * Determines the winding direction of the path
+ * By the sign of the area.
+ */
+ boolean hasClockwiseOrientation()
+ {
+ return (getSignedArea() > 0.0);
+ }
+
+ /**
+ * Returns the bounds of this path
+ */
+ public Rectangle2D getPathBounds()
+ {
+ double xmin;
+ double xmax;
+ double ymin;
+ double ymax;
+ xmin = xmax = P1.getX();
+ ymin = ymax = P1.getY();
+
+ Segment v = this;
+ do
+ {
+ Rectangle2D r = v.getBounds();
+ xmin = Math.min(r.getMinX(), xmin);
+ ymin = Math.min(r.getMinY(), ymin);
+ xmax = Math.max(r.getMaxX(), xmax);
+ ymax = Math.max(r.getMaxY(), ymax);
+ v = v.next;
+ }
+ while (v != this);
+
+ return (new Rectangle2D.Double(xmin, ymin, (xmax - xmin), (ymax - ymin)));
+ }
+
+ /**
+ * Calculates twice the signed area of the path;
+ */
+ double getSignedArea()
+ {
+ Segment s;
+ double area = 0.0;
+
+ s = this;
+ do
+ {
+ area += s.curveArea();
+
+ area += s.P1.getX() * s.next.P1.getY()
+ - s.P1.getY() * s.next.P1.getX();
+ s = s.next;
+ }
+ while (s != this);
+
+ return area;
+ }
+
+ /**
+ * Reverses the orientation of the whole polygon
+ */
+ void reverseAll()
+ {
+ reverseCoords();
+ Segment v = next;
+ Segment former = this;
+ while (v != this)
+ {
+ v.reverseCoords();
+ Segment vnext = v.next;
+ v.next = former;
+ former = v;
+ v = vnext;
+ }
+ next = former;
+ }
+
+ /**
+ * Inserts a Segment after this one
+ */
+ void insert(Segment v)
+ {
+ Segment n = next;
+ next = v;
+ v.next = n;
+ }
+
+ /**
+ * Returns if this segment path is polygonal
+ */
+ boolean isPolygonal()
+ {
+ Segment v = this;
+ do
+ {
+ if (! (v instanceof LineSegment))
+ return false;
+ v = v.next;
+ }
+ while (v != this);
+ return true;
+ }
+
+ /**
+ * Clones this path
+ */
+ Segment cloneSegmentList() throws CloneNotSupportedException
+ {
+ Vector list = new Vector();
+ Segment v = next;
+
+ while (v != this)
+ {
+ list.add(v);
+ v = v.next;
+ }
+
+ Segment clone = (Segment) this.clone();
+ v = clone;
+ for (int i = 0; i < list.size(); i++)
+ {
+ clone.next = (Segment) ((Segment) list.elementAt(i)).clone();
+ clone = clone.next;
+ }
+ clone.next = v;
+ return v;
+ }
+
+ /**
+ * Creates a node between this segment and segment b
+ * at the given intersection
+ * @return the number of nodes created (0 or 1)
+ */
+ int createNode(Segment b, Intersection i)
+ {
+ Point2D p = i.p;
+ if ((pointEquals(P1, p) || pointEquals(P2, p))
+ && (pointEquals(b.P1, p) || pointEquals(b.P2, p)))
+ return 0;
+
+ subdivideInsert(i.ta);
+ b.subdivideInsert(i.tb);
+
+ // snap points
+ b.P2 = b.next.P1 = P2 = next.P1 = i.p;
+
+ node = b.next;
+ b.node = next;
+ return 1;
+ }
+
+ /**
+ * Creates multiple nodes from a list of intersections,
+ * This must be done in the order of ascending parameters,
+ * and the parameters must be recalculated in accordance
+ * with each split.
+ * @return the number of nodes created
+ */
+ protected int createNodes(Segment b, Intersection[] x)
+ {
+ Vector v = new Vector();
+ for (int i = 0; i < x.length; i++)
+ {
+ Point2D p = x[i].p;
+ if (! ((pointEquals(P1, p) || pointEquals(P2, p))
+ && (pointEquals(b.P1, p) || pointEquals(b.P2, p))))
+ v.add(x[i]);
+ }
+
+ int nNodes = v.size();
+ Intersection[] A = new Intersection[nNodes];
+ Intersection[] B = new Intersection[nNodes];
+ for (int i = 0; i < nNodes; i++)
+ A[i] = B[i] = (Intersection) v.elementAt(i);
+
+ // Create two lists sorted by the parameter
+ // Bubble sort, OK I suppose, since the number of intersections
+ // cannot be larger than 9 (cubic-cubic worst case) anyway
+ for (int i = 0; i < nNodes - 1; i++)
+ {
+ for (int j = i + 1; j < nNodes; j++)
+ {
+ if (A[i].ta > A[j].ta)
+ {
+ Intersection swap = A[i];
+ A[i] = A[j];
+ A[j] = swap;
+ }
+ if (B[i].tb > B[j].tb)
+ {
+ Intersection swap = B[i];
+ B[i] = B[j];
+ B[j] = swap;
+ }
+ }
+ }
+ // subdivide a
+ Segment s = this;
+ for (int i = 0; i < nNodes; i++)
+ {
+ s.subdivideInsert(A[i].ta);
+
+ // renormalize the parameters
+ for (int j = i + 1; j < nNodes; j++)
+ A[j].ta = (A[j].ta - A[i].ta) / (1.0 - A[i].ta);
+
+ A[i].seg = s;
+ s = s.next;
+ }
+
+ // subdivide b, set nodes
+ s = b;
+ for (int i = 0; i < nNodes; i++)
+ {
+ s.subdivideInsert(B[i].tb);
+
+ for (int j = i + 1; j < nNodes; j++)
+ B[j].tb = (B[j].tb - B[i].tb) / (1.0 - B[i].tb);
+
+ // set nodes
+ B[i].seg.node = s.next; // node a -> b
+ s.node = B[i].seg.next; // node b -> a
+
+ // snap points
+ B[i].seg.P2 = B[i].seg.next.P1 = s.P2 = s.next.P1 = B[i].p;
+ s = s.next;
+ }
+ return nNodes;
+ }
+
+ /**
+ * Determines if two paths are equal.
+ * Colinear line segments are ignored in the comparison.
+ */
+ boolean pathEquals(Segment B)
+ {
+ if (! getPathBounds().equals(B.getPathBounds()))
+ return false;
+
+ Segment startA = getTopLeft();
+ Segment startB = B.getTopLeft();
+ Segment a = startA;
+ Segment b = startB;
+ do
+ {
+ if (! a.equals(b))
+ return false;
+
+ if (a instanceof LineSegment)
+ a = ((LineSegment) a).lastCoLinear();
+ if (b instanceof LineSegment)
+ b = ((LineSegment) b).lastCoLinear();
+
+ a = a.next;
+ b = b.next;
+ }
+ while (a != startA && b != startB);
+ return true;
+ }
+
+ /**
+ * Return the segment with the top-leftmost first point
+ */
+ Segment getTopLeft()
+ {
+ Segment v = this;
+ Segment tl = this;
+ do
+ {
+ if (v.P1.getY() < tl.P1.getY())
+ tl = v;
+ else if (v.P1.getY() == tl.P1.getY())
+ {
+ if (v.P1.getX() < tl.P1.getX())
+ tl = v;
+ }
+ v = v.next;
+ }
+ while (v != this);
+ return tl;
+ }
+
+ /**
+ * Returns if the path has a segment outside a shape
+ */
+ boolean isSegmentOutside(Shape shape)
+ {
+ return ! shape.contains(getMidPoint());
+ }
+ } // class Segment
+
+ private class LineSegment extends Segment
+ {
+ public LineSegment(double x1, double y1, double x2, double y2)
+ {
+ super();
+ P1 = new Point2D.Double(x1, y1);
+ P2 = new Point2D.Double(x2, y2);
+ }
+
+ public LineSegment(Point2D p1, Point2D p2)
+ {
+ super();
+ P1 = (Point2D) p1.clone();
+ P2 = (Point2D) p2.clone();
+ }
+
+ /**
+ * Clones this segment
+ */
+ public Object clone()
+ {
+ return new LineSegment(P1, P2);
+ }
+
+ /**
+ * Transforms the segment
+ */
+ void transform(AffineTransform at)
+ {
+ P1 = at.transform(P1, null);
+ P2 = at.transform(P2, null);
+ }
+
+ /**
+ * Swap start and end points
+ */
+ void reverseCoords()
+ {
+ Point2D p = P1;
+ P1 = P2;
+ P2 = p;
+ }
+
+ /**
+ * Returns the segment's midpoint
+ */
+ Point2D getMidPoint()
+ {
+ return (new Point2D.Double(0.5 * (P1.getX() + P2.getX()),
+ 0.5 * (P1.getY() + P2.getY())));
+ }
+
+ /**
+ * Returns twice the area of a curve, relative the P1-P2 line
+ * Obviously, a line does not enclose any area besides the line
+ */
+ double curveArea()
+ {
+ return 0;
+ }
+
+ /**
+ * Returns the PathIterator type of a segment
+ */
+ int getType()
+ {
+ return (PathIterator.SEG_LINETO);
+ }
+
+ /**
+ * Subdivides the segment at parametric value t, inserting
+ * the new segment into the linked list after this,
+ * such that this becomes [0,t] and this.next becomes [t,1]
+ */
+ void subdivideInsert(double t)
+ {
+ Point2D p = new Point2D.Double((P2.getX() - P1.getX()) * t + P1.getX(),
+ (P2.getY() - P1.getY()) * t + P1.getY());
+ insert(new LineSegment(p, P2));
+ P2 = p;
+ next.node = node;
+ node = null;
+ }
+
+ /**
+ * Determines if two line segments are strictly colinear
+ */
+ boolean isCoLinear(LineSegment b)
+ {
+ double x1 = P1.getX();
+ double y1 = P1.getY();
+ double x2 = P2.getX();
+ double y2 = P2.getY();
+ double x3 = b.P1.getX();
+ double y3 = b.P1.getY();
+ double x4 = b.P2.getX();
+ double y4 = b.P2.getY();
+
+ if ((y1 - y3) * (x4 - x3) - (x1 - x3) * (y4 - y3) != 0.0)
+ return false;
+
+ return ((x2 - x1) * (y4 - y3) - (y2 - y1) * (x4 - x3) == 0.0);
+ }
+
+ /**
+ * Return the last segment colinear with this one.
+ * Used in comparing paths.
+ */
+ Segment lastCoLinear()
+ {
+ Segment prev = this;
+ Segment v = next;
+
+ while (v instanceof LineSegment)
+ {
+ if (isCoLinear((LineSegment) v))
+ {
+ prev = v;
+ v = v.next;
+ }
+ else
+ return prev;
+ }
+ return prev;
+ }
+
+ /**
+ * Compare two segments.
+ * We must take into account that the lines may be broken into colinear
+ * subsegments and ignore them.
+ */
+ boolean equals(Segment b)
+ {
+ if (! (b instanceof LineSegment))
+ return false;
+ Point2D p1 = P1;
+ Point2D p3 = b.P1;
+
+ if (! p1.equals(p3))
+ return false;
+
+ Point2D p2 = lastCoLinear().P2;
+ Point2D p4 = ((LineSegment) b).lastCoLinear().P2;
+ return (p2.equals(p4));
+ }
+
+ /**
+ * Returns a line segment
+ */
+ int pathIteratorFormat(double[] coords)
+ {
+ coords[0] = P2.getX();
+ coords[1] = P2.getY();
+ return (PathIterator.SEG_LINETO);
+ }
+
+ /**
+ * Returns if the line has intersections.
+ */
+ boolean hasIntersections(Segment b)
+ {
+ if (b instanceof LineSegment)
+ return (linesIntersect(this, (LineSegment) b) != null);
+
+ if (b instanceof QuadSegment)
+ return (lineQuadIntersect(this, (QuadSegment) b) != null);
+
+ if (b instanceof CubicSegment)
+ return (lineCubicIntersect(this, (CubicSegment) b) != null);
+
+ return false;
+ }
+
+ /**
+ * Splits intersections into nodes,
+ * This one handles line-line, line-quadratic, line-cubic
+ */
+ int splitIntersections(Segment b)
+ {
+ if (b instanceof LineSegment)
+ {
+ Intersection i = linesIntersect(this, (LineSegment) b);
+
+ if (i == null)
+ return 0;
+
+ return createNode(b, i);
+ }
+
+ Intersection[] x = null;
+
+ if (b instanceof QuadSegment)
+ x = lineQuadIntersect(this, (QuadSegment) b);
+
+ if (b instanceof CubicSegment)
+ x = lineCubicIntersect(this, (CubicSegment) b);
+
+ if (x == null)
+ return 0;
+
+ if (x.length == 1)
+ return createNode(b, (Intersection) x[0]);
+
+ return createNodes(b, x);
+ }
+
+ /**
+ * Returns the bounding box of this segment
+ */
+ Rectangle2D getBounds()
+ {
+ return (new Rectangle2D.Double(Math.min(P1.getX(), P2.getX()),
+ Math.min(P1.getY(), P2.getY()),
+ Math.abs(P1.getX() - P2.getX()),
+ Math.abs(P1.getY() - P2.getY())));
+ }
+
+ /**
+ * Returns the number of intersections on the positive X axis,
+ * with the origin at (x,y), used for contains()-testing
+ */
+ int rayCrossing(double x, double y)
+ {
+ double x0 = P1.getX() - x;
+ double y0 = P1.getY() - y;
+ double x1 = P2.getX() - x;
+ double y1 = P2.getY() - y;
+
+ if (y0 * y1 > 0)
+ return 0;
+
+ if (x0 < 0 && x1 < 0)
+ return 0;
+
+ if (y0 == 0.0)
+ y0 -= EPSILON;
+
+ if (y1 == 0.0)
+ y1 -= EPSILON;
+
+ if (Line2D.linesIntersect(x0, y0, x1, y1,
+ EPSILON, 0.0, Double.MAX_VALUE, 0.0))
+ return 1;
+ return 0;
+ }
+ } // class LineSegment
+
+ /**
+ * Quadratic Bezier curve segment
+ *
+ * Note: Most peers don't support quadratics directly, so it might make
+ * sense to represent them as cubics internally and just be done with it.
+ * I think we should be peer-agnostic, however, and stay faithful to the
+ * input geometry types as far as possible.
+ */
+ private class QuadSegment extends Segment
+ {
+ Point2D cp; // control point
+
+ /**
+ * Constructor, takes the coordinates of the start, control,
+ * and end point, respectively.
+ */
+ QuadSegment(double x1, double y1, double cx, double cy, double x2,
+ double y2)
+ {
+ super();
+ P1 = new Point2D.Double(x1, y1);
+ P2 = new Point2D.Double(x2, y2);
+ cp = new Point2D.Double(cx, cy);
+ }
+
+ /**
+ * Clones this segment
+ */
+ public Object clone()
+ {
+ return new QuadSegment(P1.getX(), P1.getY(), cp.getX(), cp.getY(),
+ P2.getX(), P2.getY());
+ }
+
+ /**
+ * Returns twice the area of a curve, relative the P1-P2 line
+ *
+ * The area formula can be derived by using Green's formula in the
+ * plane on the parametric form of the bezier.
+ */
+ double curveArea()
+ {
+ double x0 = P1.getX();
+ double y0 = P1.getY();
+ double x1 = cp.getX();
+ double y1 = cp.getY();
+ double x2 = P2.getX();
+ double y2 = P2.getY();
+
+ double P = (y2 - 2 * y1 + y0);
+ double Q = 2 * (y1 - y0);
+
+ double A = (x2 - 2 * x1 + x0);
+ double B = 2 * (x1 - x0);
+
+ double area = (B * P - A * Q) / 3.0;
+ return (area);
+ }
+
+ /**
+ * Compare two segments.
+ */
+ boolean equals(Segment b)
+ {
+ if (! (b instanceof QuadSegment))
+ return false;
+
+ return (P1.equals(b.P1) && cp.equals(((QuadSegment) b).cp)
+ && P2.equals(b.P2));
+ }
+
+ /**
+ * Returns a Point2D corresponding to the parametric value t
+ * of the curve
+ */
+ Point2D evaluatePoint(double t)
+ {
+ double x0 = P1.getX();
+ double y0 = P1.getY();
+ double x1 = cp.getX();
+ double y1 = cp.getY();
+ double x2 = P2.getX();
+ double y2 = P2.getY();
+
+ return new Point2D.Double(t * t * (x2 - 2 * x1 + x0) + 2 * t * (x1 - x0)
+ + x0,
+ t * t * (y2 - 2 * y1 + y0) + 2 * t * (y1 - y0)
+ + y0);
+ }
+
+ /**
+ * Returns the bounding box of this segment
+ */
+ Rectangle2D getBounds()
+ {
+ double x0 = P1.getX();
+ double y0 = P1.getY();
+ double x1 = cp.getX();
+ double y1 = cp.getY();
+ double x2 = P2.getX();
+ double y2 = P2.getY();
+ double r0;
+ double r1;
+
+ double xmax = Math.max(x0, x2);
+ double ymax = Math.max(y0, y2);
+ double xmin = Math.min(x0, x2);
+ double ymin = Math.min(y0, y2);
+
+ r0 = 2 * (y1 - y0);
+ r1 = 2 * (y2 - 2 * y1 + y0);
+ if (r1 != 0.0)
+ {
+ double t = -r0 / r1;
+ if (t > 0.0 && t < 1.0)
+ {
+ double y = evaluatePoint(t).getY();
+ ymax = Math.max(y, ymax);
+ ymin = Math.min(y, ymin);
+ }
+ }
+ r0 = 2 * (x1 - x0);
+ r1 = 2 * (x2 - 2 * x1 + x0);
+ if (r1 != 0.0)
+ {
+ double t = -r0 / r1;
+ if (t > 0.0 && t < 1.0)
+ {
+ double x = evaluatePoint(t).getY();
+ xmax = Math.max(x, xmax);
+ xmin = Math.min(x, xmin);
+ }
+ }
+
+ return (new Rectangle2D.Double(xmin, ymin, xmax - xmin, ymax - ymin));
+ }
+
+ /**
+ * Returns a cubic segment corresponding to this curve
+ */
+ CubicSegment getCubicSegment()
+ {
+ double x1 = P1.getX() + 2.0 * (cp.getX() - P1.getX()) / 3.0;
+ double y1 = P1.getY() + 2.0 * (cp.getY() - P1.getY()) / 3.0;
+ double x2 = cp.getX() + (P2.getX() - cp.getX()) / 3.0;
+ double y2 = cp.getY() + (P2.getY() - cp.getY()) / 3.0;
+
+ return new CubicSegment(P1.getX(), P1.getY(), x1, y1, x2, y2, P2.getX(),
+ P2.getY());
+ }
+
+ /**
+ * Returns the segment's midpoint
+ */
+ Point2D getMidPoint()
+ {
+ return evaluatePoint(0.5);
+ }
+
+ /**
+ * Returns the PathIterator type of a segment
+ */
+ int getType()
+ {
+ return (PathIterator.SEG_QUADTO);
+ }
+
+ /**
+ * Returns the PathIterator coords of a segment
+ */
+ int pathIteratorFormat(double[] coords)
+ {
+ coords[0] = cp.getX();
+ coords[1] = cp.getY();
+ coords[2] = P2.getX();
+ coords[3] = P2.getY();
+ return (PathIterator.SEG_QUADTO);
+ }
+
+ /**
+ * Returns the number of intersections on the positive X axis,
+ * with the origin at (x,y), used for contains()-testing
+ */
+ int rayCrossing(double x, double y)
+ {
+ double x0 = P1.getX() - x;
+ double y0 = P1.getY() - y;
+ double x1 = cp.getX() - x;
+ double y1 = cp.getY() - y;
+ double x2 = P2.getX() - x;
+ double y2 = P2.getY() - y;
+ double[] r = new double[3];
+ int nRoots;
+ int nCrossings = 0;
+
+ /* check if curve may intersect X+ axis. */
+ if ((x0 > 0.0 || x1 > 0.0 || x2 > 0.0) && (y0 * y1 <= 0 || y1 * y2 <= 0))
+ {
+ if (y0 == 0.0)
+ y0 -= EPSILON;
+ if (y2 == 0.0)
+ y2 -= EPSILON;
+
+ r[0] = y0;
+ r[1] = 2 * (y1 - y0);
+ r[2] = (y2 - 2 * y1 + y0);
+
+ nRoots = QuadCurve2D.solveQuadratic(r);
+ for (int i = 0; i < nRoots; i++)
+ if (r[i] > 0.0f && r[i] < 1.0f)
+ {
+ double t = r[i];
+ if (t * t * (x2 - 2 * x1 + x0) + 2 * t * (x1 - x0) + x0 > 0.0)
+ nCrossings++;
+ }
+ }
+ return nCrossings;
+ }
+
+ /**
+ * Swap start and end points
+ */
+ void reverseCoords()
+ {
+ Point2D temp = P1;
+ P1 = P2;
+ P2 = temp;
+ }
+
+ /**
+ * Splits intersections into nodes,
+ * This one handles quadratic-quadratic only,
+ * Quadratic-line is passed on to the LineSegment class,
+ * Quadratic-cubic is passed on to the CubicSegment class
+ */
+ int splitIntersections(Segment b)
+ {
+ if (b instanceof LineSegment)
+ return (b.splitIntersections(this));
+
+ if (b instanceof CubicSegment)
+ return (b.splitIntersections(this));
+
+ if (b instanceof QuadSegment)
+ {
+ // Use the cubic-cubic intersection routine for quads as well,
+ // Since a quadratic can be exactly described as a cubic, this
+ // should not be a problem;
+ // The recursion depth will be the same in any case.
+ Intersection[] x = cubicCubicIntersect(getCubicSegment(),
+ ((QuadSegment) b)
+ .getCubicSegment());
+ if (x == null)
+ return 0;
+
+ if (x.length == 1)
+ return createNode(b, (Intersection) x[0]);
+
+ return createNodes(b, x);
+ }
+ return 0;
+ }
+
+ /**
+ * Subdivides the segment at parametric value t, inserting
+ * the new segment into the linked list after this,
+ * such that this becomes [0,t] and this.next becomes [t,1]
+ */
+ void subdivideInsert(double t)
+ {
+ double x0 = P1.getX();
+ double y0 = P1.getY();
+ double x1 = cp.getX();
+ double y1 = cp.getY();
+ double x2 = P2.getX();
+ double y2 = P2.getY();
+
+ double p10x = x0 + t * (x1 - x0);
+ double p10y = y0 + t * (y1 - y0);
+ double p11x = x1 + t * (x2 - x1);
+ double p11y = y1 + t * (y2 - y1);
+ double p20x = p10x + t * (p11x - p10x);
+ double p20y = p10y + t * (p11y - p10y);
+
+ insert(new QuadSegment(p20x, p20y, p11x, p11y, x2, y2));
+ P2 = next.P1;
+ cp.setLocation(p10x, p10y);
+
+ next.node = node;
+ node = null;
+ }
+
+ /**
+ * Transforms the segment
+ */
+ void transform(AffineTransform at)
+ {
+ P1 = at.transform(P1, null);
+ P2 = at.transform(P2, null);
+ cp = at.transform(cp, null);
+ }
+ } // class QuadSegment
+
+ /**
+ * Cubic Bezier curve segment
+ */
+ private class CubicSegment extends Segment
+ {
+ Point2D cp1; // control points
+ Point2D cp2; // control points
+
+ /**
+ * Constructor - takes coordinates of the starting point,
+ * first control point, second control point and end point,
+ * respecively.
+ */
+ public CubicSegment(double x1, double y1, double c1x, double c1y,
+ double c2x, double c2y, double x2, double y2)
+ {
+ super();
+ P1 = new Point2D.Double(x1, y1);
+ P2 = new Point2D.Double(x2, y2);
+ cp1 = new Point2D.Double(c1x, c1y);
+ cp2 = new Point2D.Double(c2x, c2y);
+ }
+
+ /**
+ * Clones this segment
+ */
+ public Object clone()
+ {
+ return new CubicSegment(P1.getX(), P1.getY(), cp1.getX(), cp1.getY(),
+ cp2.getX(), cp2.getY(), P2.getX(), P2.getY());
+ }
+
+ /**
+ * Returns twice the area of a curve, relative the P1-P2 line
+ *
+ * The area formula can be derived by using Green's formula in the
+ * plane on the parametric form of the bezier.
+ */
+ double curveArea()
+ {
+ double x0 = P1.getX();
+ double y0 = P1.getY();
+ double x1 = cp1.getX();
+ double y1 = cp1.getY();
+ double x2 = cp2.getX();
+ double y2 = cp2.getY();
+ double x3 = P2.getX();
+ double y3 = P2.getY();
+
+ double P = y3 - 3 * y2 + 3 * y1 - y0;
+ double Q = 3 * (y2 + y0 - 2 * y1);
+ double R = 3 * (y1 - y0);
+
+ double A = x3 - 3 * x2 + 3 * x1 - x0;
+ double B = 3 * (x2 + x0 - 2 * x1);
+ double C = 3 * (x1 - x0);
+
+ double area = (B * P - A * Q) / 5.0 + (C * P - A * R) / 2.0
+ + (C * Q - B * R) / 3.0;
+
+ return (area);
+ }
+
+ /**
+ * Compare two segments.
+ */
+ boolean equals(Segment b)
+ {
+ if (! (b instanceof CubicSegment))
+ return false;
+
+ return (P1.equals(b.P1) && cp1.equals(((CubicSegment) b).cp1)
+ && cp2.equals(((CubicSegment) b).cp2) && P2.equals(b.P2));
+ }
+
+ /**
+ * Returns a Point2D corresponding to the parametric value t
+ * of the curve
+ */
+ Point2D evaluatePoint(double t)
+ {
+ double x0 = P1.getX();
+ double y0 = P1.getY();
+ double x1 = cp1.getX();
+ double y1 = cp1.getY();
+ double x2 = cp2.getX();
+ double y2 = cp2.getY();
+ double x3 = P2.getX();
+ double y3 = P2.getY();
+
+ return new Point2D.Double(-(t * t * t) * (x0 - 3 * x1 + 3 * x2 - x3)
+ + 3 * t * t * (x0 - 2 * x1 + x2)
+ + 3 * t * (x1 - x0) + x0,
+ -(t * t * t) * (y0 - 3 * y1 + 3 * y2 - y3)
+ + 3 * t * t * (y0 - 2 * y1 + y2)
+ + 3 * t * (y1 - y0) + y0);
+ }
+
+ /**
+ * Returns the bounding box of this segment
+ */
+ Rectangle2D getBounds()
+ {
+ double x0 = P1.getX();
+ double y0 = P1.getY();
+ double x1 = cp1.getX();
+ double y1 = cp1.getY();
+ double x2 = cp2.getX();
+ double y2 = cp2.getY();
+ double x3 = P2.getX();
+ double y3 = P2.getY();
+ double[] r = new double[3];
+
+ double xmax = Math.max(x0, x3);
+ double ymax = Math.max(y0, y3);
+ double xmin = Math.min(x0, x3);
+ double ymin = Math.min(y0, y3);
+
+ r[0] = 3 * (y1 - y0);
+ r[1] = 6.0 * (y2 + y0 - 2 * y1);
+ r[2] = 3.0 * (y3 - 3 * y2 + 3 * y1 - y0);
+
+ int n = QuadCurve2D.solveQuadratic(r);
+ for (int i = 0; i < n; i++)
+ {
+ double t = r[i];
+ if (t > 0 && t < 1.0)
+ {
+ double y = evaluatePoint(t).getY();
+ ymax = Math.max(y, ymax);
+ ymin = Math.min(y, ymin);
+ }
+ }
+
+ r[0] = 3 * (x1 - x0);
+ r[1] = 6.0 * (x2 + x0 - 2 * x1);
+ r[2] = 3.0 * (x3 - 3 * x2 + 3 * x1 - x0);
+ n = QuadCurve2D.solveQuadratic(r);
+ for (int i = 0; i < n; i++)
+ {
+ double t = r[i];
+ if (t > 0 && t < 1.0)
+ {
+ double x = evaluatePoint(t).getX();
+ xmax = Math.max(x, xmax);
+ xmin = Math.min(x, xmin);
+ }
+ }
+ return (new Rectangle2D.Double(xmin, ymin, (xmax - xmin), (ymax - ymin)));
+ }
+
+ /**
+ * Returns a CubicCurve2D object corresponding to this segment.
+ */
+ CubicCurve2D getCubicCurve2D()
+ {
+ return new CubicCurve2D.Double(P1.getX(), P1.getY(), cp1.getX(),
+ cp1.getY(), cp2.getX(), cp2.getY(),
+ P2.getX(), P2.getY());
+ }
+
+ /**
+ * Returns the parametric points of self-intersection if the cubic
+ * is self-intersecting, null otherwise.
+ */
+ double[] getLoop()
+ {
+ double x0 = P1.getX();
+ double y0 = P1.getY();
+ double x1 = cp1.getX();
+ double y1 = cp1.getY();
+ double x2 = cp2.getX();
+ double y2 = cp2.getY();
+ double x3 = P2.getX();
+ double y3 = P2.getY();
+ double[] r = new double[4];
+ double k;
+ double R;
+ double T;
+ double A;
+ double B;
+ double[] results = new double[2];
+
+ R = x3 - 3 * x2 + 3 * x1 - x0;
+ T = y3 - 3 * y2 + 3 * y1 - y0;
+
+ // A qudratic
+ if (R == 0.0 && T == 0.0)
+ return null;
+
+ // true cubic
+ if (R != 0.0 && T != 0.0)
+ {
+ A = 3 * (x2 + x0 - 2 * x1) / R;
+ B = 3 * (x1 - x0) / R;
+
+ double P = 3 * (y2 + y0 - 2 * y1) / T;
+ double Q = 3 * (y1 - y0) / T;
+
+ if (A == P || Q == B)
+ return null;
+
+ k = (Q - B) / (A - P);
+ }
+ else
+ {
+ if (R == 0.0)
+ {
+ // quadratic in x
+ k = -(3 * (x1 - x0)) / (3 * (x2 + x0 - 2 * x1));
+ A = 3 * (y2 + y0 - 2 * y1) / T;
+ B = 3 * (y1 - y0) / T;
+ }
+ else
+ {
+ // quadratic in y
+ k = -(3 * (y1 - y0)) / (3 * (y2 + y0 - 2 * y1));
+ A = 3 * (x2 + x0 - 2 * x1) / R;
+ B = 3 * (x1 - x0) / R;
+ }
+ }
+
+ r[0] = -k * k * k - A * k * k - B * k;
+ r[1] = 3 * k * k + 2 * k * A + 2 * B;
+ r[2] = -3 * k;
+ r[3] = 2;
+
+ int n = CubicCurve2D.solveCubic(r);
+ if (n != 3)
+ return null;
+
+ // sort r
+ double t;
+ for (int i = 0; i < 2; i++)
+ for (int j = i + 1; j < 3; j++)
+ if (r[j] < r[i])
+ {
+ t = r[i];
+ r[i] = r[j];
+ r[j] = t;
+ }
+
+ if (Math.abs(r[0] + r[2] - k) < 1E-13)
+ if (r[0] >= 0.0 && r[0] <= 1.0 && r[2] >= 0.0 && r[2] <= 1.0)
+ if (evaluatePoint(r[0]).distance(evaluatePoint(r[2])) < PE_EPSILON * 10)
+ { // we snap the points anyway
+ results[0] = r[0];
+ results[1] = r[2];
+ return (results);
+ }
+ return null;
+ }
+
+ /**
+ * Returns the segment's midpoint
+ */
+ Point2D getMidPoint()
+ {
+ return evaluatePoint(0.5);
+ }
+
+ /**
+ * Returns the PathIterator type of a segment
+ */
+ int getType()
+ {
+ return (PathIterator.SEG_CUBICTO);
+ }
+
+ /**
+ * Returns the PathIterator coords of a segment
+ */
+ int pathIteratorFormat(double[] coords)
+ {
+ coords[0] = cp1.getX();
+ coords[1] = cp1.getY();
+ coords[2] = cp2.getX();
+ coords[3] = cp2.getY();
+ coords[4] = P2.getX();
+ coords[5] = P2.getY();
+ return (PathIterator.SEG_CUBICTO);
+ }
+
+ /**
+ * Returns the number of intersections on the positive X axis,
+ * with the origin at (x,y), used for contains()-testing
+ */
+ int rayCrossing(double x, double y)
+ {
+ double x0 = P1.getX() - x;
+ double y0 = P1.getY() - y;
+ double x1 = cp1.getX() - x;
+ double y1 = cp1.getY() - y;
+ double x2 = cp2.getX() - x;
+ double y2 = cp2.getY() - y;
+ double x3 = P2.getX() - x;
+ double y3 = P2.getY() - y;
+ double[] r = new double[4];
+ int nRoots;
+ int nCrossings = 0;
+
+ /* check if curve may intersect X+ axis. */
+ if ((x0 > 0.0 || x1 > 0.0 || x2 > 0.0 || x3 > 0.0)
+ && (y0 * y1 <= 0 || y1 * y2 <= 0 || y2 * y3 <= 0))
+ {
+ if (y0 == 0.0)
+ y0 -= EPSILON;
+ if (y3 == 0.0)
+ y3 -= EPSILON;
+
+ r[0] = y0;
+ r[1] = 3 * (y1 - y0);
+ r[2] = 3 * (y2 + y0 - 2 * y1);
+ r[3] = y3 - 3 * y2 + 3 * y1 - y0;
+
+ if ((nRoots = CubicCurve2D.solveCubic(r)) > 0)
+ for (int i = 0; i < nRoots; i++)
+ {
+ if (r[i] > 0.0 && r[i] < 1.0)
+ {
+ double t = r[i];
+ if (-(t * t * t) * (x0 - 3 * x1 + 3 * x2 - x3)
+ + 3 * t * t * (x0 - 2 * x1 + x2) + 3 * t * (x1 - x0)
+ + x0 > 0.0)
+ nCrossings++;
+ }
+ }
+ }
+ return nCrossings;
+ }
+
+ /**
+ * Swap start and end points
+ */
+ void reverseCoords()
+ {
+ Point2D p = P1;
+ P1 = P2;
+ P2 = p;
+ p = cp1; // swap control points
+ cp1 = cp2;
+ cp2 = p;
+ }
+
+ /**
+ * Splits intersections into nodes,
+ * This one handles cubic-cubic and cubic-quadratic intersections
+ */
+ int splitIntersections(Segment b)
+ {
+ if (b instanceof LineSegment)
+ return (b.splitIntersections(this));
+
+ Intersection[] x = null;
+
+ if (b instanceof QuadSegment)
+ x = cubicCubicIntersect(this, ((QuadSegment) b).getCubicSegment());
+
+ if (b instanceof CubicSegment)
+ x = cubicCubicIntersect(this, (CubicSegment) b);
+
+ if (x == null)
+ return 0;
+
+ if (x.length == 1)
+ return createNode(b, x[0]);
+
+ return createNodes(b, x);
+ }
+
+ /**
+ * Subdivides the segment at parametric value t, inserting
+ * the new segment into the linked list after this,
+ * such that this becomes [0,t] and this.next becomes [t,1]
+ */
+ void subdivideInsert(double t)
+ {
+ CubicSegment s = (CubicSegment) clone();
+ double p1x = (s.cp1.getX() - s.P1.getX()) * t + s.P1.getX();
+ double p1y = (s.cp1.getY() - s.P1.getY()) * t + s.P1.getY();
+
+ double px = (s.cp2.getX() - s.cp1.getX()) * t + s.cp1.getX();
+ double py = (s.cp2.getY() - s.cp1.getY()) * t + s.cp1.getY();
+
+ s.cp2.setLocation((s.P2.getX() - s.cp2.getX()) * t + s.cp2.getX(),
+ (s.P2.getY() - s.cp2.getY()) * t + s.cp2.getY());
+
+ s.cp1.setLocation((s.cp2.getX() - px) * t + px,
+ (s.cp2.getY() - py) * t + py);
+
+ double p2x = (px - p1x) * t + p1x;
+ double p2y = (py - p1y) * t + p1y;
+
+ double p3x = (s.cp1.getX() - p2x) * t + p2x;
+ double p3y = (s.cp1.getY() - p2y) * t + p2y;
+ s.P1.setLocation(p3x, p3y);
+
+ // insert new curve
+ insert(s);
+
+ // set this curve
+ cp1.setLocation(p1x, p1y);
+ cp2.setLocation(p2x, p2y);
+ P2 = s.P1;
+ next.node = node;
+ node = null;
+ }
+
+ /**
+ * Transforms the segment
+ */
+ void transform(AffineTransform at)
+ {
+ P1 = at.transform(P1, null);
+ P2 = at.transform(P2, null);
+ cp1 = at.transform(cp1, null);
+ cp2 = at.transform(cp2, null);
+ }
+ } // class CubicSegment
+} // class Area
diff --git a/libjava/classpath/java/awt/geom/CubicCurve2D.java b/libjava/classpath/java/awt/geom/CubicCurve2D.java
new file mode 100644
index 000000000..5cb11fe77
--- /dev/null
+++ b/libjava/classpath/java/awt/geom/CubicCurve2D.java
@@ -0,0 +1,1724 @@
+/* CubicCurve2D.java -- represents a parameterized cubic curve in 2-D space
+ Copyright (C) 2002, 2003, 2004 Free Software Foundation
+
+This file is part of GNU Classpath.
+
+GNU Classpath is free software; you can redistribute it and/or modify
+it under the terms of the GNU General Public License as published by
+the Free Software Foundation; either version 2, or (at your option)
+any later version.
+
+GNU Classpath is distributed in the hope that it will be useful, but
+WITHOUT ANY WARRANTY; without even the implied warranty of
+MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
+General Public License for more details.
+
+You should have received a copy of the GNU General Public License
+along with GNU Classpath; see the file COPYING. If not, write to the
+Free Software Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA
+02110-1301 USA.
+
+Linking this library statically or dynamically with other modules is
+making a combined work based on this library. Thus, the terms and
+conditions of the GNU General Public License cover the whole
+combination.
+
+As a special exception, the copyright holders of this library give you
+permission to link this library with independent modules to produce an
+executable, regardless of the license terms of these independent
+modules, and to copy and distribute the resulting executable under
+terms of your choice, provided that you also meet, for each linked
+independent module, the terms and conditions of the license of that
+module. An independent module is a module which is not derived from
+or based on this library. If you modify this library, you may extend
+this exception to your version of the library, but you are not
+obligated to do so. If you do not wish to do so, delete this
+exception statement from your version. */
+
+package java.awt.geom;
+
+import java.awt.Rectangle;
+import java.awt.Shape;
+import java.util.NoSuchElementException;
+
+
+/**
+ * A two-dimensional curve that is parameterized with a cubic
+ * function.
+ *
+ * <p><img src="doc-files/CubicCurve2D-1.png" width="350" height="180"
+ * alt="A drawing of a CubicCurve2D" />
+ *
+ * @author Eric Blake (ebb9@email.byu.edu)
+ * @author Graydon Hoare (graydon@redhat.com)
+ * @author Sascha Brawer (brawer@dandelis.ch)
+ * @author Sven de Marothy (sven@physto.se)
+ *
+ * @since 1.2
+ */
+public abstract class CubicCurve2D implements Shape, Cloneable
+{
+ private static final double BIG_VALUE = java.lang.Double.MAX_VALUE / 10.0;
+ private static final double EPSILON = 1E-10;
+
+ /**
+ * Constructs a new CubicCurve2D. Typical users will want to
+ * construct instances of a subclass, such as {@link
+ * CubicCurve2D.Float} or {@link CubicCurve2D.Double}.
+ */
+ protected CubicCurve2D()
+ {
+ }
+
+ /**
+ * Returns the <i>x</i> coordinate of the curve&#x2019;s start
+ * point.
+ */
+ public abstract double getX1();
+
+ /**
+ * Returns the <i>y</i> coordinate of the curve&#x2019;s start
+ * point.
+ */
+ public abstract double getY1();
+
+ /**
+ * Returns the curve&#x2019;s start point.
+ */
+ public abstract Point2D getP1();
+
+ /**
+ * Returns the <i>x</i> coordinate of the curve&#x2019;s first
+ * control point.
+ */
+ public abstract double getCtrlX1();
+
+ /**
+ * Returns the <i>y</i> coordinate of the curve&#x2019;s first
+ * control point.
+ */
+ public abstract double getCtrlY1();
+
+ /**
+ * Returns the curve&#x2019;s first control point.
+ */
+ public abstract Point2D getCtrlP1();
+
+ /**
+ * Returns the <i>x</i> coordinate of the curve&#x2019;s second
+ * control point.
+ */
+ public abstract double getCtrlX2();
+
+ /**
+ * Returns the <i>y</i> coordinate of the curve&#x2019;s second
+ * control point.
+ */
+ public abstract double getCtrlY2();
+
+ /**
+ * Returns the curve&#x2019;s second control point.
+ */
+ public abstract Point2D getCtrlP2();
+
+ /**
+ * Returns the <i>x</i> coordinate of the curve&#x2019;s end
+ * point.
+ */
+ public abstract double getX2();
+
+ /**
+ * Returns the <i>y</i> coordinate of the curve&#x2019;s end
+ * point.
+ */
+ public abstract double getY2();
+
+ /**
+ * Returns the curve&#x2019;s end point.
+ */
+ public abstract Point2D getP2();
+
+ /**
+ * Changes the curve geometry, separately specifying each coordinate
+ * value.
+ *
+ * <p><img src="doc-files/CubicCurve2D-1.png" width="350" height="180"
+ * alt="A drawing of a CubicCurve2D" />
+ *
+ * @param x1 the <i>x</i> coordinate of the curve&#x2019;s new start
+ * point.
+ *
+ * @param y1 the <i>y</i> coordinate of the curve&#x2019;s new start
+ * point.
+ *
+ * @param cx1 the <i>x</i> coordinate of the curve&#x2019;s new
+ * first control point.
+ *
+ * @param cy1 the <i>y</i> coordinate of the curve&#x2019;s new
+ * first control point.
+ *
+ * @param cx2 the <i>x</i> coordinate of the curve&#x2019;s new
+ * second control point.
+ *
+ * @param cy2 the <i>y</i> coordinate of the curve&#x2019;s new
+ * second control point.
+ *
+ * @param x2 the <i>x</i> coordinate of the curve&#x2019;s new end
+ * point.
+ *
+ * @param y2 the <i>y</i> coordinate of the curve&#x2019;s new end
+ * point.
+ */
+ public abstract void setCurve(double x1, double y1, double cx1, double cy1,
+ double cx2, double cy2, double x2, double y2);
+
+ /**
+ * Changes the curve geometry, specifying coordinate values in an
+ * array.
+ *
+ * @param coords an array containing the new coordinate values. The
+ * <i>x</i> coordinate of the new start point is located at
+ * <code>coords[offset]</code>, its <i>y</i> coordinate at
+ * <code>coords[offset + 1]</code>. The <i>x</i> coordinate of the
+ * new first control point is located at <code>coords[offset +
+ * 2]</code>, its <i>y</i> coordinate at <code>coords[offset +
+ * 3]</code>. The <i>x</i> coordinate of the new second control
+ * point is located at <code>coords[offset + 4]</code>, its <i>y</i>
+ * coordinate at <code>coords[offset + 5]</code>. The <i>x</i>
+ * coordinate of the new end point is located at <code>coords[offset
+ * + 6]</code>, its <i>y</i> coordinate at <code>coords[offset +
+ * 7]</code>.
+ *
+ * @param offset the offset of the first coordinate value in
+ * <code>coords</code>.
+ */
+ public void setCurve(double[] coords, int offset)
+ {
+ setCurve(coords[offset++], coords[offset++], coords[offset++],
+ coords[offset++], coords[offset++], coords[offset++],
+ coords[offset++], coords[offset++]);
+ }
+
+ /**
+ * Changes the curve geometry, specifying coordinate values in
+ * separate Point objects.
+ *
+ * <p><img src="doc-files/CubicCurve2D-1.png" width="350" height="180"
+ * alt="A drawing of a CubicCurve2D" />
+ *
+ * <p>The curve does not keep any reference to the passed point
+ * objects. Therefore, a later change to <code>p1</code>,
+ * <code>c1</code>, <code>c2</code> or <code>p2</code> will not
+ * affect the curve geometry.
+ *
+ * @param p1 the new start point.
+ * @param c1 the new first control point.
+ * @param c2 the new second control point.
+ * @param p2 the new end point.
+ */
+ public void setCurve(Point2D p1, Point2D c1, Point2D c2, Point2D p2)
+ {
+ setCurve(p1.getX(), p1.getY(), c1.getX(), c1.getY(), c2.getX(), c2.getY(),
+ p2.getX(), p2.getY());
+ }
+
+ /**
+ * Changes the curve geometry, specifying coordinate values in an
+ * array of Point objects.
+ *
+ * <p><img src="doc-files/CubicCurve2D-1.png" width="350" height="180"
+ * alt="A drawing of a CubicCurve2D" />
+ *
+ * <p>The curve does not keep references to the passed point
+ * objects. Therefore, a later change to the <code>pts</code> array
+ * or any of its elements will not affect the curve geometry.
+ *
+ * @param pts an array containing the points. The new start point
+ * is located at <code>pts[offset]</code>, the new first control
+ * point at <code>pts[offset + 1]</code>, the new second control
+ * point at <code>pts[offset + 2]</code>, and the new end point
+ * at <code>pts[offset + 3]</code>.
+ *
+ * @param offset the offset of the start point in <code>pts</code>.
+ */
+ public void setCurve(Point2D[] pts, int offset)
+ {
+ setCurve(pts[offset].getX(), pts[offset++].getY(), pts[offset].getX(),
+ pts[offset++].getY(), pts[offset].getX(), pts[offset++].getY(),
+ pts[offset].getX(), pts[offset++].getY());
+ }
+
+ /**
+ * Changes the curve geometry to that of another curve.
+ *
+ * @param c the curve whose coordinates will be copied.
+ */
+ public void setCurve(CubicCurve2D c)
+ {
+ setCurve(c.getX1(), c.getY1(), c.getCtrlX1(), c.getCtrlY1(),
+ c.getCtrlX2(), c.getCtrlY2(), c.getX2(), c.getY2());
+ }
+
+ /**
+ * Calculates the squared flatness of a cubic curve, directly
+ * specifying each coordinate value. The flatness is the maximal
+ * distance of a control point to the line between start and end
+ * point.
+ *
+ * <p><img src="doc-files/CubicCurve2D-4.png" width="350" height="180"
+ * alt="A drawing that illustrates the flatness" />
+ *
+ * <p>In the above drawing, the straight line connecting start point
+ * P1 and end point P2 is depicted in gray. In comparison to C1,
+ * control point C2 is father away from the gray line. Therefore,
+ * the result will be the square of the distance between C2 and the
+ * gray line, i.e. the squared length of the red line.
+ *
+ * @param x1 the <i>x</i> coordinate of the start point P1.
+ * @param y1 the <i>y</i> coordinate of the start point P1.
+ * @param cx1 the <i>x</i> coordinate of the first control point C1.
+ * @param cy1 the <i>y</i> coordinate of the first control point C1.
+ * @param cx2 the <i>x</i> coordinate of the second control point C2.
+ * @param cy2 the <i>y</i> coordinate of the second control point C2.
+ * @param x2 the <i>x</i> coordinate of the end point P2.
+ * @param y2 the <i>y</i> coordinate of the end point P2.
+ */
+ public static double getFlatnessSq(double x1, double y1, double cx1,
+ double cy1, double cx2, double cy2,
+ double x2, double y2)
+ {
+ return Math.max(Line2D.ptSegDistSq(x1, y1, x2, y2, cx1, cy1),
+ Line2D.ptSegDistSq(x1, y1, x2, y2, cx2, cy2));
+ }
+
+ /**
+ * Calculates the flatness of a cubic curve, directly specifying
+ * each coordinate value. The flatness is the maximal distance of a
+ * control point to the line between start and end point.
+ *
+ * <p><img src="doc-files/CubicCurve2D-4.png" width="350" height="180"
+ * alt="A drawing that illustrates the flatness" />
+ *
+ * <p>In the above drawing, the straight line connecting start point
+ * P1 and end point P2 is depicted in gray. In comparison to C1,
+ * control point C2 is father away from the gray line. Therefore,
+ * the result will be the distance between C2 and the gray line,
+ * i.e. the length of the red line.
+ *
+ * @param x1 the <i>x</i> coordinate of the start point P1.
+ * @param y1 the <i>y</i> coordinate of the start point P1.
+ * @param cx1 the <i>x</i> coordinate of the first control point C1.
+ * @param cy1 the <i>y</i> coordinate of the first control point C1.
+ * @param cx2 the <i>x</i> coordinate of the second control point C2.
+ * @param cy2 the <i>y</i> coordinate of the second control point C2.
+ * @param x2 the <i>x</i> coordinate of the end point P2.
+ * @param y2 the <i>y</i> coordinate of the end point P2.
+ */
+ public static double getFlatness(double x1, double y1, double cx1,
+ double cy1, double cx2, double cy2,
+ double x2, double y2)
+ {
+ return Math.sqrt(getFlatnessSq(x1, y1, cx1, cy1, cx2, cy2, x2, y2));
+ }
+
+ /**
+ * Calculates the squared flatness of a cubic curve, specifying the
+ * coordinate values in an array. The flatness is the maximal
+ * distance of a control point to the line between start and end
+ * point.
+ *
+ * <p><img src="doc-files/CubicCurve2D-4.png" width="350" height="180"
+ * alt="A drawing that illustrates the flatness" />
+ *
+ * <p>In the above drawing, the straight line connecting start point
+ * P1 and end point P2 is depicted in gray. In comparison to C1,
+ * control point C2 is father away from the gray line. Therefore,
+ * the result will be the square of the distance between C2 and the
+ * gray line, i.e. the squared length of the red line.
+ *
+ * @param coords an array containing the coordinate values. The
+ * <i>x</i> coordinate of the start point P1 is located at
+ * <code>coords[offset]</code>, its <i>y</i> coordinate at
+ * <code>coords[offset + 1]</code>. The <i>x</i> coordinate of the
+ * first control point C1 is located at <code>coords[offset +
+ * 2]</code>, its <i>y</i> coordinate at <code>coords[offset +
+ * 3]</code>. The <i>x</i> coordinate of the second control point C2
+ * is located at <code>coords[offset + 4]</code>, its <i>y</i>
+ * coordinate at <code>coords[offset + 5]</code>. The <i>x</i>
+ * coordinate of the end point P2 is located at <code>coords[offset
+ * + 6]</code>, its <i>y</i> coordinate at <code>coords[offset +
+ * 7]</code>.
+ *
+ * @param offset the offset of the first coordinate value in
+ * <code>coords</code>.
+ */
+ public static double getFlatnessSq(double[] coords, int offset)
+ {
+ return getFlatnessSq(coords[offset++], coords[offset++], coords[offset++],
+ coords[offset++], coords[offset++], coords[offset++],
+ coords[offset++], coords[offset++]);
+ }
+
+ /**
+ * Calculates the flatness of a cubic curve, specifying the
+ * coordinate values in an array. The flatness is the maximal
+ * distance of a control point to the line between start and end
+ * point.
+ *
+ * <p><img src="doc-files/CubicCurve2D-4.png" width="350" height="180"
+ * alt="A drawing that illustrates the flatness" />
+ *
+ * <p>In the above drawing, the straight line connecting start point
+ * P1 and end point P2 is depicted in gray. In comparison to C1,
+ * control point C2 is father away from the gray line. Therefore,
+ * the result will be the distance between C2 and the gray line,
+ * i.e. the length of the red line.
+ *
+ * @param coords an array containing the coordinate values. The
+ * <i>x</i> coordinate of the start point P1 is located at
+ * <code>coords[offset]</code>, its <i>y</i> coordinate at
+ * <code>coords[offset + 1]</code>. The <i>x</i> coordinate of the
+ * first control point C1 is located at <code>coords[offset +
+ * 2]</code>, its <i>y</i> coordinate at <code>coords[offset +
+ * 3]</code>. The <i>x</i> coordinate of the second control point C2
+ * is located at <code>coords[offset + 4]</code>, its <i>y</i>
+ * coordinate at <code>coords[offset + 5]</code>. The <i>x</i>
+ * coordinate of the end point P2 is located at <code>coords[offset
+ * + 6]</code>, its <i>y</i> coordinate at <code>coords[offset +
+ * 7]</code>.
+ *
+ * @param offset the offset of the first coordinate value in
+ * <code>coords</code>.
+ */
+ public static double getFlatness(double[] coords, int offset)
+ {
+ return Math.sqrt(getFlatnessSq(coords[offset++], coords[offset++],
+ coords[offset++], coords[offset++],
+ coords[offset++], coords[offset++],
+ coords[offset++], coords[offset++]));
+ }
+
+ /**
+ * Calculates the squared flatness of this curve. The flatness is
+ * the maximal distance of a control point to the line between start
+ * and end point.
+ *
+ * <p><img src="doc-files/CubicCurve2D-4.png" width="350" height="180"
+ * alt="A drawing that illustrates the flatness" />
+ *
+ * <p>In the above drawing, the straight line connecting start point
+ * P1 and end point P2 is depicted in gray. In comparison to C1,
+ * control point C2 is father away from the gray line. Therefore,
+ * the result will be the square of the distance between C2 and the
+ * gray line, i.e. the squared length of the red line.
+ */
+ public double getFlatnessSq()
+ {
+ return getFlatnessSq(getX1(), getY1(), getCtrlX1(), getCtrlY1(),
+ getCtrlX2(), getCtrlY2(), getX2(), getY2());
+ }
+
+ /**
+ * Calculates the flatness of this curve. The flatness is the
+ * maximal distance of a control point to the line between start and
+ * end point.
+ *
+ * <p><img src="doc-files/CubicCurve2D-4.png" width="350" height="180"
+ * alt="A drawing that illustrates the flatness" />
+ *
+ * <p>In the above drawing, the straight line connecting start point
+ * P1 and end point P2 is depicted in gray. In comparison to C1,
+ * control point C2 is father away from the gray line. Therefore,
+ * the result will be the distance between C2 and the gray line,
+ * i.e. the length of the red line.
+ */
+ public double getFlatness()
+ {
+ return Math.sqrt(getFlatnessSq(getX1(), getY1(), getCtrlX1(), getCtrlY1(),
+ getCtrlX2(), getCtrlY2(), getX2(), getY2()));
+ }
+
+ /**
+ * Subdivides this curve into two halves.
+ *
+ * <p><img src="doc-files/CubicCurve2D-3.png" width="700"
+ * height="180" alt="A drawing that illustrates the effects of
+ * subdividing a CubicCurve2D" />
+ *
+ * @param left a curve whose geometry will be set to the left half
+ * of this curve, or <code>null</code> if the caller is not
+ * interested in the left half.
+ *
+ * @param right a curve whose geometry will be set to the right half
+ * of this curve, or <code>null</code> if the caller is not
+ * interested in the right half.
+ */
+ public void subdivide(CubicCurve2D left, CubicCurve2D right)
+ {
+ // Use empty slots at end to share single array.
+ double[] d = new double[]
+ {
+ getX1(), getY1(), getCtrlX1(), getCtrlY1(), getCtrlX2(),
+ getCtrlY2(), getX2(), getY2(), 0, 0, 0, 0, 0, 0
+ };
+ subdivide(d, 0, d, 0, d, 6);
+ if (left != null)
+ left.setCurve(d, 0);
+ if (right != null)
+ right.setCurve(d, 6);
+ }
+
+ /**
+ * Subdivides a cubic curve into two halves.
+ *
+ * <p><img src="doc-files/CubicCurve2D-3.png" width="700"
+ * height="180" alt="A drawing that illustrates the effects of
+ * subdividing a CubicCurve2D" />
+ *
+ * @param src the curve to be subdivided.
+ *
+ * @param left a curve whose geometry will be set to the left half
+ * of <code>src</code>, or <code>null</code> if the caller is not
+ * interested in the left half.
+ *
+ * @param right a curve whose geometry will be set to the right half
+ * of <code>src</code>, or <code>null</code> if the caller is not
+ * interested in the right half.
+ */
+ public static void subdivide(CubicCurve2D src, CubicCurve2D left,
+ CubicCurve2D right)
+ {
+ src.subdivide(left, right);
+ }
+
+ /**
+ * Subdivides a cubic curve into two halves, passing all coordinates
+ * in an array.
+ *
+ * <p><img src="doc-files/CubicCurve2D-3.png" width="700"
+ * height="180" alt="A drawing that illustrates the effects of
+ * subdividing a CubicCurve2D" />
+ *
+ * <p>The left end point and the right start point will always be
+ * identical. Memory-concious programmers thus may want to pass the
+ * same array for both <code>left</code> and <code>right</code>, and
+ * set <code>rightOff</code> to <code>leftOff + 6</code>.
+ *
+ * @param src an array containing the coordinates of the curve to be
+ * subdivided. The <i>x</i> coordinate of the start point P1 is
+ * located at <code>src[srcOff]</code>, its <i>y</i> at
+ * <code>src[srcOff + 1]</code>. The <i>x</i> coordinate of the
+ * first control point C1 is located at <code>src[srcOff +
+ * 2]</code>, its <i>y</i> at <code>src[srcOff + 3]</code>. The
+ * <i>x</i> coordinate of the second control point C2 is located at
+ * <code>src[srcOff + 4]</code>, its <i>y</i> at <code>src[srcOff +
+ * 5]</code>. The <i>x</i> coordinate of the end point is located at
+ * <code>src[srcOff + 6]</code>, its <i>y</i> at <code>src[srcOff +
+ * 7]</code>.
+ *
+ * @param srcOff an offset into <code>src</code>, specifying
+ * the index of the start point&#x2019;s <i>x</i> coordinate.
+ *
+ * @param left an array that will receive the coordinates of the
+ * left half of <code>src</code>. It is acceptable to pass
+ * <code>src</code>. A caller who is not interested in the left half
+ * can pass <code>null</code>.
+ *
+ * @param leftOff an offset into <code>left</code>, specifying the
+ * index where the start point&#x2019;s <i>x</i> coordinate will be
+ * stored.
+ *
+ * @param right an array that will receive the coordinates of the
+ * right half of <code>src</code>. It is acceptable to pass
+ * <code>src</code> or <code>left</code>. A caller who is not
+ * interested in the right half can pass <code>null</code>.
+ *
+ * @param rightOff an offset into <code>right</code>, specifying the
+ * index where the start point&#x2019;s <i>x</i> coordinate will be
+ * stored.
+ */
+ public static void subdivide(double[] src, int srcOff, double[] left,
+ int leftOff, double[] right, int rightOff)
+ {
+ // To understand this code, please have a look at the image
+ // "CubicCurve2D-3.png" in the sub-directory "doc-files".
+ double src_C1_x;
+ double src_C1_y;
+ double src_C2_x;
+ double src_C2_y;
+ double left_P1_x;
+ double left_P1_y;
+ double left_C1_x;
+ double left_C1_y;
+ double left_C2_x;
+ double left_C2_y;
+ double right_C1_x;
+ double right_C1_y;
+ double right_C2_x;
+ double right_C2_y;
+ double right_P2_x;
+ double right_P2_y;
+ double Mid_x; // Mid = left.P2 = right.P1
+ double Mid_y; // Mid = left.P2 = right.P1
+
+ left_P1_x = src[srcOff];
+ left_P1_y = src[srcOff + 1];
+ src_C1_x = src[srcOff + 2];
+ src_C1_y = src[srcOff + 3];
+ src_C2_x = src[srcOff + 4];
+ src_C2_y = src[srcOff + 5];
+ right_P2_x = src[srcOff + 6];
+ right_P2_y = src[srcOff + 7];
+
+ left_C1_x = (left_P1_x + src_C1_x) / 2;
+ left_C1_y = (left_P1_y + src_C1_y) / 2;
+ right_C2_x = (right_P2_x + src_C2_x) / 2;
+ right_C2_y = (right_P2_y + src_C2_y) / 2;
+ Mid_x = (src_C1_x + src_C2_x) / 2;
+ Mid_y = (src_C1_y + src_C2_y) / 2;
+ left_C2_x = (left_C1_x + Mid_x) / 2;
+ left_C2_y = (left_C1_y + Mid_y) / 2;
+ right_C1_x = (Mid_x + right_C2_x) / 2;
+ right_C1_y = (Mid_y + right_C2_y) / 2;
+ Mid_x = (left_C2_x + right_C1_x) / 2;
+ Mid_y = (left_C2_y + right_C1_y) / 2;
+
+ if (left != null)
+ {
+ left[leftOff] = left_P1_x;
+ left[leftOff + 1] = left_P1_y;
+ left[leftOff + 2] = left_C1_x;
+ left[leftOff + 3] = left_C1_y;
+ left[leftOff + 4] = left_C2_x;
+ left[leftOff + 5] = left_C2_y;
+ left[leftOff + 6] = Mid_x;
+ left[leftOff + 7] = Mid_y;
+ }
+
+ if (right != null)
+ {
+ right[rightOff] = Mid_x;
+ right[rightOff + 1] = Mid_y;
+ right[rightOff + 2] = right_C1_x;
+ right[rightOff + 3] = right_C1_y;
+ right[rightOff + 4] = right_C2_x;
+ right[rightOff + 5] = right_C2_y;
+ right[rightOff + 6] = right_P2_x;
+ right[rightOff + 7] = right_P2_y;
+ }
+ }
+
+ /**
+ * Finds the non-complex roots of a cubic equation, placing the
+ * results into the same array as the equation coefficients. The
+ * following equation is being solved:
+ *
+ * <blockquote><code>eqn[3]</code> &#xb7; <i>x</i><sup>3</sup>
+ * + <code>eqn[2]</code> &#xb7; <i>x</i><sup>2</sup>
+ * + <code>eqn[1]</code> &#xb7; <i>x</i>
+ * + <code>eqn[0]</code>
+ * = 0
+ * </blockquote>
+ *
+ * <p>For some background about solving cubic equations, see the
+ * article <a
+ * href="http://planetmath.org/encyclopedia/CubicFormula.html"
+ * >&#x201c;Cubic Formula&#x201d;</a> in <a
+ * href="http://planetmath.org/" >PlanetMath</a>. For an extensive
+ * library of numerical algorithms written in the C programming
+ * language, see the <a href= "http://www.gnu.org/software/gsl/">GNU
+ * Scientific Library</a>, from which this implementation was
+ * adapted.
+ *
+ * @param eqn an array with the coefficients of the equation. When
+ * this procedure has returned, <code>eqn</code> will contain the
+ * non-complex solutions of the equation, in no particular order.
+ *
+ * @return the number of non-complex solutions. A result of 0
+ * indicates that the equation has no non-complex solutions. A
+ * result of -1 indicates that the equation is constant (i.e.,
+ * always or never zero).
+ *
+ * @see #solveCubic(double[], double[])
+ * @see QuadCurve2D#solveQuadratic(double[],double[])
+ *
+ * @author Brian Gough (bjg@network-theory.com)
+ * (original C implementation in the <a href=
+ * "http://www.gnu.org/software/gsl/">GNU Scientific Library</a>)
+ *
+ * @author Sascha Brawer (brawer@dandelis.ch)
+ * (adaptation to Java)
+ */
+ public static int solveCubic(double[] eqn)
+ {
+ return solveCubic(eqn, eqn);
+ }
+
+ /**
+ * Finds the non-complex roots of a cubic equation. The following
+ * equation is being solved:
+ *
+ * <blockquote><code>eqn[3]</code> &#xb7; <i>x</i><sup>3</sup>
+ * + <code>eqn[2]</code> &#xb7; <i>x</i><sup>2</sup>
+ * + <code>eqn[1]</code> &#xb7; <i>x</i>
+ * + <code>eqn[0]</code>
+ * = 0
+ * </blockquote>
+ *
+ * <p>For some background about solving cubic equations, see the
+ * article <a
+ * href="http://planetmath.org/encyclopedia/CubicFormula.html"
+ * >&#x201c;Cubic Formula&#x201d;</a> in <a
+ * href="http://planetmath.org/" >PlanetMath</a>. For an extensive
+ * library of numerical algorithms written in the C programming
+ * language, see the <a href= "http://www.gnu.org/software/gsl/">GNU
+ * Scientific Library</a>, from which this implementation was
+ * adapted.
+ *
+ * @see QuadCurve2D#solveQuadratic(double[],double[])
+ *
+ * @param eqn an array with the coefficients of the equation.
+ *
+ * @param res an array into which the non-complex roots will be
+ * stored. The results may be in an arbitrary order. It is safe to
+ * pass the same array object reference for both <code>eqn</code>
+ * and <code>res</code>.
+ *
+ * @return the number of non-complex solutions. A result of 0
+ * indicates that the equation has no non-complex solutions. A
+ * result of -1 indicates that the equation is constant (i.e.,
+ * always or never zero).
+ *
+ * @author Brian Gough (bjg@network-theory.com)
+ * (original C implementation in the <a href=
+ * "http://www.gnu.org/software/gsl/">GNU Scientific Library</a>)
+ *
+ * @author Sascha Brawer (brawer@dandelis.ch)
+ * (adaptation to Java)
+ */
+ public static int solveCubic(double[] eqn, double[] res)
+ {
+ // Adapted from poly/solve_cubic.c in the GNU Scientific Library
+ // (GSL), revision 1.7 of 2003-07-26. For the original source, see
+ // http://www.gnu.org/software/gsl/
+ //
+ // Brian Gough, the author of that code, has granted the
+ // permission to use it in GNU Classpath under the GNU Classpath
+ // license, and has assigned the copyright to the Free Software
+ // Foundation.
+ //
+ // The Java implementation is very similar to the GSL code, but
+ // not a strict one-to-one copy. For example, GSL would sort the
+ // result.
+
+ double a;
+ double b;
+ double c;
+ double q;
+ double r;
+ double Q;
+ double R;
+ double c3;
+ double Q3;
+ double R2;
+ double CR2;
+ double CQ3;
+
+ // If the cubic coefficient is zero, we have a quadratic equation.
+ c3 = eqn[3];
+ if (c3 == 0)
+ return QuadCurve2D.solveQuadratic(eqn, res);
+
+ // Divide the equation by the cubic coefficient.
+ c = eqn[0] / c3;
+ b = eqn[1] / c3;
+ a = eqn[2] / c3;
+
+ // We now need to solve x^3 + ax^2 + bx + c = 0.
+ q = a * a - 3 * b;
+ r = 2 * a * a * a - 9 * a * b + 27 * c;
+
+ Q = q / 9;
+ R = r / 54;
+
+ Q3 = Q * Q * Q;
+ R2 = R * R;
+
+ CR2 = 729 * r * r;
+ CQ3 = 2916 * q * q * q;
+
+ if (R == 0 && Q == 0)
+ {
+ // The GNU Scientific Library would return three identical
+ // solutions in this case.
+ res[0] = -a / 3;
+ return 1;
+ }
+
+ if (CR2 == CQ3)
+ {
+ /* this test is actually R2 == Q3, written in a form suitable
+ for exact computation with integers */
+ /* Due to finite precision some double roots may be missed, and
+ considered to be a pair of complex roots z = x +/- epsilon i
+ close to the real axis. */
+ double sqrtQ = Math.sqrt(Q);
+
+ if (R > 0)
+ {
+ res[0] = -2 * sqrtQ - a / 3;
+ res[1] = sqrtQ - a / 3;
+ }
+ else
+ {
+ res[0] = -sqrtQ - a / 3;
+ res[1] = 2 * sqrtQ - a / 3;
+ }
+ return 2;
+ }
+
+ if (CR2 < CQ3) /* equivalent to R2 < Q3 */
+ {
+ double sqrtQ = Math.sqrt(Q);
+ double sqrtQ3 = sqrtQ * sqrtQ * sqrtQ;
+ double theta = Math.acos(R / sqrtQ3);
+ double norm = -2 * sqrtQ;
+ res[0] = norm * Math.cos(theta / 3) - a / 3;
+ res[1] = norm * Math.cos((theta + 2.0 * Math.PI) / 3) - a / 3;
+ res[2] = norm * Math.cos((theta - 2.0 * Math.PI) / 3) - a / 3;
+
+ // The GNU Scientific Library sorts the results. We don't.
+ return 3;
+ }
+
+ double sgnR = (R >= 0 ? 1 : -1);
+ double A = -sgnR * Math.pow(Math.abs(R) + Math.sqrt(R2 - Q3), 1.0 / 3.0);
+ double B = Q / A;
+ res[0] = A + B - a / 3;
+ return 1;
+ }
+
+ /**
+ * Determines whether a position lies inside the area bounded
+ * by the curve and the straight line connecting its end points.
+ *
+ * <p><img src="doc-files/CubicCurve2D-5.png" width="350" height="180"
+ * alt="A drawing of the area spanned by the curve" />
+ *
+ * <p>The above drawing illustrates in which area points are
+ * considered &#x201c;inside&#x201d; a CubicCurve2D.
+ */
+ public boolean contains(double x, double y)
+ {
+ if (! getBounds2D().contains(x, y))
+ return false;
+
+ return ((getAxisIntersections(x, y, true, BIG_VALUE) & 1) != 0);
+ }
+
+ /**
+ * Determines whether a point lies inside the area bounded
+ * by the curve and the straight line connecting its end points.
+ *
+ * <p><img src="doc-files/CubicCurve2D-5.png" width="350" height="180"
+ * alt="A drawing of the area spanned by the curve" />
+ *
+ * <p>The above drawing illustrates in which area points are
+ * considered &#x201c;inside&#x201d; a CubicCurve2D.
+ */
+ public boolean contains(Point2D p)
+ {
+ return contains(p.getX(), p.getY());
+ }
+
+ /**
+ * Determines whether any part of a rectangle is inside the area bounded
+ * by the curve and the straight line connecting its end points.
+ *
+ * <p><img src="doc-files/CubicCurve2D-5.png" width="350" height="180"
+ * alt="A drawing of the area spanned by the curve" />
+ *
+ * <p>The above drawing illustrates in which area points are
+ * considered &#x201c;inside&#x201d; in a CubicCurve2D.
+ * @see #contains(double, double)
+ */
+ public boolean intersects(double x, double y, double w, double h)
+ {
+ if (! getBounds2D().contains(x, y, w, h))
+ return false;
+
+ /* Does any edge intersect? */
+ if (getAxisIntersections(x, y, true, w) != 0 /* top */
+ || getAxisIntersections(x, y + h, true, w) != 0 /* bottom */
+ || getAxisIntersections(x + w, y, false, h) != 0 /* right */
+ || getAxisIntersections(x, y, false, h) != 0) /* left */
+ return true;
+
+ /* No intersections, is any point inside? */
+ if ((getAxisIntersections(x, y, true, BIG_VALUE) & 1) != 0)
+ return true;
+
+ return false;
+ }
+
+ /**
+ * Determines whether any part of a Rectangle2D is inside the area bounded
+ * by the curve and the straight line connecting its end points.
+ * @see #intersects(double, double, double, double)
+ */
+ public boolean intersects(Rectangle2D r)
+ {
+ return intersects(r.getX(), r.getY(), r.getWidth(), r.getHeight());
+ }
+
+ /**
+ * Determine whether a rectangle is entirely inside the area that is bounded
+ * by the curve and the straight line connecting its end points.
+ *
+ * <p><img src="doc-files/CubicCurve2D-5.png" width="350" height="180"
+ * alt="A drawing of the area spanned by the curve" />
+ *
+ * <p>The above drawing illustrates in which area points are
+ * considered &#x201c;inside&#x201d; a CubicCurve2D.
+ * @see #contains(double, double)
+ */
+ public boolean contains(double x, double y, double w, double h)
+ {
+ if (! getBounds2D().intersects(x, y, w, h))
+ return false;
+
+ /* Does any edge intersect? */
+ if (getAxisIntersections(x, y, true, w) != 0 /* top */
+ || getAxisIntersections(x, y + h, true, w) != 0 /* bottom */
+ || getAxisIntersections(x + w, y, false, h) != 0 /* right */
+ || getAxisIntersections(x, y, false, h) != 0) /* left */
+ return false;
+
+ /* No intersections, is any point inside? */
+ if ((getAxisIntersections(x, y, true, BIG_VALUE) & 1) != 0)
+ return true;
+
+ return false;
+ }
+
+ /**
+ * Determine whether a Rectangle2D is entirely inside the area that is
+ * bounded by the curve and the straight line connecting its end points.
+ *
+ * <p><img src="doc-files/CubicCurve2D-5.png" width="350" height="180"
+ * alt="A drawing of the area spanned by the curve" />
+ *
+ * <p>The above drawing illustrates in which area points are
+ * considered &#x201c;inside&#x201d; a CubicCurve2D.
+ * @see #contains(double, double)
+ */
+ public boolean contains(Rectangle2D r)
+ {
+ return contains(r.getX(), r.getY(), r.getWidth(), r.getHeight());
+ }
+
+ /**
+ * Determines the smallest rectangle that encloses the
+ * curve&#x2019;s start, end and control points.
+ */
+ public Rectangle getBounds()
+ {
+ return getBounds2D().getBounds();
+ }
+
+ public PathIterator getPathIterator(final AffineTransform at)
+ {
+ return new PathIterator()
+ {
+ /** Current coordinate. */
+ private int current = 0;
+
+ public int getWindingRule()
+ {
+ return WIND_NON_ZERO;
+ }
+
+ public boolean isDone()
+ {
+ return current >= 2;
+ }
+
+ public void next()
+ {
+ current++;
+ }
+
+ public int currentSegment(float[] coords)
+ {
+ int result;
+ switch (current)
+ {
+ case 0:
+ coords[0] = (float) getX1();
+ coords[1] = (float) getY1();
+ result = SEG_MOVETO;
+ break;
+ case 1:
+ coords[0] = (float) getCtrlX1();
+ coords[1] = (float) getCtrlY1();
+ coords[2] = (float) getCtrlX2();
+ coords[3] = (float) getCtrlY2();
+ coords[4] = (float) getX2();
+ coords[5] = (float) getY2();
+ result = SEG_CUBICTO;
+ break;
+ default:
+ throw new NoSuchElementException("cubic iterator out of bounds");
+ }
+ if (at != null)
+ at.transform(coords, 0, coords, 0, 3);
+ return result;
+ }
+
+ public int currentSegment(double[] coords)
+ {
+ int result;
+ switch (current)
+ {
+ case 0:
+ coords[0] = getX1();
+ coords[1] = getY1();
+ result = SEG_MOVETO;
+ break;
+ case 1:
+ coords[0] = getCtrlX1();
+ coords[1] = getCtrlY1();
+ coords[2] = getCtrlX2();
+ coords[3] = getCtrlY2();
+ coords[4] = getX2();
+ coords[5] = getY2();
+ result = SEG_CUBICTO;
+ break;
+ default:
+ throw new NoSuchElementException("cubic iterator out of bounds");
+ }
+ if (at != null)
+ at.transform(coords, 0, coords, 0, 3);
+ return result;
+ }
+ };
+ }
+
+ public PathIterator getPathIterator(AffineTransform at, double flatness)
+ {
+ return new FlatteningPathIterator(getPathIterator(at), flatness);
+ }
+
+ /**
+ * Create a new curve with the same contents as this one.
+ *
+ * @return the clone.
+ */
+ public Object clone()
+ {
+ try
+ {
+ return super.clone();
+ }
+ catch (CloneNotSupportedException e)
+ {
+ throw (Error) new InternalError().initCause(e); // Impossible
+ }
+ }
+
+ /**
+ * Helper method used by contains() and intersects() methods, that
+ * returns the number of curve/line intersections on a given axis
+ * extending from a certain point.
+ *
+ * @param x x coordinate of the origin point
+ * @param y y coordinate of the origin point
+ * @param useYaxis axis used, if true the positive Y axis is used,
+ * false uses the positive X axis.
+ *
+ * This is an implementation of the line-crossings algorithm,
+ * Detailed in an article on Eric Haines' page:
+ * http://www.acm.org/tog/editors/erich/ptinpoly/
+ *
+ * A special-case not adressed in this code is self-intersections
+ * of the curve, e.g. if the axis intersects the self-itersection,
+ * the degenerate roots of the polynomial will erroneously count as
+ * a single intersection of the curve, and not two.
+ */
+ private int getAxisIntersections(double x, double y, boolean useYaxis,
+ double distance)
+ {
+ int nCrossings = 0;
+ double a0;
+ double a1;
+ double a2;
+ double a3;
+ double b0;
+ double b1;
+ double b2;
+ double b3;
+ double[] r = new double[4];
+ int nRoots;
+
+ a0 = a3 = 0.0;
+
+ if (useYaxis)
+ {
+ a0 = getY1() - y;
+ a1 = getCtrlY1() - y;
+ a2 = getCtrlY2() - y;
+ a3 = getY2() - y;
+ b0 = getX1() - x;
+ b1 = getCtrlX1() - x;
+ b2 = getCtrlX2() - x;
+ b3 = getX2() - x;
+ }
+ else
+ {
+ a0 = getX1() - x;
+ a1 = getCtrlX1() - x;
+ a2 = getCtrlX2() - x;
+ a3 = getX2() - x;
+ b0 = getY1() - y;
+ b1 = getCtrlY1() - y;
+ b2 = getCtrlY2() - y;
+ b3 = getY2() - y;
+ }
+
+ /* If the axis intersects a start/endpoint, shift it up by some small
+ amount to guarantee the line is 'inside'
+ If this is not done, bad behaviour may result for points on that axis.*/
+ if (a0 == 0.0 || a3 == 0.0)
+ {
+ double small = getFlatness() * EPSILON;
+ if (a0 == 0.0)
+ a0 -= small;
+ if (a3 == 0.0)
+ a3 -= small;
+ }
+
+ if (useYaxis)
+ {
+ if (Line2D.linesIntersect(b0, a0, b3, a3, EPSILON, 0.0, distance, 0.0))
+ nCrossings++;
+ }
+ else
+ {
+ if (Line2D.linesIntersect(a0, b0, a3, b3, 0.0, EPSILON, 0.0, distance))
+ nCrossings++;
+ }
+
+ r[0] = a0;
+ r[1] = 3 * (a1 - a0);
+ r[2] = 3 * (a2 + a0 - 2 * a1);
+ r[3] = a3 - 3 * a2 + 3 * a1 - a0;
+
+ if ((nRoots = solveCubic(r)) != 0)
+ for (int i = 0; i < nRoots; i++)
+ {
+ double t = r[i];
+ if (t >= 0.0 && t <= 1.0)
+ {
+ double crossing = -(t * t * t) * (b0 - 3 * b1 + 3 * b2 - b3)
+ + 3 * t * t * (b0 - 2 * b1 + b2)
+ + 3 * t * (b1 - b0) + b0;
+ if (crossing > 0.0 && crossing <= distance)
+ nCrossings++;
+ }
+ }
+
+ return (nCrossings);
+ }
+
+ /**
+ * A two-dimensional curve that is parameterized with a cubic
+ * function and stores coordinate values in double-precision
+ * floating-point format.
+ *
+ * @see CubicCurve2D.Float
+ *
+ * @author Eric Blake (ebb9@email.byu.edu)
+ * @author Sascha Brawer (brawer@dandelis.ch)
+ */
+ public static class Double extends CubicCurve2D
+ {
+ /**
+ * The <i>x</i> coordinate of the curve&#x2019;s start point.
+ */
+ public double x1;
+
+ /**
+ * The <i>y</i> coordinate of the curve&#x2019;s start point.
+ */
+ public double y1;
+
+ /**
+ * The <i>x</i> coordinate of the curve&#x2019;s first control point.
+ */
+ public double ctrlx1;
+
+ /**
+ * The <i>y</i> coordinate of the curve&#x2019;s first control point.
+ */
+ public double ctrly1;
+
+ /**
+ * The <i>x</i> coordinate of the curve&#x2019;s second control point.
+ */
+ public double ctrlx2;
+
+ /**
+ * The <i>y</i> coordinate of the curve&#x2019;s second control point.
+ */
+ public double ctrly2;
+
+ /**
+ * The <i>x</i> coordinate of the curve&#x2019;s end point.
+ */
+ public double x2;
+
+ /**
+ * The <i>y</i> coordinate of the curve&#x2019;s end point.
+ */
+ public double y2;
+
+ /**
+ * Constructs a new CubicCurve2D that stores its coordinate values
+ * in double-precision floating-point format. All points are
+ * initially at position (0, 0).
+ */
+ public Double()
+ {
+ }
+
+ /**
+ * Constructs a new CubicCurve2D that stores its coordinate values
+ * in double-precision floating-point format, specifying the
+ * initial position of each point.
+ *
+ * <p><img src="doc-files/CubicCurve2D-1.png" width="350" height="180"
+ * alt="A drawing of a CubicCurve2D" />
+ *
+ * @param x1 the <i>x</i> coordinate of the curve&#x2019;s start
+ * point.
+ *
+ * @param y1 the <i>y</i> coordinate of the curve&#x2019;s start
+ * point.
+ *
+ * @param cx1 the <i>x</i> coordinate of the curve&#x2019;s first
+ * control point.
+ *
+ * @param cy1 the <i>y</i> coordinate of the curve&#x2019;s first
+ * control point.
+ *
+ * @param cx2 the <i>x</i> coordinate of the curve&#x2019;s second
+ * control point.
+ *
+ * @param cy2 the <i>y</i> coordinate of the curve&#x2019;s second
+ * control point.
+ *
+ * @param x2 the <i>x</i> coordinate of the curve&#x2019;s end
+ * point.
+ *
+ * @param y2 the <i>y</i> coordinate of the curve&#x2019;s end
+ * point.
+ */
+ public Double(double x1, double y1, double cx1, double cy1, double cx2,
+ double cy2, double x2, double y2)
+ {
+ this.x1 = x1;
+ this.y1 = y1;
+ ctrlx1 = cx1;
+ ctrly1 = cy1;
+ ctrlx2 = cx2;
+ ctrly2 = cy2;
+ this.x2 = x2;
+ this.y2 = y2;
+ }
+
+ /**
+ * Returns the <i>x</i> coordinate of the curve&#x2019;s start
+ * point.
+ */
+ public double getX1()
+ {
+ return x1;
+ }
+
+ /**
+ * Returns the <i>y</i> coordinate of the curve&#x2019;s start
+ * point.
+ */
+ public double getY1()
+ {
+ return y1;
+ }
+
+ /**
+ * Returns the curve&#x2019;s start point.
+ */
+ public Point2D getP1()
+ {
+ return new Point2D.Double(x1, y1);
+ }
+
+ /**
+ * Returns the <i>x</i> coordinate of the curve&#x2019;s first
+ * control point.
+ */
+ public double getCtrlX1()
+ {
+ return ctrlx1;
+ }
+
+ /**
+ * Returns the <i>y</i> coordinate of the curve&#x2019;s first
+ * control point.
+ */
+ public double getCtrlY1()
+ {
+ return ctrly1;
+ }
+
+ /**
+ * Returns the curve&#x2019;s first control point.
+ */
+ public Point2D getCtrlP1()
+ {
+ return new Point2D.Double(ctrlx1, ctrly1);
+ }
+
+ /**
+ * Returns the <i>x</i> coordinate of the curve&#x2019;s second
+ * control point.
+ */
+ public double getCtrlX2()
+ {
+ return ctrlx2;
+ }
+
+ /**
+ * Returns the <i>y</i> coordinate of the curve&#x2019;s second
+ * control point.
+ */
+ public double getCtrlY2()
+ {
+ return ctrly2;
+ }
+
+ /**
+ * Returns the curve&#x2019;s second control point.
+ */
+ public Point2D getCtrlP2()
+ {
+ return new Point2D.Double(ctrlx2, ctrly2);
+ }
+
+ /**
+ * Returns the <i>x</i> coordinate of the curve&#x2019;s end
+ * point.
+ */
+ public double getX2()
+ {
+ return x2;
+ }
+
+ /**
+ * Returns the <i>y</i> coordinate of the curve&#x2019;s end
+ * point.
+ */
+ public double getY2()
+ {
+ return y2;
+ }
+
+ /**
+ * Returns the curve&#x2019;s end point.
+ */
+ public Point2D getP2()
+ {
+ return new Point2D.Double(x2, y2);
+ }
+
+ /**
+ * Changes the curve geometry, separately specifying each coordinate
+ * value.
+ *
+ * <p><img src="doc-files/CubicCurve2D-1.png" width="350" height="180"
+ * alt="A drawing of a CubicCurve2D" />
+ *
+ * @param x1 the <i>x</i> coordinate of the curve&#x2019;s new start
+ * point.
+ *
+ * @param y1 the <i>y</i> coordinate of the curve&#x2019;s new start
+ * point.
+ *
+ * @param cx1 the <i>x</i> coordinate of the curve&#x2019;s new
+ * first control point.
+ *
+ * @param cy1 the <i>y</i> coordinate of the curve&#x2019;s new
+ * first control point.
+ *
+ * @param cx2 the <i>x</i> coordinate of the curve&#x2019;s new
+ * second control point.
+ *
+ * @param cy2 the <i>y</i> coordinate of the curve&#x2019;s new
+ * second control point.
+ *
+ * @param x2 the <i>x</i> coordinate of the curve&#x2019;s new end
+ * point.
+ *
+ * @param y2 the <i>y</i> coordinate of the curve&#x2019;s new end
+ * point.
+ */
+ public void setCurve(double x1, double y1, double cx1, double cy1,
+ double cx2, double cy2, double x2, double y2)
+ {
+ this.x1 = x1;
+ this.y1 = y1;
+ ctrlx1 = cx1;
+ ctrly1 = cy1;
+ ctrlx2 = cx2;
+ ctrly2 = cy2;
+ this.x2 = x2;
+ this.y2 = y2;
+ }
+
+ /**
+ * Determines the smallest rectangle that encloses the
+ * curve&#x2019;s start, end and control points. As the
+ * illustration below shows, the invisible control points may cause
+ * the bounds to be much larger than the area that is actually
+ * covered by the curve.
+ *
+ * <p><img src="doc-files/CubicCurve2D-2.png" width="350" height="180"
+ * alt="An illustration of the bounds of a CubicCurve2D" />
+ */
+ public Rectangle2D getBounds2D()
+ {
+ double nx1 = Math.min(Math.min(x1, ctrlx1), Math.min(ctrlx2, x2));
+ double ny1 = Math.min(Math.min(y1, ctrly1), Math.min(ctrly2, y2));
+ double nx2 = Math.max(Math.max(x1, ctrlx1), Math.max(ctrlx2, x2));
+ double ny2 = Math.max(Math.max(y1, ctrly1), Math.max(ctrly2, y2));
+ return new Rectangle2D.Double(nx1, ny1, nx2 - nx1, ny2 - ny1);
+ }
+ }
+
+ /**
+ * A two-dimensional curve that is parameterized with a cubic
+ * function and stores coordinate values in single-precision
+ * floating-point format.
+ *
+ * @see CubicCurve2D.Float
+ *
+ * @author Eric Blake (ebb9@email.byu.edu)
+ * @author Sascha Brawer (brawer@dandelis.ch)
+ */
+ public static class Float extends CubicCurve2D
+ {
+ /**
+ * The <i>x</i> coordinate of the curve&#x2019;s start point.
+ */
+ public float x1;
+
+ /**
+ * The <i>y</i> coordinate of the curve&#x2019;s start point.
+ */
+ public float y1;
+
+ /**
+ * The <i>x</i> coordinate of the curve&#x2019;s first control point.
+ */
+ public float ctrlx1;
+
+ /**
+ * The <i>y</i> coordinate of the curve&#x2019;s first control point.
+ */
+ public float ctrly1;
+
+ /**
+ * The <i>x</i> coordinate of the curve&#x2019;s second control point.
+ */
+ public float ctrlx2;
+
+ /**
+ * The <i>y</i> coordinate of the curve&#x2019;s second control point.
+ */
+ public float ctrly2;
+
+ /**
+ * The <i>x</i> coordinate of the curve&#x2019;s end point.
+ */
+ public float x2;
+
+ /**
+ * The <i>y</i> coordinate of the curve&#x2019;s end point.
+ */
+ public float y2;
+
+ /**
+ * Constructs a new CubicCurve2D that stores its coordinate values
+ * in single-precision floating-point format. All points are
+ * initially at position (0, 0).
+ */
+ public Float()
+ {
+ }
+
+ /**
+ * Constructs a new CubicCurve2D that stores its coordinate values
+ * in single-precision floating-point format, specifying the
+ * initial position of each point.
+ *
+ * <p><img src="doc-files/CubicCurve2D-1.png" width="350" height="180"
+ * alt="A drawing of a CubicCurve2D" />
+ *
+ * @param x1 the <i>x</i> coordinate of the curve&#x2019;s start
+ * point.
+ *
+ * @param y1 the <i>y</i> coordinate of the curve&#x2019;s start
+ * point.
+ *
+ * @param cx1 the <i>x</i> coordinate of the curve&#x2019;s first
+ * control point.
+ *
+ * @param cy1 the <i>y</i> coordinate of the curve&#x2019;s first
+ * control point.
+ *
+ * @param cx2 the <i>x</i> coordinate of the curve&#x2019;s second
+ * control point.
+ *
+ * @param cy2 the <i>y</i> coordinate of the curve&#x2019;s second
+ * control point.
+ *
+ * @param x2 the <i>x</i> coordinate of the curve&#x2019;s end
+ * point.
+ *
+ * @param y2 the <i>y</i> coordinate of the curve&#x2019;s end
+ * point.
+ */
+ public Float(float x1, float y1, float cx1, float cy1, float cx2,
+ float cy2, float x2, float y2)
+ {
+ this.x1 = x1;
+ this.y1 = y1;
+ ctrlx1 = cx1;
+ ctrly1 = cy1;
+ ctrlx2 = cx2;
+ ctrly2 = cy2;
+ this.x2 = x2;
+ this.y2 = y2;
+ }
+
+ /**
+ * Returns the <i>x</i> coordinate of the curve&#x2019;s start
+ * point.
+ */
+ public double getX1()
+ {
+ return x1;
+ }
+
+ /**
+ * Returns the <i>y</i> coordinate of the curve&#x2019;s start
+ * point.
+ */
+ public double getY1()
+ {
+ return y1;
+ }
+
+ /**
+ * Returns the curve&#x2019;s start point.
+ */
+ public Point2D getP1()
+ {
+ return new Point2D.Float(x1, y1);
+ }
+
+ /**
+ * Returns the <i>x</i> coordinate of the curve&#x2019;s first
+ * control point.
+ */
+ public double getCtrlX1()
+ {
+ return ctrlx1;
+ }
+
+ /**
+ * Returns the <i>y</i> coordinate of the curve&#x2019;s first
+ * control point.
+ */
+ public double getCtrlY1()
+ {
+ return ctrly1;
+ }
+
+ /**
+ * Returns the curve&#x2019;s first control point.
+ */
+ public Point2D getCtrlP1()
+ {
+ return new Point2D.Float(ctrlx1, ctrly1);
+ }
+
+ /**
+ * Returns the <i>s</i> coordinate of the curve&#x2019;s second
+ * control point.
+ */
+ public double getCtrlX2()
+ {
+ return ctrlx2;
+ }
+
+ /**
+ * Returns the <i>y</i> coordinate of the curve&#x2019;s second
+ * control point.
+ */
+ public double getCtrlY2()
+ {
+ return ctrly2;
+ }
+
+ /**
+ * Returns the curve&#x2019;s second control point.
+ */
+ public Point2D getCtrlP2()
+ {
+ return new Point2D.Float(ctrlx2, ctrly2);
+ }
+
+ /**
+ * Returns the <i>x</i> coordinate of the curve&#x2019;s end
+ * point.
+ */
+ public double getX2()
+ {
+ return x2;
+ }
+
+ /**
+ * Returns the <i>y</i> coordinate of the curve&#x2019;s end
+ * point.
+ */
+ public double getY2()
+ {
+ return y2;
+ }
+
+ /**
+ * Returns the curve&#x2019;s end point.
+ */
+ public Point2D getP2()
+ {
+ return new Point2D.Float(x2, y2);
+ }
+
+ /**
+ * Changes the curve geometry, separately specifying each coordinate
+ * value as a double-precision floating-point number.
+ *
+ * <p><img src="doc-files/CubicCurve2D-1.png" width="350" height="180"
+ * alt="A drawing of a CubicCurve2D" />
+ *
+ * @param x1 the <i>x</i> coordinate of the curve&#x2019;s new start
+ * point.
+ *
+ * @param y1 the <i>y</i> coordinate of the curve&#x2019;s new start
+ * point.
+ *
+ * @param cx1 the <i>x</i> coordinate of the curve&#x2019;s new
+ * first control point.
+ *
+ * @param cy1 the <i>y</i> coordinate of the curve&#x2019;s new
+ * first control point.
+ *
+ * @param cx2 the <i>x</i> coordinate of the curve&#x2019;s new
+ * second control point.
+ *
+ * @param cy2 the <i>y</i> coordinate of the curve&#x2019;s new
+ * second control point.
+ *
+ * @param x2 the <i>x</i> coordinate of the curve&#x2019;s new end
+ * point.
+ *
+ * @param y2 the <i>y</i> coordinate of the curve&#x2019;s new end
+ * point.
+ */
+ public void setCurve(double x1, double y1, double cx1, double cy1,
+ double cx2, double cy2, double x2, double y2)
+ {
+ this.x1 = (float) x1;
+ this.y1 = (float) y1;
+ ctrlx1 = (float) cx1;
+ ctrly1 = (float) cy1;
+ ctrlx2 = (float) cx2;
+ ctrly2 = (float) cy2;
+ this.x2 = (float) x2;
+ this.y2 = (float) y2;
+ }
+
+ /**
+ * Changes the curve geometry, separately specifying each coordinate
+ * value as a single-precision floating-point number.
+ *
+ * <p><img src="doc-files/CubicCurve2D-1.png" width="350" height="180"
+ * alt="A drawing of a CubicCurve2D" />
+ *
+ * @param x1 the <i>x</i> coordinate of the curve&#x2019;s new start
+ * point.
+ *
+ * @param y1 the <i>y</i> coordinate of the curve&#x2019;s new start
+ * point.
+ *
+ * @param cx1 the <i>x</i> coordinate of the curve&#x2019;s new
+ * first control point.
+ *
+ * @param cy1 the <i>y</i> coordinate of the curve&#x2019;s new
+ * first control point.
+ *
+ * @param cx2 the <i>x</i> coordinate of the curve&#x2019;s new
+ * second control point.
+ *
+ * @param cy2 the <i>y</i> coordinate of the curve&#x2019;s new
+ * second control point.
+ *
+ * @param x2 the <i>x</i> coordinate of the curve&#x2019;s new end
+ * point.
+ *
+ * @param y2 the <i>y</i> coordinate of the curve&#x2019;s new end
+ * point.
+ */
+ public void setCurve(float x1, float y1, float cx1, float cy1, float cx2,
+ float cy2, float x2, float y2)
+ {
+ this.x1 = x1;
+ this.y1 = y1;
+ ctrlx1 = cx1;
+ ctrly1 = cy1;
+ ctrlx2 = cx2;
+ ctrly2 = cy2;
+ this.x2 = x2;
+ this.y2 = y2;
+ }
+
+ /**
+ * Determines the smallest rectangle that encloses the
+ * curve&#x2019;s start, end and control points. As the
+ * illustration below shows, the invisible control points may cause
+ * the bounds to be much larger than the area that is actually
+ * covered by the curve.
+ *
+ * <p><img src="doc-files/CubicCurve2D-2.png" width="350" height="180"
+ * alt="An illustration of the bounds of a CubicCurve2D" />
+ */
+ public Rectangle2D getBounds2D()
+ {
+ float nx1 = Math.min(Math.min(x1, ctrlx1), Math.min(ctrlx2, x2));
+ float ny1 = Math.min(Math.min(y1, ctrly1), Math.min(ctrly2, y2));
+ float nx2 = Math.max(Math.max(x1, ctrlx1), Math.max(ctrlx2, x2));
+ float ny2 = Math.max(Math.max(y1, ctrly1), Math.max(ctrly2, y2));
+ return new Rectangle2D.Float(nx1, ny1, nx2 - nx1, ny2 - ny1);
+ }
+ }
+}
diff --git a/libjava/classpath/java/awt/geom/Dimension2D.java b/libjava/classpath/java/awt/geom/Dimension2D.java
new file mode 100644
index 000000000..6b5ce8830
--- /dev/null
+++ b/libjava/classpath/java/awt/geom/Dimension2D.java
@@ -0,0 +1,118 @@
+/* Dimension2D.java -- abstraction of a dimension
+ Copyright (C) 1999, 2000, 2002 Free Software Foundation
+
+This file is part of GNU Classpath.
+
+GNU Classpath is free software; you can redistribute it and/or modify
+it under the terms of the GNU General Public License as published by
+the Free Software Foundation; either version 2, or (at your option)
+any later version.
+
+GNU Classpath is distributed in the hope that it will be useful, but
+WITHOUT ANY WARRANTY; without even the implied warranty of
+MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
+General Public License for more details.
+
+You should have received a copy of the GNU General Public License
+along with GNU Classpath; see the file COPYING. If not, write to the
+Free Software Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA
+02110-1301 USA.
+
+Linking this library statically or dynamically with other modules is
+making a combined work based on this library. Thus, the terms and
+conditions of the GNU General Public License cover the whole
+combination.
+
+As a special exception, the copyright holders of this library give you
+permission to link this library with independent modules to produce an
+executable, regardless of the license terms of these independent
+modules, and to copy and distribute the resulting executable under
+terms of your choice, provided that you also meet, for each linked
+independent module, the terms and conditions of the license of that
+module. An independent module is a module which is not derived from
+or based on this library. If you modify this library, you may extend
+this exception to your version of the library, but you are not
+obligated to do so. If you do not wish to do so, delete this
+exception statement from your version. */
+
+
+package java.awt.geom;
+
+/**
+ * This stores a dimension in 2-dimensional space - a width (along the x-axis)
+ * and height (along the y-axis). The storage is left to subclasses.
+ *
+ * @author Per Bothner (bothner@cygnus.com)
+ * @author Eric Blake (ebb9@email.byu.edu)
+ * @since 1.2
+ * @status updated to 1.4
+ */
+public abstract class Dimension2D implements Cloneable
+{
+ /**
+ * The default constructor.
+ */
+ protected Dimension2D()
+ {
+ }
+
+ /**
+ * Get the width of this dimension. A negative result, while legal, is
+ * undefined in meaning.
+ *
+ * @return the width
+ */
+ public abstract double getWidth();
+
+ /**
+ * Get the height of this dimension. A negative result, while legal, is
+ * undefined in meaning.
+ *
+ * @return the height
+ */
+ public abstract double getHeight();
+
+ /**
+ * Set the size of this dimension to the requested values. Loss of precision
+ * may occur.
+ *
+ * @param w the new width
+ * @param h the new height
+ */
+ public abstract void setSize(double w, double h);
+
+ /**
+ * Set the size of this dimension to the requested value. Loss of precision
+ * may occur.
+ *
+ * @param d the dimension containing the new values
+ *
+ * @throws NullPointerException if d is null
+ */
+ public void setSize(Dimension2D d)
+ {
+ setSize(d.getWidth(), d.getHeight());
+ }
+
+ /**
+ * Create a new dimension of the same run-time type with the same contents
+ * as this one.
+ *
+ * @return the clone
+ *
+ * @exception OutOfMemoryError If there is not enough memory available.
+ *
+ * @since 1.2
+ */
+ public Object clone()
+ {
+ try
+ {
+ return super.clone();
+ }
+ catch (CloneNotSupportedException e)
+ {
+ throw (Error) new InternalError().initCause(e); // Impossible
+ }
+ }
+} // class Dimension2D
diff --git a/libjava/classpath/java/awt/geom/Ellipse2D.java b/libjava/classpath/java/awt/geom/Ellipse2D.java
new file mode 100644
index 000000000..3bbf2f010
--- /dev/null
+++ b/libjava/classpath/java/awt/geom/Ellipse2D.java
@@ -0,0 +1,413 @@
+/* Ellipse2D.java -- represents an ellipse in 2-D space
+ Copyright (C) 2000, 2002, 2004 Free Software Foundation
+
+This file is part of GNU Classpath.
+
+GNU Classpath is free software; you can redistribute it and/or modify
+it under the terms of the GNU General Public License as published by
+the Free Software Foundation; either version 2, or (at your option)
+any later version.
+
+GNU Classpath is distributed in the hope that it will be useful, but
+WITHOUT ANY WARRANTY; without even the implied warranty of
+MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
+General Public License for more details.
+
+You should have received a copy of the GNU General Public License
+along with GNU Classpath; see the file COPYING. If not, write to the
+Free Software Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA
+02110-1301 USA.
+
+Linking this library statically or dynamically with other modules is
+making a combined work based on this library. Thus, the terms and
+conditions of the GNU General Public License cover the whole
+combination.
+
+As a special exception, the copyright holders of this library give you
+permission to link this library with independent modules to produce an
+executable, regardless of the license terms of these independent
+modules, and to copy and distribute the resulting executable under
+terms of your choice, provided that you also meet, for each linked
+independent module, the terms and conditions of the license of that
+module. An independent module is a module which is not derived from
+or based on this library. If you modify this library, you may extend
+this exception to your version of the library, but you are not
+obligated to do so. If you do not wish to do so, delete this
+exception statement from your version. */
+
+package java.awt.geom;
+
+
+/**
+ * Ellipse2D is the shape of an ellipse.
+ * <BR>
+ * <img src="doc-files/Ellipse-1.png" width="347" height="221"
+ * alt="A drawing of an ellipse" /><BR>
+ * The ellipse is defined by it's bounding box (shown in red),
+ * and is defined by the implicit curve:<BR>
+ * <blockquote>(<i>x</i>/<i>a</i>)<sup>2</sup> +
+ * (<i>y</i>/<i>b</i>)<sup>2</sup> = 1<BR><BR></blockquote>
+ *
+ * @author Tom Tromey (tromey@cygnus.com)
+ * @author Eric Blake (ebb9@email.byu.edu)
+ *
+ * @since 1.2
+ */
+public abstract class Ellipse2D extends RectangularShape
+{
+ /**
+ * Ellipse2D is defined as abstract.
+ * Implementing classes are Ellipse2D.Float and Ellipse2D.Double.
+ */
+ protected Ellipse2D()
+ {
+ }
+
+ /**
+ * Determines if a point is contained within the ellipse. <P>
+ * @param x - x coordinate of the point.
+ * @param y - y coordinate of the point.
+ * @return true if the point is within the ellipse, false otherwise.
+ */
+ public boolean contains(double x, double y)
+ {
+ double rx = getWidth() / 2;
+ double ry = getHeight() / 2;
+ double tx = (x - (getX() + rx)) / rx;
+ double ty = (y - (getY() + ry)) / ry;
+ return tx * tx + ty * ty < 1.0;
+ }
+
+ /**
+ * Determines if a rectangle is completely contained within the
+ * ellipse. <P>
+ * @param x - x coordinate of the upper-left corner of the rectangle
+ * @param y - y coordinate of the upper-left corner of the rectangle
+ * @param w - width of the rectangle
+ * @param h - height of the rectangle
+ * @return true if the rectangle is completely contained, false otherwise.
+ */
+ public boolean contains(double x, double y, double w, double h)
+ {
+ double x2 = x + w;
+ double y2 = y + h;
+ return (contains(x, y) && contains(x, y2) && contains(x2, y)
+ && contains(x2, y2));
+ }
+
+ /**
+ * Returns a PathIterator object corresponding to the ellipse.<P>
+ *
+ * Note: An ellipse cannot be represented exactly in PathIterator
+ * segments, the outline is thefore approximated with cubic
+ * Bezier segments.
+ *
+ * @param at an optional transform.
+ * @return A path iterator.
+ */
+ public PathIterator getPathIterator(AffineTransform at)
+ {
+ // An ellipse is just a complete arc.
+ return new Arc2D.ArcIterator(this, at);
+ }
+
+ /**
+ * Determines if a rectangle intersects any part of the ellipse.<P>
+ * @param x - x coordinate of the upper-left corner of the rectangle
+ * @param y - y coordinate of the upper-left corner of the rectangle
+ * @param w - width of the rectangle
+ * @param h - height of the rectangle
+ * @return true if the rectangle intersects the ellipse, false otherwise.
+ */
+ public boolean intersects(double x, double y, double w, double h)
+ {
+ Rectangle2D r = new Rectangle2D.Double(x, y, w, h);
+ if (! r.intersects(getX(), getY(), getWidth(), getHeight()))
+ return false;
+
+ if (contains(x, y) || contains(x, y + h) || contains(x + w, y)
+ || contains(x + w, y + h))
+ return true;
+
+ Line2D l1 = new Line2D.Double(getX(), getY() + (getHeight() / 2),
+ getX() + getWidth(),
+ getY() + (getHeight() / 2));
+ Line2D l2 = new Line2D.Double(getX() + (getWidth() / 2), getY(),
+ getX() + (getWidth() / 2),
+ getY() + getHeight());
+
+ if (l1.intersects(r) || l2.intersects(r))
+ return true;
+
+ return false;
+ }
+
+ /**
+ * An {@link Ellipse2D} that stores its coordinates using <code>double</code>
+ * primitives.
+ */
+ public static class Double extends Ellipse2D
+ {
+ /**
+ * The height of the ellipse.
+ */
+ public double height;
+
+ /**
+ * The width of the ellipse.
+ */
+ public double width;
+
+ /**
+ * The upper-left x coordinate of the bounding-box
+ */
+ public double x;
+
+ /**
+ * The upper-left y coordinate of the bounding-box
+ */
+ public double y;
+
+ /**
+ * Creates a new Ellipse2D with an upper-left coordinate of (0,0)
+ * and a zero size.
+ */
+ public Double()
+ {
+ }
+
+ /**
+ * Creates a new Ellipse2D within a given rectangle
+ * using double-precision coordinates.<P>
+ * @param x - x coordinate of the upper-left of the bounding rectangle
+ * @param y - y coordinate of the upper-left of the bounding rectangle
+ * @param w - width of the ellipse
+ * @param h - height of the ellipse
+ */
+ public Double(double x, double y, double w, double h)
+ {
+ this.x = x;
+ this.y = y;
+ height = h;
+ width = w;
+ }
+
+ /**
+ * Returns the bounding-box of the ellipse.
+ * @return The bounding box.
+ */
+ public Rectangle2D getBounds2D()
+ {
+ return new Rectangle2D.Double(x, y, width, height);
+ }
+
+ /**
+ * Returns the height of the ellipse.
+ * @return The height of the ellipse.
+ */
+ public double getHeight()
+ {
+ return height;
+ }
+
+ /**
+ * Returns the width of the ellipse.
+ * @return The width of the ellipse.
+ */
+ public double getWidth()
+ {
+ return width;
+ }
+
+ /**
+ * Returns x coordinate of the upper-left corner of
+ * the ellipse's bounding-box.
+ * @return The x coordinate.
+ */
+ public double getX()
+ {
+ return x;
+ }
+
+ /**
+ * Returns y coordinate of the upper-left corner of
+ * the ellipse's bounding-box.
+ * @return The y coordinate.
+ */
+ public double getY()
+ {
+ return y;
+ }
+
+ /**
+ * Returns <code>true</code> if the ellipse encloses no area, and
+ * <code>false</code> otherwise.
+ *
+ * @return A boolean.
+ */
+ public boolean isEmpty()
+ {
+ return height <= 0 || width <= 0;
+ }
+
+ /**
+ * Sets the geometry of the ellipse's bounding box.<P>
+ *
+ * @param x - x coordinate of the upper-left of the bounding rectangle
+ * @param y - y coordinate of the upper-left of the bounding rectangle
+ * @param w - width of the ellipse
+ * @param h - height of the ellipse
+ */
+ public void setFrame(double x, double y, double w, double h)
+ {
+ this.x = x;
+ this.y = y;
+ height = h;
+ width = w;
+ }
+ } // class Double
+
+ /**
+ * An {@link Ellipse2D} that stores its coordinates using <code>float</code>
+ * primitives.
+ */
+ public static class Float extends Ellipse2D
+ {
+ /**
+ * The height of the ellipse.
+ */
+ public float height;
+
+ /**
+ * The width of the ellipse.
+ */
+ public float width;
+
+ /**
+ * The upper-left x coordinate of the bounding-box
+ */
+ public float x;
+
+ /**
+ * The upper-left y coordinate of the bounding-box
+ */
+ public float y;
+
+ /**
+ * Creates a new Ellipse2D with an upper-left coordinate of (0,0)
+ * and a zero size.
+ */
+ public Float()
+ {
+ }
+
+ /**
+ * Creates a new Ellipse2D within a given rectangle
+ * using floating-point precision.<P>
+ * @param x - x coordinate of the upper-left of the bounding rectangle
+ * @param y - y coordinate of the upper-left of the bounding rectangle
+ * @param w - width of the ellipse
+ * @param h - height of the ellipse
+ *
+ */
+ public Float(float x, float y, float w, float h)
+ {
+ this.x = x;
+ this.y = y;
+ this.height = h;
+ this.width = w;
+ }
+
+ /**
+ * Returns the bounding-box of the ellipse.
+ * @return The bounding box.
+ */
+ public Rectangle2D getBounds2D()
+ {
+ return new Rectangle2D.Float(x, y, width, height);
+ }
+
+ /**
+ * Returns the height of the ellipse.
+ * @return The height of the ellipse.
+ */
+ public double getHeight()
+ {
+ return height;
+ }
+
+ /**
+ * Returns the width of the ellipse.
+ * @return The width of the ellipse.
+ */
+ public double getWidth()
+ {
+ return width;
+ }
+
+ /**
+ * Returns x coordinate of the upper-left corner of
+ * the ellipse's bounding-box.
+ * @return The x coordinate.
+ */
+ public double getX()
+ {
+ return x;
+ }
+
+ /**
+ * Returns y coordinate of the upper-left corner of
+ * the ellipse's bounding-box.
+ * @return The y coordinate.
+ */
+ public double getY()
+ {
+ return y;
+ }
+
+ /**
+ * Returns <code>true</code> if the ellipse encloses no area, and
+ * <code>false</code> otherwise.
+ *
+ * @return A boolean.
+ */
+ public boolean isEmpty()
+ {
+ return height <= 0 || width <= 0;
+ }
+
+ /**
+ * Sets the geometry of the ellipse's bounding box.<P>
+ *
+ * @param x - x coordinate of the upper-left of the bounding rectangle
+ * @param y - y coordinate of the upper-left of the bounding rectangle
+ * @param w - width of the ellipse
+ * @param h - height of the ellipse
+ */
+ public void setFrame(float x, float y, float w, float h)
+ {
+ this.x = x;
+ this.y = y;
+ height = h;
+ width = w;
+ }
+
+ /**
+ * Sets the geometry of the ellipse's bounding box.
+ *
+ * Note: This leads to a loss of precision.<P>
+ *
+ * @param x - x coordinate of the upper-left of the bounding rectangle
+ * @param y - y coordinate of the upper-left of the bounding rectangle
+ * @param w - width of the ellipse
+ * @param h - height of the ellipse
+ */
+ public void setFrame(double x, double y, double w, double h)
+ {
+ this.x = (float) x;
+ this.y = (float) y;
+ height = (float) h;
+ width = (float) w;
+ }
+ } // class Float
+} // class Ellipse2D
diff --git a/libjava/classpath/java/awt/geom/FlatteningPathIterator.java b/libjava/classpath/java/awt/geom/FlatteningPathIterator.java
new file mode 100644
index 000000000..629936bf7
--- /dev/null
+++ b/libjava/classpath/java/awt/geom/FlatteningPathIterator.java
@@ -0,0 +1,579 @@
+/* FlatteningPathIterator.java -- Approximates curves by straight lines
+ Copyright (C) 2003 Free Software Foundation
+
+This file is part of GNU Classpath.
+
+GNU Classpath is free software; you can redistribute it and/or modify
+it under the terms of the GNU General Public License as published by
+the Free Software Foundation; either version 2, or (at your option)
+any later version.
+
+GNU Classpath is distributed in the hope that it will be useful, but
+WITHOUT ANY WARRANTY; without even the implied warranty of
+MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
+General Public License for more details.
+
+You should have received a copy of the GNU General Public License
+along with GNU Classpath; see the file COPYING. If not, write to the
+Free Software Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA
+02110-1301 USA.
+
+Linking this library statically or dynamically with other modules is
+making a combined work based on this library. Thus, the terms and
+conditions of the GNU General Public License cover the whole
+combination.
+
+As a special exception, the copyright holders of this library give you
+permission to link this library with independent modules to produce an
+executable, regardless of the license terms of these independent
+modules, and to copy and distribute the resulting executable under
+terms of your choice, provided that you also meet, for each linked
+independent module, the terms and conditions of the license of that
+module. An independent module is a module which is not derived from
+or based on this library. If you modify this library, you may extend
+this exception to your version of the library, but you are not
+obligated to do so. If you do not wish to do so, delete this
+exception statement from your version. */
+
+
+package java.awt.geom;
+
+import java.util.NoSuchElementException;
+
+
+/**
+ * A PathIterator for approximating curved path segments by sequences
+ * of straight lines. Instances of this class will only return
+ * segments of type {@link PathIterator#SEG_MOVETO}, {@link
+ * PathIterator#SEG_LINETO}, and {@link PathIterator#SEG_CLOSE}.
+ *
+ * <p>The accuracy of the approximation is determined by two
+ * parameters:
+ *
+ * <ul><li>The <i>flatness</i> is a threshold value for deciding when
+ * a curved segment is consided flat enough for being approximated by
+ * a single straight line. Flatness is defined as the maximal distance
+ * of a curve control point to the straight line that connects the
+ * curve start and end. A lower flatness threshold means a closer
+ * approximation. See {@link QuadCurve2D#getFlatness()} and {@link
+ * CubicCurve2D#getFlatness()} for drawings which illustrate the
+ * meaning of flatness.</li>
+ *
+ * <li>The <i>recursion limit</i> imposes an upper bound for how often
+ * a curved segment gets subdivided. A limit of <i>n</i> means that
+ * for each individual quadratic and cubic B&#xe9;zier spline
+ * segment, at most 2<sup><small><i>n</i></small></sup> {@link
+ * PathIterator#SEG_LINETO} segments will be created.</li></ul>
+ *
+ * <p><b>Memory Efficiency:</b> The memory consumption grows linearly
+ * with the recursion limit. Neither the <i>flatness</i> parameter nor
+ * the number of segments in the flattened path will affect the memory
+ * consumption.
+ *
+ * <p><b>Thread Safety:</b> Multiple threads can safely work on
+ * separate instances of this class. However, multiple threads should
+ * not concurrently access the same instance, as no synchronization is
+ * performed.
+ *
+ * @see <a href="doc-files/FlatteningPathIterator-1.html"
+ * >Implementation Note</a>
+ *
+ * @author Sascha Brawer (brawer@dandelis.ch)
+ *
+ * @since 1.2
+ */
+public class FlatteningPathIterator
+ implements PathIterator
+{
+ /**
+ * The PathIterator whose curved segments are being approximated.
+ */
+ private final PathIterator srcIter;
+
+
+ /**
+ * The square of the flatness threshold value, which determines when
+ * a curve segment is considered flat enough that no further
+ * subdivision is needed.
+ *
+ * <p>Calculating flatness actually produces the squared flatness
+ * value. To avoid the relatively expensive calculation of a square
+ * root for each curve segment, we perform all flatness comparisons
+ * on squared values.
+ *
+ * @see QuadCurve2D#getFlatnessSq()
+ * @see CubicCurve2D#getFlatnessSq()
+ */
+ private final double flatnessSq;
+
+
+ /**
+ * The maximal number of subdivions that are performed to
+ * approximate a quadratic or cubic curve segment.
+ */
+ private final int recursionLimit;
+
+
+ /**
+ * A stack for holding the coordinates of subdivided segments.
+ *
+ * @see <a href="doc-files/FlatteningPathIterator-1.html"
+ * >Implementation Note</a>
+ */
+ private double[] stack;
+
+
+ /**
+ * The current stack size.
+ *
+ * @see <a href="doc-files/FlatteningPathIterator-1.html"
+ * >Implementation Note</a>
+ */
+ private int stackSize;
+
+
+ /**
+ * The number of recursions that were performed to arrive at
+ * a segment on the stack.
+ *
+ * @see <a href="doc-files/FlatteningPathIterator-1.html"
+ * >Implementation Note</a>
+ */
+ private int[] recLevel;
+
+
+
+ private final double[] scratch = new double[6];
+
+
+ /**
+ * The segment type of the last segment that was returned by
+ * the source iterator.
+ */
+ private int srcSegType;
+
+
+ /**
+ * The current <i>x</i> position of the source iterator.
+ */
+ private double srcPosX;
+
+
+ /**
+ * The current <i>y</i> position of the source iterator.
+ */
+ private double srcPosY;
+
+
+ /**
+ * A flag that indicates when this path iterator has finished its
+ * iteration over path segments.
+ */
+ private boolean done;
+
+
+ /**
+ * Constructs a new PathIterator for approximating an input
+ * PathIterator with straight lines. The approximation works by
+ * recursive subdivisons, until the specified flatness threshold is
+ * not exceeded.
+ *
+ * <p>There will not be more than 10 nested recursion steps, which
+ * means that a single <code>SEG_QUADTO</code> or
+ * <code>SEG_CUBICTO</code> segment is approximated by at most
+ * 2<sup><small>10</small></sup> = 1024 straight lines.
+ */
+ public FlatteningPathIterator(PathIterator src, double flatness)
+ {
+ this(src, flatness, 10);
+ }
+
+
+ /**
+ * Constructs a new PathIterator for approximating an input
+ * PathIterator with straight lines. The approximation works by
+ * recursive subdivisons, until the specified flatness threshold is
+ * not exceeded. Additionally, the number of recursions is also
+ * bound by the specified recursion limit.
+ */
+ public FlatteningPathIterator(PathIterator src, double flatness,
+ int limit)
+ {
+ if (flatness < 0 || limit < 0)
+ throw new IllegalArgumentException();
+
+ srcIter = src;
+ flatnessSq = flatness * flatness;
+ recursionLimit = limit;
+ fetchSegment();
+ }
+
+
+ /**
+ * Returns the maximally acceptable flatness.
+ *
+ * @see QuadCurve2D#getFlatness()
+ * @see CubicCurve2D#getFlatness()
+ */
+ public double getFlatness()
+ {
+ return Math.sqrt(flatnessSq);
+ }
+
+
+ /**
+ * Returns the maximum number of recursive curve subdivisions.
+ */
+ public int getRecursionLimit()
+ {
+ return recursionLimit;
+ }
+
+
+ // Documentation will be copied from PathIterator.
+ public int getWindingRule()
+ {
+ return srcIter.getWindingRule();
+ }
+
+
+ // Documentation will be copied from PathIterator.
+ public boolean isDone()
+ {
+ return done;
+ }
+
+
+ // Documentation will be copied from PathIterator.
+ public void next()
+ {
+ if (stackSize > 0)
+ {
+ --stackSize;
+ if (stackSize > 0)
+ {
+ switch (srcSegType)
+ {
+ case PathIterator.SEG_QUADTO:
+ subdivideQuadratic();
+ return;
+
+ case PathIterator.SEG_CUBICTO:
+ subdivideCubic();
+ return;
+
+ default:
+ throw new IllegalStateException();
+ }
+ }
+ }
+
+ srcIter.next();
+ fetchSegment();
+ }
+
+
+ // Documentation will be copied from PathIterator.
+ public int currentSegment(double[] coords)
+ {
+ if (done)
+ throw new NoSuchElementException();
+
+ switch (srcSegType)
+ {
+ case PathIterator.SEG_CLOSE:
+ return srcSegType;
+
+ case PathIterator.SEG_MOVETO:
+ case PathIterator.SEG_LINETO:
+ coords[0] = srcPosX;
+ coords[1] = srcPosY;
+ return srcSegType;
+
+ case PathIterator.SEG_QUADTO:
+ if (stackSize == 0)
+ {
+ coords[0] = srcPosX;
+ coords[1] = srcPosY;
+ }
+ else
+ {
+ int sp = stack.length - 4 * stackSize;
+ coords[0] = stack[sp + 2];
+ coords[1] = stack[sp + 3];
+ }
+ return PathIterator.SEG_LINETO;
+
+ case PathIterator.SEG_CUBICTO:
+ if (stackSize == 0)
+ {
+ coords[0] = srcPosX;
+ coords[1] = srcPosY;
+ }
+ else
+ {
+ int sp = stack.length - 6 * stackSize;
+ coords[0] = stack[sp + 4];
+ coords[1] = stack[sp + 5];
+ }
+ return PathIterator.SEG_LINETO;
+ }
+
+ throw new IllegalStateException();
+ }
+
+
+ // Documentation will be copied from PathIterator.
+ public int currentSegment(float[] coords)
+ {
+ if (done)
+ throw new NoSuchElementException();
+
+ switch (srcSegType)
+ {
+ case PathIterator.SEG_CLOSE:
+ return srcSegType;
+
+ case PathIterator.SEG_MOVETO:
+ case PathIterator.SEG_LINETO:
+ coords[0] = (float) srcPosX;
+ coords[1] = (float) srcPosY;
+ return srcSegType;
+
+ case PathIterator.SEG_QUADTO:
+ if (stackSize == 0)
+ {
+ coords[0] = (float) srcPosX;
+ coords[1] = (float) srcPosY;
+ }
+ else
+ {
+ int sp = stack.length - 4 * stackSize;
+ coords[0] = (float) stack[sp + 2];
+ coords[1] = (float) stack[sp + 3];
+ }
+ return PathIterator.SEG_LINETO;
+
+ case PathIterator.SEG_CUBICTO:
+ if (stackSize == 0)
+ {
+ coords[0] = (float) srcPosX;
+ coords[1] = (float) srcPosY;
+ }
+ else
+ {
+ int sp = stack.length - 6 * stackSize;
+ coords[0] = (float) stack[sp + 4];
+ coords[1] = (float) stack[sp + 5];
+ }
+ return PathIterator.SEG_LINETO;
+ }
+
+ throw new IllegalStateException();
+ }
+
+
+ /**
+ * Fetches the next segment from the source iterator.
+ */
+ private void fetchSegment()
+ {
+ int sp;
+
+ if (srcIter.isDone())
+ {
+ done = true;
+ return;
+ }
+
+ srcSegType = srcIter.currentSegment(scratch);
+
+ switch (srcSegType)
+ {
+ case PathIterator.SEG_CLOSE:
+ return;
+
+ case PathIterator.SEG_MOVETO:
+ case PathIterator.SEG_LINETO:
+ srcPosX = scratch[0];
+ srcPosY = scratch[1];
+ return;
+
+ case PathIterator.SEG_QUADTO:
+ if (recursionLimit == 0)
+ {
+ srcPosX = scratch[2];
+ srcPosY = scratch[3];
+ stackSize = 0;
+ return;
+ }
+ sp = 4 * recursionLimit;
+ stackSize = 1;
+ if (stack == null)
+ {
+ stack = new double[sp + /* 4 + 2 */ 6];
+ recLevel = new int[recursionLimit + 1];
+ }
+ recLevel[0] = 0;
+ stack[sp] = srcPosX; // P1.x
+ stack[sp + 1] = srcPosY; // P1.y
+ stack[sp + 2] = scratch[0]; // C.x
+ stack[sp + 3] = scratch[1]; // C.y
+ srcPosX = stack[sp + 4] = scratch[2]; // P2.x
+ srcPosY = stack[sp + 5] = scratch[3]; // P2.y
+ subdivideQuadratic();
+ break;
+
+ case PathIterator.SEG_CUBICTO:
+ if (recursionLimit == 0)
+ {
+ srcPosX = scratch[4];
+ srcPosY = scratch[5];
+ stackSize = 0;
+ return;
+ }
+ sp = 6 * recursionLimit;
+ stackSize = 1;
+ if ((stack == null) || (stack.length < sp + 8))
+ {
+ stack = new double[sp + /* 6 + 2 */ 8];
+ recLevel = new int[recursionLimit + 1];
+ }
+ recLevel[0] = 0;
+ stack[sp] = srcPosX; // P1.x
+ stack[sp + 1] = srcPosY; // P1.y
+ stack[sp + 2] = scratch[0]; // C1.x
+ stack[sp + 3] = scratch[1]; // C1.y
+ stack[sp + 4] = scratch[2]; // C2.x
+ stack[sp + 5] = scratch[3]; // C2.y
+ srcPosX = stack[sp + 6] = scratch[4]; // P2.x
+ srcPosY = stack[sp + 7] = scratch[5]; // P2.y
+ subdivideCubic();
+ return;
+ }
+ }
+
+
+ /**
+ * Repeatedly subdivides the quadratic curve segment that is on top
+ * of the stack. The iteration terminates when the recursion limit
+ * has been reached, or when the resulting segment is flat enough.
+ */
+ private void subdivideQuadratic()
+ {
+ int sp;
+ int level;
+
+ sp = stack.length - 4 * stackSize - 2;
+ level = recLevel[stackSize - 1];
+ while ((level < recursionLimit)
+ && (QuadCurve2D.getFlatnessSq(stack, sp) >= flatnessSq))
+ {
+ recLevel[stackSize] = recLevel[stackSize - 1] = ++level;
+ QuadCurve2D.subdivide(stack, sp, stack, sp - 4, stack, sp);
+ ++stackSize;
+ sp -= 4;
+ }
+ }
+
+
+ /**
+ * Repeatedly subdivides the cubic curve segment that is on top
+ * of the stack. The iteration terminates when the recursion limit
+ * has been reached, or when the resulting segment is flat enough.
+ */
+ private void subdivideCubic()
+ {
+ int sp;
+ int level;
+
+ sp = stack.length - 6 * stackSize - 2;
+ level = recLevel[stackSize - 1];
+ while ((level < recursionLimit)
+ && (CubicCurve2D.getFlatnessSq(stack, sp) >= flatnessSq))
+ {
+ recLevel[stackSize] = recLevel[stackSize - 1] = ++level;
+
+ CubicCurve2D.subdivide(stack, sp, stack, sp - 6, stack, sp);
+ ++stackSize;
+ sp -= 6;
+ }
+ }
+
+
+ /* These routines were useful for debugging. Since they would
+ * just bloat the implementation, they are commented out.
+ *
+ *
+
+ private static String segToString(int segType, double[] d, int offset)
+ {
+ String s;
+
+ switch (segType)
+ {
+ case PathIterator.SEG_CLOSE:
+ return "SEG_CLOSE";
+
+ case PathIterator.SEG_MOVETO:
+ return "SEG_MOVETO (" + d[offset] + ", " + d[offset + 1] + ")";
+
+ case PathIterator.SEG_LINETO:
+ return "SEG_LINETO (" + d[offset] + ", " + d[offset + 1] + ")";
+
+ case PathIterator.SEG_QUADTO:
+ return "SEG_QUADTO (" + d[offset] + ", " + d[offset + 1]
+ + ") (" + d[offset + 2] + ", " + d[offset + 3] + ")";
+
+ case PathIterator.SEG_CUBICTO:
+ return "SEG_CUBICTO (" + d[offset] + ", " + d[offset + 1]
+ + ") (" + d[offset + 2] + ", " + d[offset + 3]
+ + ") (" + d[offset + 4] + ", " + d[offset + 5] + ")";
+ }
+
+ throw new IllegalStateException();
+ }
+
+
+ private void dumpQuadraticStack(String msg)
+ {
+ int sp = stack.length - 4 * stackSize - 2;
+ int i = 0;
+ System.err.print(" " + msg + ":");
+ while (sp < stack.length)
+ {
+ System.err.print(" (" + stack[sp] + ", " + stack[sp+1] + ")");
+ if (i < recLevel.length)
+ System.out.print("/" + recLevel[i++]);
+ if (sp + 3 < stack.length)
+ System.err.print(" [" + stack[sp+2] + ", " + stack[sp+3] + "]");
+ sp += 4;
+ }
+ System.err.println();
+ }
+
+
+ private void dumpCubicStack(String msg)
+ {
+ int sp = stack.length - 6 * stackSize - 2;
+ int i = 0;
+ System.err.print(" " + msg + ":");
+ while (sp < stack.length)
+ {
+ System.err.print(" (" + stack[sp] + ", " + stack[sp+1] + ")");
+ if (i < recLevel.length)
+ System.out.print("/" + recLevel[i++]);
+ if (sp + 3 < stack.length)
+ {
+ System.err.print(" [" + stack[sp+2] + ", " + stack[sp+3] + "]");
+ System.err.print(" [" + stack[sp+4] + ", " + stack[sp+5] + "]");
+ }
+ sp += 6;
+ }
+ System.err.println();
+ }
+
+ *
+ *
+ */
+}
diff --git a/libjava/classpath/java/awt/geom/GeneralPath.java b/libjava/classpath/java/awt/geom/GeneralPath.java
new file mode 100644
index 000000000..99f1905e2
--- /dev/null
+++ b/libjava/classpath/java/awt/geom/GeneralPath.java
@@ -0,0 +1,992 @@
+/* GeneralPath.java -- represents a shape built from subpaths
+ Copyright (C) 2002, 2003, 2004, 2006 Free Software Foundation
+
+This file is part of GNU Classpath.
+
+GNU Classpath is free software; you can redistribute it and/or modify
+it under the terms of the GNU General Public License as published by
+the Free Software Foundation; either version 2, or (at your option)
+any later version.
+
+GNU Classpath is distributed in the hope that it will be useful, but
+WITHOUT ANY WARRANTY; without even the implied warranty of
+MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
+General Public License for more details.
+
+You should have received a copy of the GNU General Public License
+along with GNU Classpath; see the file COPYING. If not, write to the
+Free Software Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA
+02110-1301 USA.
+
+Linking this library statically or dynamically with other modules is
+making a combined work based on this library. Thus, the terms and
+conditions of the GNU General Public License cover the whole
+combination.
+
+As a special exception, the copyright holders of this library give you
+permission to link this library with independent modules to produce an
+executable, regardless of the license terms of these independent
+modules, and to copy and distribute the resulting executable under
+terms of your choice, provided that you also meet, for each linked
+independent module, the terms and conditions of the license of that
+module. An independent module is a module which is not derived from
+or based on this library. If you modify this library, you may extend
+this exception to your version of the library, but you are not
+obligated to do so. If you do not wish to do so, delete this
+exception statement from your version. */
+
+
+package java.awt.geom;
+
+import java.awt.Rectangle;
+import java.awt.Shape;
+
+
+/**
+ * A general geometric path, consisting of any number of subpaths
+ * constructed out of straight lines and cubic or quadratic Bezier
+ * curves.
+ *
+ * <p>The inside of the curve is defined for drawing purposes by a winding
+ * rule. Either the WIND_EVEN_ODD or WIND_NON_ZERO winding rule can be chosen.
+ *
+ * <p><img src="doc-files/GeneralPath-1.png" width="300" height="210"
+ * alt="A drawing of a GeneralPath" />
+ * <p>The EVEN_ODD winding rule defines a point as inside a path if:
+ * A ray from the point towards infinity in an arbitrary direction
+ * intersects the path an odd number of times. Points <b>A</b> and
+ * <b>C</b> in the image are considered to be outside the path.
+ * (both intersect twice)
+ * Point <b>B</b> intersects once, and is inside.
+ *
+ * <p>The NON_ZERO winding rule defines a point as inside a path if:
+ * The path intersects the ray in an equal number of opposite directions.
+ * Point <b>A</b> in the image is outside (one intersection in the
+ * &#x2019;up&#x2019;
+ * direction, one in the &#x2019;down&#x2019; direction) Point <b>B</b> in
+ * the image is inside (one intersection &#x2019;down&#x2019;)
+ * Point <b>C</b> in the image is inside (two intersections in the
+ * &#x2019;down&#x2019; direction)
+ *
+ * @see Line2D
+ * @see CubicCurve2D
+ * @see QuadCurve2D
+ *
+ * @author Sascha Brawer (brawer@dandelis.ch)
+ * @author Sven de Marothy (sven@physto.se)
+ *
+ * @since 1.2
+ */
+public final class GeneralPath implements Shape, Cloneable
+{
+ /** Same constant as {@link PathIterator#WIND_EVEN_ODD}. */
+ public static final int WIND_EVEN_ODD = PathIterator.WIND_EVEN_ODD;
+
+ /** Same constant as {@link PathIterator#WIND_NON_ZERO}. */
+ public static final int WIND_NON_ZERO = PathIterator.WIND_NON_ZERO;
+
+ /** Initial size if not specified. */
+ private static final int INIT_SIZE = 10;
+
+ /** A big number, but not so big it can't survive a few float operations */
+ private static final double BIG_VALUE = Double.MAX_VALUE / 10.0;
+
+ /** The winding rule.
+ * This is package-private to avoid an accessor method.
+ */
+ int rule;
+
+ /**
+ * The path type in points. Note that xpoints[index] and ypoints[index] maps
+ * to types[index]; the control points of quad and cubic paths map as
+ * well but are ignored.
+ * This is package-private to avoid an accessor method.
+ */
+ byte[] types;
+
+ /**
+ * The list of all points seen. Since you can only append floats, it makes
+ * sense for these to be float[]. I have no idea why Sun didn't choose to
+ * allow a general path of double precision points.
+ * Note: Storing x and y coords seperately makes for a slower transforms,
+ * But it speeds up and simplifies box-intersection checking a lot.
+ * These are package-private to avoid accessor methods.
+ */
+ float[] xpoints;
+ float[] ypoints;
+
+ /** The index of the most recent moveto point, or null. */
+ private int subpath = -1;
+
+ /** The next available index into points.
+ * This is package-private to avoid an accessor method.
+ */
+ int index;
+
+ /**
+ * Constructs a GeneralPath with the default (NON_ZERO)
+ * winding rule and initial capacity (20).
+ */
+ public GeneralPath()
+ {
+ this(WIND_NON_ZERO, INIT_SIZE);
+ }
+
+ /**
+ * Constructs a GeneralPath with a specific winding rule
+ * and the default initial capacity (20).
+ * @param rule the winding rule ({@link #WIND_NON_ZERO} or
+ * {@link #WIND_EVEN_ODD})
+ *
+ * @throws IllegalArgumentException if <code>rule</code> is not one of the
+ * listed values.
+ */
+ public GeneralPath(int rule)
+ {
+ this(rule, INIT_SIZE);
+ }
+
+ /**
+ * Constructs a GeneralPath with a specific winding rule
+ * and the initial capacity. The initial capacity should be
+ * the approximate number of path segments to be used.
+ * @param rule the winding rule ({@link #WIND_NON_ZERO} or
+ * {@link #WIND_EVEN_ODD})
+ * @param capacity the inital capacity, in path segments
+ *
+ * @throws IllegalArgumentException if <code>rule</code> is not one of the
+ * listed values.
+ */
+ public GeneralPath(int rule, int capacity)
+ {
+ if (rule != WIND_EVEN_ODD && rule != WIND_NON_ZERO)
+ throw new IllegalArgumentException();
+ this.rule = rule;
+ if (capacity < INIT_SIZE)
+ capacity = INIT_SIZE;
+ types = new byte[capacity];
+ xpoints = new float[capacity];
+ ypoints = new float[capacity];
+ }
+
+ /**
+ * Constructs a GeneralPath from an arbitrary shape object.
+ * The Shapes PathIterator path and winding rule will be used.
+ *
+ * @param s the shape (<code>null</code> not permitted).
+ *
+ * @throws NullPointerException if <code>shape</code> is <code>null</code>.
+ */
+ public GeneralPath(Shape s)
+ {
+ types = new byte[INIT_SIZE];
+ xpoints = new float[INIT_SIZE];
+ ypoints = new float[INIT_SIZE];
+ PathIterator pi = s.getPathIterator(null);
+ setWindingRule(pi.getWindingRule());
+ append(pi, false);
+ }
+
+ /**
+ * Adds a new point to a path.
+ *
+ * @param x the x-coordinate.
+ * @param y the y-coordinate.
+ */
+ public void moveTo(float x, float y)
+ {
+ subpath = index;
+ ensureSize(index + 1);
+ types[index] = PathIterator.SEG_MOVETO;
+ xpoints[index] = x;
+ ypoints[index++] = y;
+ }
+
+ /**
+ * Appends a straight line to the current path.
+ * @param x x coordinate of the line endpoint.
+ * @param y y coordinate of the line endpoint.
+ */
+ public void lineTo(float x, float y)
+ {
+ ensureSize(index + 1);
+ types[index] = PathIterator.SEG_LINETO;
+ xpoints[index] = x;
+ ypoints[index++] = y;
+ }
+
+ /**
+ * Appends a quadratic Bezier curve to the current path.
+ * @param x1 x coordinate of the control point
+ * @param y1 y coordinate of the control point
+ * @param x2 x coordinate of the curve endpoint.
+ * @param y2 y coordinate of the curve endpoint.
+ */
+ public void quadTo(float x1, float y1, float x2, float y2)
+ {
+ ensureSize(index + 2);
+ types[index] = PathIterator.SEG_QUADTO;
+ xpoints[index] = x1;
+ ypoints[index++] = y1;
+ xpoints[index] = x2;
+ ypoints[index++] = y2;
+ }
+
+ /**
+ * Appends a cubic Bezier curve to the current path.
+ * @param x1 x coordinate of the first control point
+ * @param y1 y coordinate of the first control point
+ * @param x2 x coordinate of the second control point
+ * @param y2 y coordinate of the second control point
+ * @param x3 x coordinate of the curve endpoint.
+ * @param y3 y coordinate of the curve endpoint.
+ */
+ public void curveTo(float x1, float y1, float x2, float y2, float x3,
+ float y3)
+ {
+ ensureSize(index + 3);
+ types[index] = PathIterator.SEG_CUBICTO;
+ xpoints[index] = x1;
+ ypoints[index++] = y1;
+ xpoints[index] = x2;
+ ypoints[index++] = y2;
+ xpoints[index] = x3;
+ ypoints[index++] = y3;
+ }
+
+ /**
+ * Closes the current subpath by drawing a line
+ * back to the point of the last moveTo, unless the path is already closed.
+ */
+ public void closePath()
+ {
+ if (index >= 1 && types[index - 1] == PathIterator.SEG_CLOSE)
+ return;
+ ensureSize(index + 1);
+ types[index] = PathIterator.SEG_CLOSE;
+ xpoints[index] = xpoints[subpath];
+ ypoints[index++] = ypoints[subpath];
+ }
+
+ /**
+ * Appends the segments of a Shape to the path. If <code>connect</code> is
+ * true, the new path segments are connected to the existing one with a line.
+ * The winding rule of the Shape is ignored.
+ *
+ * @param s the shape (<code>null</code> not permitted).
+ * @param connect whether to connect the new shape to the existing path.
+ *
+ * @throws NullPointerException if <code>s</code> is <code>null</code>.
+ */
+ public void append(Shape s, boolean connect)
+ {
+ append(s.getPathIterator(null), connect);
+ }
+
+ /**
+ * Appends the segments of a PathIterator to this GeneralPath.
+ * Optionally, the initial {@link PathIterator#SEG_MOVETO} segment
+ * of the appended path is changed into a {@link
+ * PathIterator#SEG_LINETO} segment.
+ *
+ * @param iter the PathIterator specifying which segments shall be
+ * appended (<code>null</code> not permitted).
+ *
+ * @param connect <code>true</code> for substituting the initial
+ * {@link PathIterator#SEG_MOVETO} segment by a {@link
+ * PathIterator#SEG_LINETO}, or <code>false</code> for not
+ * performing any substitution. If this GeneralPath is currently
+ * empty, <code>connect</code> is assumed to be <code>false</code>,
+ * thus leaving the initial {@link PathIterator#SEG_MOVETO}
+ * unchanged.
+ */
+ public void append(PathIterator iter, boolean connect)
+ {
+ // A bad implementation of this method had caused Classpath bug #6076.
+ float[] f = new float[6];
+ while (! iter.isDone())
+ {
+ switch (iter.currentSegment(f))
+ {
+ case PathIterator.SEG_MOVETO:
+ if (! connect || (index == 0))
+ {
+ moveTo(f[0], f[1]);
+ break;
+ }
+ if ((index >= 1) && (types[index - 1] == PathIterator.SEG_CLOSE)
+ && (f[0] == xpoints[index - 1])
+ && (f[1] == ypoints[index - 1]))
+ break;
+
+ // Fall through.
+ case PathIterator.SEG_LINETO:
+ lineTo(f[0], f[1]);
+ break;
+ case PathIterator.SEG_QUADTO:
+ quadTo(f[0], f[1], f[2], f[3]);
+ break;
+ case PathIterator.SEG_CUBICTO:
+ curveTo(f[0], f[1], f[2], f[3], f[4], f[5]);
+ break;
+ case PathIterator.SEG_CLOSE:
+ closePath();
+ break;
+ }
+
+ connect = false;
+ iter.next();
+ }
+ }
+
+ /**
+ * Returns the path&#x2019;s current winding rule.
+ *
+ * @return {@link #WIND_EVEN_ODD} or {@link #WIND_NON_ZERO}.
+ */
+ public int getWindingRule()
+ {
+ return rule;
+ }
+
+ /**
+ * Sets the path&#x2019;s winding rule, which controls which areas are
+ * considered &#x2019;inside&#x2019; or &#x2019;outside&#x2019; the path
+ * on drawing. Valid rules are WIND_EVEN_ODD for an even-odd winding rule,
+ * or WIND_NON_ZERO for a non-zero winding rule.
+ *
+ * @param rule the rule ({@link #WIND_EVEN_ODD} or {@link #WIND_NON_ZERO}).
+ */
+ public void setWindingRule(int rule)
+ {
+ if (rule != WIND_EVEN_ODD && rule != WIND_NON_ZERO)
+ throw new IllegalArgumentException();
+ this.rule = rule;
+ }
+
+ /**
+ * Returns the current appending point of the path.
+ *
+ * @return The point.
+ */
+ public Point2D getCurrentPoint()
+ {
+ if (subpath < 0)
+ return null;
+ return new Point2D.Float(xpoints[index - 1], ypoints[index - 1]);
+ }
+
+ /**
+ * Resets the path. All points and segments are destroyed.
+ */
+ public void reset()
+ {
+ subpath = -1;
+ index = 0;
+ }
+
+ /**
+ * Applies a transform to the path.
+ *
+ * @param xform the transform (<code>null</code> not permitted).
+ */
+ public void transform(AffineTransform xform)
+ {
+ double nx;
+ double ny;
+ double[] m = new double[6];
+ xform.getMatrix(m);
+ for (int i = 0; i < index; i++)
+ {
+ nx = m[0] * xpoints[i] + m[2] * ypoints[i] + m[4];
+ ny = m[1] * xpoints[i] + m[3] * ypoints[i] + m[5];
+ xpoints[i] = (float) nx;
+ ypoints[i] = (float) ny;
+ }
+ }
+
+ /**
+ * Creates a transformed version of the path.
+ * @param xform the transform to apply
+ * @return a new transformed GeneralPath
+ */
+ public Shape createTransformedShape(AffineTransform xform)
+ {
+ GeneralPath p = new GeneralPath(this);
+ p.transform(xform);
+ return p;
+ }
+
+ /**
+ * Returns the path&#x2019;s bounding box.
+ */
+ public Rectangle getBounds()
+ {
+ return getBounds2D().getBounds();
+ }
+
+ /**
+ * Returns the path&#x2019;s bounding box, in <code>float</code> precision
+ */
+ public Rectangle2D getBounds2D()
+ {
+ float x1;
+ float y1;
+ float x2;
+ float y2;
+
+ if (index > 0)
+ {
+ x1 = x2 = xpoints[0];
+ y1 = y2 = ypoints[0];
+ }
+ else
+ x1 = x2 = y1 = y2 = 0.0f;
+
+ for (int i = 0; i < index; i++)
+ {
+ x1 = Math.min(xpoints[i], x1);
+ y1 = Math.min(ypoints[i], y1);
+ x2 = Math.max(xpoints[i], x2);
+ y2 = Math.max(ypoints[i], y2);
+ }
+ return (new Rectangle2D.Float(x1, y1, x2 - x1, y2 - y1));
+ }
+
+ /**
+ * Evaluates if a point is within the GeneralPath,
+ * The NON_ZERO winding rule is used, regardless of the
+ * set winding rule.
+ * @param x x coordinate of the point to evaluate
+ * @param y y coordinate of the point to evaluate
+ * @return true if the point is within the path, false otherwise
+ */
+ public boolean contains(double x, double y)
+ {
+ return (getWindingNumber(x, y) != 0);
+ }
+
+ /**
+ * Evaluates if a Point2D is within the GeneralPath,
+ * The NON_ZERO winding rule is used, regardless of the
+ * set winding rule.
+ * @param p The Point2D to evaluate
+ * @return true if the point is within the path, false otherwise
+ */
+ public boolean contains(Point2D p)
+ {
+ return contains(p.getX(), p.getY());
+ }
+
+ /**
+ * Evaluates if a rectangle is completely contained within the path.
+ * This method will return false in the cases when the box
+ * intersects an inner segment of the path.
+ * (i.e.: The method is accurate for the EVEN_ODD winding rule)
+ */
+ public boolean contains(double x, double y, double w, double h)
+ {
+ if (! getBounds2D().intersects(x, y, w, h))
+ return false;
+
+ /* Does any edge intersect? */
+ if (getAxisIntersections(x, y, false, w) != 0 /* top */
+ || getAxisIntersections(x, y + h, false, w) != 0 /* bottom */
+ || getAxisIntersections(x + w, y, true, h) != 0 /* right */
+ || getAxisIntersections(x, y, true, h) != 0) /* left */
+ return false;
+
+ /* No intersections, is any point inside? */
+ if (getWindingNumber(x, y) != 0)
+ return true;
+
+ return false;
+ }
+
+ /**
+ * Evaluates if a rectangle is completely contained within the path.
+ * This method will return false in the cases when the box
+ * intersects an inner segment of the path.
+ * (i.e.: The method is accurate for the EVEN_ODD winding rule)
+ * @param r the rectangle
+ * @return <code>true</code> if the rectangle is completely contained
+ * within the path, <code>false</code> otherwise
+ */
+ public boolean contains(Rectangle2D r)
+ {
+ return contains(r.getX(), r.getY(), r.getWidth(), r.getHeight());
+ }
+
+ /**
+ * Evaluates if a rectangle intersects the path.
+ * @param x x coordinate of the rectangle
+ * @param y y coordinate of the rectangle
+ * @param w width of the rectangle
+ * @param h height of the rectangle
+ * @return <code>true</code> if the rectangle intersects the path,
+ * <code>false</code> otherwise
+ */
+ public boolean intersects(double x, double y, double w, double h)
+ {
+ /* Does any edge intersect? */
+ if (getAxisIntersections(x, y, false, w) != 0 /* top */
+ || getAxisIntersections(x, y + h, false, w) != 0 /* bottom */
+ || getAxisIntersections(x + w, y, true, h) != 0 /* right */
+ || getAxisIntersections(x, y, true, h) != 0) /* left */
+ return true;
+
+ /* No intersections, is any point inside? */
+ if (getWindingNumber(x, y) != 0)
+ return true;
+
+ return false;
+ }
+
+ /**
+ * Evaluates if a Rectangle2D intersects the path.
+ * @param r The rectangle
+ * @return <code>true</code> if the rectangle intersects the path,
+ * <code>false</code> otherwise
+ */
+ public boolean intersects(Rectangle2D r)
+ {
+ return intersects(r.getX(), r.getY(), r.getWidth(), r.getHeight());
+ }
+
+ /**
+ * A PathIterator that iterates over the segments of a GeneralPath.
+ *
+ * @author Sascha Brawer (brawer@dandelis.ch)
+ */
+ private static class GeneralPathIterator implements PathIterator
+ {
+ /**
+ * The number of coordinate values for each segment type.
+ */
+ private static final int[] NUM_COORDS = {
+ /* 0: SEG_MOVETO */ 1,
+ /* 1: SEG_LINETO */ 1,
+ /* 2: SEG_QUADTO */ 2,
+ /* 3: SEG_CUBICTO */ 3,
+ /* 4: SEG_CLOSE */ 0};
+
+ /**
+ * The GeneralPath whose segments are being iterated.
+ * This is package-private to avoid an accessor method.
+ */
+ final GeneralPath path;
+
+ /**
+ * The affine transformation used to transform coordinates.
+ */
+ private final AffineTransform transform;
+
+ /**
+ * The current position of the iterator.
+ */
+ private int pos;
+
+ /**
+ * Constructs a new iterator for enumerating the segments of a
+ * GeneralPath.
+ *
+ * @param path the path to enumerate
+ * @param transform an affine transformation for projecting the returned
+ * points, or <code>null</code> to return the original points
+ * without any mapping.
+ */
+ GeneralPathIterator(GeneralPath path, AffineTransform transform)
+ {
+ this.path = path;
+ this.transform = transform;
+ }
+
+ /**
+ * Returns the current winding rule of the GeneralPath.
+ */
+ public int getWindingRule()
+ {
+ return path.rule;
+ }
+
+ /**
+ * Determines whether the iterator has reached the last segment in
+ * the path.
+ */
+ public boolean isDone()
+ {
+ return pos >= path.index;
+ }
+
+ /**
+ * Advances the iterator position by one segment.
+ */
+ public void next()
+ {
+ int seg;
+
+ /*
+ * Increment pos by the number of coordinate pairs.
+ */
+ seg = path.types[pos];
+ if (seg == SEG_CLOSE)
+ pos++;
+ else
+ pos += NUM_COORDS[seg];
+ }
+
+ /**
+ * Returns the current segment in float coordinates.
+ */
+ public int currentSegment(float[] coords)
+ {
+ int seg;
+ int numCoords;
+
+ seg = path.types[pos];
+ numCoords = NUM_COORDS[seg];
+ if (numCoords > 0)
+ {
+ for (int i = 0; i < numCoords; i++)
+ {
+ coords[i << 1] = path.xpoints[pos + i];
+ coords[(i << 1) + 1] = path.ypoints[pos + i];
+ }
+
+ if (transform != null)
+ transform.transform( /* src */
+ coords, /* srcOffset */
+ 0, /* dest */ coords, /* destOffset */
+ 0, /* numPoints */ numCoords);
+ }
+ return seg;
+ }
+
+ /**
+ * Returns the current segment in double coordinates.
+ */
+ public int currentSegment(double[] coords)
+ {
+ int seg;
+ int numCoords;
+
+ seg = path.types[pos];
+ numCoords = NUM_COORDS[seg];
+ if (numCoords > 0)
+ {
+ for (int i = 0; i < numCoords; i++)
+ {
+ coords[i << 1] = (double) path.xpoints[pos + i];
+ coords[(i << 1) + 1] = (double) path.ypoints[pos + i];
+ }
+ if (transform != null)
+ transform.transform( /* src */
+ coords, /* srcOffset */
+ 0, /* dest */ coords, /* destOffset */
+ 0, /* numPoints */ numCoords);
+ }
+ return seg;
+ }
+ }
+
+ /**
+ * Creates a PathIterator for iterating along the segments of the path.
+ *
+ * @param at an affine transformation for projecting the returned
+ * points, or <code>null</code> to let the created iterator return
+ * the original points without any mapping.
+ */
+ public PathIterator getPathIterator(AffineTransform at)
+ {
+ return new GeneralPathIterator(this, at);
+ }
+
+ /**
+ * Creates a new FlatteningPathIterator for the path
+ */
+ public PathIterator getPathIterator(AffineTransform at, double flatness)
+ {
+ return new FlatteningPathIterator(getPathIterator(at), flatness);
+ }
+
+ /**
+ * Creates a new shape of the same run-time type with the same contents
+ * as this one.
+ *
+ * @return the clone
+ *
+ * @exception OutOfMemoryError If there is not enough memory available.
+ *
+ * @since 1.2
+ */
+ public Object clone()
+ {
+ // This class is final; no need to use super.clone().
+ return new GeneralPath(this);
+ }
+
+ /**
+ * Helper method - ensure the size of the data arrays,
+ * otherwise, reallocate new ones twice the size
+ *
+ * @param size the minimum array size.
+ */
+ private void ensureSize(int size)
+ {
+ if (subpath < 0)
+ throw new IllegalPathStateException("need initial moveto");
+ if (size <= xpoints.length)
+ return;
+ byte[] b = new byte[types.length << 1];
+ System.arraycopy(types, 0, b, 0, index);
+ types = b;
+ float[] f = new float[xpoints.length << 1];
+ System.arraycopy(xpoints, 0, f, 0, index);
+ xpoints = f;
+ f = new float[ypoints.length << 1];
+ System.arraycopy(ypoints, 0, f, 0, index);
+ ypoints = f;
+ }
+
+ /**
+ * Helper method - Get the total number of intersections from (x,y) along
+ * a given axis, within a given distance.
+ */
+ private int getAxisIntersections(double x, double y, boolean useYaxis,
+ double distance)
+ {
+ return (evaluateCrossings(x, y, false, useYaxis, distance));
+ }
+
+ /**
+ * Helper method - returns the winding number of a point.
+ */
+ private int getWindingNumber(double x, double y)
+ {
+ /* Evaluate the crossings from x,y to infinity on the y axis (arbitrary
+ choice). Note that we don't actually use Double.INFINITY, since that's
+ slower, and may cause problems. */
+ return (evaluateCrossings(x, y, true, true, BIG_VALUE));
+ }
+
+ /**
+ * Helper method - evaluates the number of intersections on an axis from
+ * the point (x,y) to the point (x,y+distance) or (x+distance,y).
+ * @param x x coordinate.
+ * @param y y coordinate.
+ * @param neg True if opposite-directed intersections should cancel,
+ * false to sum all intersections.
+ * @param useYaxis Use the Y axis, false uses the X axis.
+ * @param distance Interval from (x,y) on the selected axis to find
+ * intersections.
+ */
+ private int evaluateCrossings(double x, double y, boolean neg,
+ boolean useYaxis, double distance)
+ {
+ float cx = 0.0f;
+ float cy = 0.0f;
+ float firstx = 0.0f;
+ float firsty = 0.0f;
+
+ int negative = (neg) ? -1 : 1;
+ double x0;
+ double x1;
+ double x2;
+ double x3;
+ double y0;
+ double y1;
+ double y2;
+ double y3;
+ double[] r = new double[4];
+ int nRoots;
+ double epsilon = 0.0;
+ int pos = 0;
+ int windingNumber = 0;
+ boolean pathStarted = false;
+
+ if (index == 0)
+ return (0);
+ if (useYaxis)
+ {
+ float[] swap1;
+ swap1 = ypoints;
+ ypoints = xpoints;
+ xpoints = swap1;
+ double swap2;
+ swap2 = y;
+ y = x;
+ x = swap2;
+ }
+
+ /* Get a value which is hopefully small but not insignificant relative
+ the path. */
+ epsilon = ypoints[0] * 1E-7;
+
+ if(epsilon == 0)
+ epsilon = 1E-7;
+
+ pos = 0;
+ while (pos < index)
+ {
+ switch (types[pos])
+ {
+ case PathIterator.SEG_MOVETO:
+ if (pathStarted) // close old path
+ {
+ x0 = cx;
+ y0 = cy;
+ x1 = firstx;
+ y1 = firsty;
+
+ if (y0 == 0.0)
+ y0 -= epsilon;
+ if (y1 == 0.0)
+ y1 -= epsilon;
+ if (Line2D.linesIntersect(x0, y0, x1, y1,
+ epsilon, 0.0, distance, 0.0))
+ windingNumber += (y1 < y0) ? 1 : negative;
+
+ cx = firstx;
+ cy = firsty;
+ }
+ cx = firstx = xpoints[pos] - (float) x;
+ cy = firsty = ypoints[pos++] - (float) y;
+ pathStarted = true;
+ break;
+ case PathIterator.SEG_CLOSE:
+ x0 = cx;
+ y0 = cy;
+ x1 = firstx;
+ y1 = firsty;
+
+ if (y0 == 0.0)
+ y0 -= epsilon;
+ if (y1 == 0.0)
+ y1 -= epsilon;
+ if (Line2D.linesIntersect(x0, y0, x1, y1,
+ epsilon, 0.0, distance, 0.0))
+ windingNumber += (y1 < y0) ? 1 : negative;
+
+ cx = firstx;
+ cy = firsty;
+ pos++;
+ pathStarted = false;
+ break;
+ case PathIterator.SEG_LINETO:
+ x0 = cx;
+ y0 = cy;
+ x1 = xpoints[pos] - (float) x;
+ y1 = ypoints[pos++] - (float) y;
+
+ if (y0 == 0.0)
+ y0 -= epsilon;
+ if (y1 == 0.0)
+ y1 -= epsilon;
+ if (Line2D.linesIntersect(x0, y0, x1, y1,
+ epsilon, 0.0, distance, 0.0))
+ windingNumber += (y1 < y0) ? 1 : negative;
+
+ cx = xpoints[pos - 1] - (float) x;
+ cy = ypoints[pos - 1] - (float) y;
+ break;
+ case PathIterator.SEG_QUADTO:
+ x0 = cx;
+ y0 = cy;
+ x1 = xpoints[pos] - x;
+ y1 = ypoints[pos++] - y;
+ x2 = xpoints[pos] - x;
+ y2 = ypoints[pos++] - y;
+
+ /* check if curve may intersect X+ axis. */
+ if ((x0 > 0.0 || x1 > 0.0 || x2 > 0.0)
+ && (y0 * y1 <= 0 || y1 * y2 <= 0))
+ {
+ if (y0 == 0.0)
+ y0 -= epsilon;
+ if (y2 == 0.0)
+ y2 -= epsilon;
+
+ r[0] = y0;
+ r[1] = 2 * (y1 - y0);
+ r[2] = (y2 - 2 * y1 + y0);
+
+ /* degenerate roots (=tangent points) do not
+ contribute to the winding number. */
+ if ((nRoots = QuadCurve2D.solveQuadratic(r)) == 2)
+ for (int i = 0; i < nRoots; i++)
+ {
+ float t = (float) r[i];
+ if (t > 0.0f && t < 1.0f)
+ {
+ double crossing = t * t * (x2 - 2 * x1 + x0)
+ + 2 * t * (x1 - x0) + x0;
+ if (crossing >= 0.0 && crossing <= distance)
+ windingNumber += (2 * t * (y2 - 2 * y1 + y0)
+ + 2 * (y1 - y0) < 0) ? 1 : negative;
+ }
+ }
+ }
+
+ cx = xpoints[pos - 1] - (float) x;
+ cy = ypoints[pos - 1] - (float) y;
+ break;
+ case PathIterator.SEG_CUBICTO:
+ x0 = cx;
+ y0 = cy;
+ x1 = xpoints[pos] - x;
+ y1 = ypoints[pos++] - y;
+ x2 = xpoints[pos] - x;
+ y2 = ypoints[pos++] - y;
+ x3 = xpoints[pos] - x;
+ y3 = ypoints[pos++] - y;
+
+ /* check if curve may intersect X+ axis. */
+ if ((x0 > 0.0 || x1 > 0.0 || x2 > 0.0 || x3 > 0.0)
+ && (y0 * y1 <= 0 || y1 * y2 <= 0 || y2 * y3 <= 0))
+ {
+ if (y0 == 0.0)
+ y0 -= epsilon;
+ if (y3 == 0.0)
+ y3 -= epsilon;
+
+ r[0] = y0;
+ r[1] = 3 * (y1 - y0);
+ r[2] = 3 * (y2 + y0 - 2 * y1);
+ r[3] = y3 - 3 * y2 + 3 * y1 - y0;
+
+ if ((nRoots = CubicCurve2D.solveCubic(r)) != 0)
+ for (int i = 0; i < nRoots; i++)
+ {
+ float t = (float) r[i];
+ if (t > 0.0 && t < 1.0)
+ {
+ double crossing = -(t * t * t) * (x0 - 3 * x1
+ + 3 * x2 - x3)
+ + 3 * t * t * (x0 - 2 * x1 + x2)
+ + 3 * t * (x1 - x0) + x0;
+ if (crossing >= 0 && crossing <= distance)
+ windingNumber += (3 * t * t * (y3 + 3 * y1
+ - 3 * y2 - y0)
+ + 6 * t * (y0 - 2 * y1 + y2)
+ + 3 * (y1 - y0) < 0) ? 1 : negative;
+ }
+ }
+ }
+
+ cx = xpoints[pos - 1] - (float) x;
+ cy = ypoints[pos - 1] - (float) y;
+ break;
+ }
+ }
+
+ // swap coordinates back
+ if (useYaxis)
+ {
+ float[] swap;
+ swap = ypoints;
+ ypoints = xpoints;
+ xpoints = swap;
+ }
+ return (windingNumber);
+ }
+} // class GeneralPath
diff --git a/libjava/classpath/java/awt/geom/IllegalPathStateException.java b/libjava/classpath/java/awt/geom/IllegalPathStateException.java
new file mode 100644
index 000000000..4d190c748
--- /dev/null
+++ b/libjava/classpath/java/awt/geom/IllegalPathStateException.java
@@ -0,0 +1,71 @@
+/* IllegalPathStateException.java -- an operation was in an illegal path state
+ Copyright (C) 2000, 2002 Free Software Foundation
+
+This file is part of GNU Classpath.
+
+GNU Classpath is free software; you can redistribute it and/or modify
+it under the terms of the GNU General Public License as published by
+the Free Software Foundation; either version 2, or (at your option)
+any later version.
+
+GNU Classpath is distributed in the hope that it will be useful, but
+WITHOUT ANY WARRANTY; without even the implied warranty of
+MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
+General Public License for more details.
+
+You should have received a copy of the GNU General Public License
+along with GNU Classpath; see the file COPYING. If not, write to the
+Free Software Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA
+02110-1301 USA.
+
+Linking this library statically or dynamically with other modules is
+making a combined work based on this library. Thus, the terms and
+conditions of the GNU General Public License cover the whole
+combination.
+
+As a special exception, the copyright holders of this library give you
+permission to link this library with independent modules to produce an
+executable, regardless of the license terms of these independent
+modules, and to copy and distribute the resulting executable under
+terms of your choice, provided that you also meet, for each linked
+independent module, the terms and conditions of the license of that
+module. An independent module is a module which is not derived from
+or based on this library. If you modify this library, you may extend
+this exception to your version of the library, but you are not
+obligated to do so. If you do not wish to do so, delete this
+exception statement from your version. */
+
+package java.awt.geom;
+
+/**
+ * Thrown when an operation on a path is in an illegal state, such as appending
+ * a segment to a <code>GeneralPath</code> without an initial moveto.
+ *
+ * @author Tom Tromey (tromey@cygnus.com)
+ * @see GeneralPath
+ * @status updated to 1.4
+ */
+public class IllegalPathStateException extends RuntimeException
+{
+ /**
+ * Compatible with JDK 1.2+.
+ */
+ private static final long serialVersionUID = -5158084205220481094L;
+
+ /**
+ * Create an exception with no message.
+ */
+ public IllegalPathStateException()
+ {
+ }
+
+ /**
+ * Create an exception with a message.
+ *
+ * @param msg the message
+ */
+ public IllegalPathStateException(String msg)
+ {
+ super(msg);
+ }
+}
diff --git a/libjava/classpath/java/awt/geom/Line2D.java b/libjava/classpath/java/awt/geom/Line2D.java
new file mode 100644
index 000000000..c92aab004
--- /dev/null
+++ b/libjava/classpath/java/awt/geom/Line2D.java
@@ -0,0 +1,1182 @@
+/* Line2D.java -- represents a line in 2-D space, plus operations on a line
+ Copyright (C) 2000, 2001, 2002 Free Software Foundation
+
+This file is part of GNU Classpath.
+
+GNU Classpath is free software; you can redistribute it and/or modify
+it under the terms of the GNU General Public License as published by
+the Free Software Foundation; either version 2, or (at your option)
+any later version.
+
+GNU Classpath is distributed in the hope that it will be useful, but
+WITHOUT ANY WARRANTY; without even the implied warranty of
+MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
+General Public License for more details.
+
+You should have received a copy of the GNU General Public License
+along with GNU Classpath; see the file COPYING. If not, write to the
+Free Software Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA
+02110-1301 USA.
+
+Linking this library statically or dynamically with other modules is
+making a combined work based on this library. Thus, the terms and
+conditions of the GNU General Public License cover the whole
+combination.
+
+As a special exception, the copyright holders of this library give you
+permission to link this library with independent modules to produce an
+executable, regardless of the license terms of these independent
+modules, and to copy and distribute the resulting executable under
+terms of your choice, provided that you also meet, for each linked
+independent module, the terms and conditions of the license of that
+module. An independent module is a module which is not derived from
+or based on this library. If you modify this library, you may extend
+this exception to your version of the library, but you are not
+obligated to do so. If you do not wish to do so, delete this
+exception statement from your version. */
+
+package java.awt.geom;
+
+import java.awt.Rectangle;
+import java.awt.Shape;
+import java.util.NoSuchElementException;
+
+/**
+ * Represents a directed line bewteen two points in (x,y) Cartesian space.
+ * Remember, on-screen graphics have increasing x from left-to-right, and
+ * increasing y from top-to-bottom. The storage is left to subclasses.
+ *
+ * @author Tom Tromey (tromey@cygnus.com)
+ * @author Eric Blake (ebb9@email.byu.edu)
+ * @author David Gilbert
+ * @since 1.2
+ * @status updated to 1.4
+ */
+public abstract class Line2D implements Shape, Cloneable
+{
+ /**
+ * The default constructor.
+ */
+ protected Line2D()
+ {
+ }
+
+ /**
+ * Return the x coordinate of the first point.
+ *
+ * @return the starting x coordinate
+ */
+ public abstract double getX1();
+
+ /**
+ * Return the y coordinate of the first point.
+ *
+ * @return the starting y coordinate
+ */
+ public abstract double getY1();
+
+ /**
+ * Return the first point.
+ *
+ * @return the starting point
+ */
+ public abstract Point2D getP1();
+
+ /**
+ * Return the x coordinate of the second point.
+ *
+ * @return the ending x coordinate
+ */
+ public abstract double getX2();
+
+ /**
+ * Return the y coordinate of the second point.
+ *
+ * @return the ending y coordinate
+ */
+ public abstract double getY2();
+
+ /**
+ * Return the second point.
+ *
+ * @return the ending point
+ */
+ public abstract Point2D getP2();
+
+ /**
+ * Set the coordinates of the line to the given coordinates. Loss of
+ * precision may occur due to rounding issues.
+ *
+ * @param x1 the first x coordinate
+ * @param y1 the first y coordinate
+ * @param x2 the second x coordinate
+ * @param y2 the second y coordinate
+ */
+ public abstract void setLine(double x1, double y1, double x2, double y2);
+
+ /**
+ * Set the coordinates to the given points.
+ *
+ * @param p1 the first point
+ * @param p2 the second point
+ * @throws NullPointerException if either point is null
+ */
+ public void setLine(Point2D p1, Point2D p2)
+ {
+ setLine(p1.getX(), p1.getY(), p2.getX(), p2.getY());
+ }
+
+ /**
+ * Set the coordinates to those of the given line.
+ *
+ * @param l the line to copy
+ * @throws NullPointerException if l is null
+ */
+ public void setLine(Line2D l)
+ {
+ setLine(l.getX1(), l.getY1(), l.getX2(), l.getY2());
+ }
+
+ /**
+ * Computes the relative rotation direction needed to pivot the line about
+ * the first point in order to have the second point colinear with point p.
+ * Because of floating point rounding, don't expect this to be a perfect
+ * measure of colinearity. The answer is 1 if the line has a shorter rotation
+ * in the direction of the positive X axis to the negative Y axis
+ * (counter-clockwise in the default Java coordinate system), or -1 if the
+ * shortest rotation is in the opposite direction (clockwise). If p
+ * is already colinear, the return value is -1 if it lies beyond the first
+ * point, 0 if it lies in the segment, or 1 if it lies beyond the second
+ * point. If the first and second point are coincident, this returns 0.
+ *
+ * @param x1 the first x coordinate
+ * @param y1 the first y coordinate
+ * @param x2 the second x coordinate
+ * @param y2 the second y coordinate
+ * @param px the reference x coordinate
+ * @param py the reference y coordinate
+ * @return the relative rotation direction
+ */
+ public static int relativeCCW(double x1, double y1, double x2, double y2,
+ double px, double py)
+ {
+ if ((x1 == x2 && y1 == y2)
+ || (x1 == px && y1 == py))
+ return 0; // Coincident points.
+ // Translate to the origin.
+ x2 -= x1;
+ y2 -= y1;
+ px -= x1;
+ py -= y1;
+ double slope2 = y2 / x2;
+ double slopep = py / px;
+ if (slope2 == slopep || (x2 == 0 && px == 0))
+ return y2 > 0 // Colinear.
+ ? (py < 0 ? -1 : py > y2 ? 1 : 0)
+ : (py > 0 ? -1 : py < y2 ? 1 : 0);
+ if (x2 >= 0 && slope2 >= 0)
+ return px >= 0 // Quadrant 1.
+ ? (slope2 > slopep ? 1 : -1)
+ : (slope2 < slopep ? 1 : -1);
+ if (y2 > 0)
+ return px < 0 // Quadrant 2.
+ ? (slope2 > slopep ? 1 : -1)
+ : (slope2 < slopep ? 1 : -1);
+ if (slope2 >= 0.0)
+ return px >= 0 // Quadrant 3.
+ ? (slope2 < slopep ? 1 : -1)
+ : (slope2 > slopep ? 1 : -1);
+ return px < 0 // Quadrant 4.
+ ? (slope2 < slopep ? 1 : -1)
+ : (slope2 > slopep ? 1 : -1);
+ }
+
+ /**
+ * Computes the relative rotation direction needed to pivot this line about
+ * the first point in order to have the second point colinear with point p.
+ * Because of floating point rounding, don't expect this to be a perfect
+ * measure of colinearity. The answer is 1 if the line has a shorter rotation
+ * in the direction of the positive X axis to the negative Y axis
+ * (counter-clockwise in the default Java coordinate system), or -1 if the
+ * shortest rotation is in the opposite direction (clockwise). If p
+ * is already colinear, the return value is -1 if it lies beyond the first
+ * point, 0 if it lies in the segment, or 1 if it lies beyond the second
+ * point. If the first and second point are coincident, this returns 0.
+ *
+ * @param px the reference x coordinate
+ * @param py the reference y coordinate
+ * @return the relative rotation direction
+ * @see #relativeCCW(double, double, double, double, double, double)
+ */
+ public int relativeCCW(double px, double py)
+ {
+ return relativeCCW(getX1(), getY1(), getX2(), getY2(), px, py);
+ }
+
+ /**
+ * Computes the relative rotation direction needed to pivot this line about
+ * the first point in order to have the second point colinear with point p.
+ * Because of floating point rounding, don't expect this to be a perfect
+ * measure of colinearity. The answer is 1 if the line has a shorter rotation
+ * in the direction of the positive X axis to the negative Y axis
+ * (counter-clockwise in the default Java coordinate system), or -1 if the
+ * shortest rotation is in the opposite direction (clockwise). If p
+ * is already colinear, the return value is -1 if it lies beyond the first
+ * point, 0 if it lies in the segment, or 1 if it lies beyond the second
+ * point. If the first and second point are coincident, this returns 0.
+ *
+ * @param p the reference point
+ * @return the relative rotation direction
+ * @throws NullPointerException if p is null
+ * @see #relativeCCW(double, double, double, double, double, double)
+ */
+ public int relativeCCW(Point2D p)
+ {
+ return relativeCCW(getX1(), getY1(), getX2(), getY2(), p.getX(), p.getY());
+ }
+
+ /**
+ * Computes twice the (signed) area of the triangle defined by the three
+ * points. This method is used for intersection testing.
+ *
+ * @param x1 the x-coordinate of the first point.
+ * @param y1 the y-coordinate of the first point.
+ * @param x2 the x-coordinate of the second point.
+ * @param y2 the y-coordinate of the second point.
+ * @param x3 the x-coordinate of the third point.
+ * @param y3 the y-coordinate of the third point.
+ *
+ * @return Twice the area.
+ */
+ private static double area2(double x1, double y1,
+ double x2, double y2,
+ double x3, double y3)
+ {
+ return (x2 - x1) * (y3 - y1) - (x3 - x1) * (y2 - y1);
+ }
+
+ /**
+ * Returns <code>true</code> if (x3, y3) lies between (x1, y1) and (x2, y2),
+ * and false otherwise, This test assumes that the three points are
+ * collinear, and is used for intersection testing.
+ *
+ * @param x1 the x-coordinate of the first point.
+ * @param y1 the y-coordinate of the first point.
+ * @param x2 the x-coordinate of the second point.
+ * @param y2 the y-coordinate of the second point.
+ * @param x3 the x-coordinate of the third point.
+ * @param y3 the y-coordinate of the third point.
+ *
+ * @return A boolean.
+ */
+ private static boolean between(double x1, double y1,
+ double x2, double y2,
+ double x3, double y3)
+ {
+ if (x1 != x2) {
+ return (x1 <= x3 && x3 <= x2) || (x1 >= x3 && x3 >= x2);
+ }
+ else {
+ return (y1 <= y3 && y3 <= y2) || (y1 >= y3 && y3 >= y2);
+ }
+ }
+
+ /**
+ * Test if the line segment (x1,y1)-&gt;(x2,y2) intersects the line segment
+ * (x3,y3)-&gt;(x4,y4).
+ *
+ * @param x1 the first x coordinate of the first segment
+ * @param y1 the first y coordinate of the first segment
+ * @param x2 the second x coordinate of the first segment
+ * @param y2 the second y coordinate of the first segment
+ * @param x3 the first x coordinate of the second segment
+ * @param y3 the first y coordinate of the second segment
+ * @param x4 the second x coordinate of the second segment
+ * @param y4 the second y coordinate of the second segment
+ * @return true if the segments intersect
+ */
+ public static boolean linesIntersect(double x1, double y1,
+ double x2, double y2,
+ double x3, double y3,
+ double x4, double y4)
+ {
+ double a1, a2, a3, a4;
+
+ // deal with special cases
+ if ((a1 = area2(x1, y1, x2, y2, x3, y3)) == 0.0)
+ {
+ // check if p3 is between p1 and p2 OR
+ // p4 is collinear also AND either between p1 and p2 OR at opposite ends
+ if (between(x1, y1, x2, y2, x3, y3))
+ {
+ return true;
+ }
+ else
+ {
+ if (area2(x1, y1, x2, y2, x4, y4) == 0.0)
+ {
+ return between(x3, y3, x4, y4, x1, y1)
+ || between (x3, y3, x4, y4, x2, y2);
+ }
+ else {
+ return false;
+ }
+ }
+ }
+ else if ((a2 = area2(x1, y1, x2, y2, x4, y4)) == 0.0)
+ {
+ // check if p4 is between p1 and p2 (we already know p3 is not
+ // collinear)
+ return between(x1, y1, x2, y2, x4, y4);
+ }
+
+ if ((a3 = area2(x3, y3, x4, y4, x1, y1)) == 0.0) {
+ // check if p1 is between p3 and p4 OR
+ // p2 is collinear also AND either between p1 and p2 OR at opposite ends
+ if (between(x3, y3, x4, y4, x1, y1)) {
+ return true;
+ }
+ else {
+ if (area2(x3, y3, x4, y4, x2, y2) == 0.0) {
+ return between(x1, y1, x2, y2, x3, y3)
+ || between (x1, y1, x2, y2, x4, y4);
+ }
+ else {
+ return false;
+ }
+ }
+ }
+ else if ((a4 = area2(x3, y3, x4, y4, x2, y2)) == 0.0) {
+ // check if p2 is between p3 and p4 (we already know p1 is not
+ // collinear)
+ return between(x3, y3, x4, y4, x2, y2);
+ }
+ else { // test for regular intersection
+ return ((a1 > 0.0) ^ (a2 > 0.0)) && ((a3 > 0.0) ^ (a4 > 0.0));
+ }
+ }
+
+ /**
+ * Test if this line intersects the line given by (x1,y1)-&gt;(x2,y2).
+ *
+ * @param x1 the first x coordinate of the other segment
+ * @param y1 the first y coordinate of the other segment
+ * @param x2 the second x coordinate of the other segment
+ * @param y2 the second y coordinate of the other segment
+ * @return true if the segments intersect
+ * @see #linesIntersect(double, double, double, double,
+ * double, double, double, double)
+ */
+ public boolean intersectsLine(double x1, double y1, double x2, double y2)
+ {
+ return linesIntersect(getX1(), getY1(), getX2(), getY2(),
+ x1, y1, x2, y2);
+ }
+
+ /**
+ * Test if this line intersects the given line.
+ *
+ * @param l the other segment
+ * @return true if the segments intersect
+ * @throws NullPointerException if l is null
+ * @see #linesIntersect(double, double, double, double,
+ * double, double, double, double)
+ */
+ public boolean intersectsLine(Line2D l)
+ {
+ return linesIntersect(getX1(), getY1(), getX2(), getY2(),
+ l.getX1(), l.getY1(), l.getX2(), l.getY2());
+ }
+
+ /**
+ * Measures the square of the shortest distance from the reference point
+ * to a point on the line segment. If the point is on the segment, the
+ * result will be 0.
+ *
+ * @param x1 the first x coordinate of the segment
+ * @param y1 the first y coordinate of the segment
+ * @param x2 the second x coordinate of the segment
+ * @param y2 the second y coordinate of the segment
+ * @param px the x coordinate of the point
+ * @param py the y coordinate of the point
+ * @return the square of the distance from the point to the segment
+ * @see #ptSegDist(double, double, double, double, double, double)
+ * @see #ptLineDistSq(double, double, double, double, double, double)
+ */
+ public static double ptSegDistSq(double x1, double y1, double x2, double y2,
+ double px, double py)
+ {
+ double pd2 = (x1 - x2) * (x1 - x2) + (y1 - y2) * (y1 - y2);
+
+ double x, y;
+ if (pd2 == 0)
+ {
+ // Points are coincident.
+ x = x1;
+ y = y2;
+ }
+ else
+ {
+ double u = ((px - x1) * (x2 - x1) + (py - y1) * (y2 - y1)) / pd2;
+
+ if (u < 0)
+ {
+ // "Off the end"
+ x = x1;
+ y = y1;
+ }
+ else if (u > 1.0)
+ {
+ x = x2;
+ y = y2;
+ }
+ else
+ {
+ x = x1 + u * (x2 - x1);
+ y = y1 + u * (y2 - y1);
+ }
+ }
+
+ return (x - px) * (x - px) + (y - py) * (y - py);
+ }
+
+ /**
+ * Measures the shortest distance from the reference point to a point on
+ * the line segment. If the point is on the segment, the result will be 0.
+ *
+ * @param x1 the first x coordinate of the segment
+ * @param y1 the first y coordinate of the segment
+ * @param x2 the second x coordinate of the segment
+ * @param y2 the second y coordinate of the segment
+ * @param px the x coordinate of the point
+ * @param py the y coordinate of the point
+ * @return the distance from the point to the segment
+ * @see #ptSegDistSq(double, double, double, double, double, double)
+ * @see #ptLineDist(double, double, double, double, double, double)
+ */
+ public static double ptSegDist(double x1, double y1, double x2, double y2,
+ double px, double py)
+ {
+ return Math.sqrt(ptSegDistSq(x1, y1, x2, y2, px, py));
+ }
+
+ /**
+ * Measures the square of the shortest distance from the reference point
+ * to a point on this line segment. If the point is on the segment, the
+ * result will be 0.
+ *
+ * @param px the x coordinate of the point
+ * @param py the y coordinate of the point
+ * @return the square of the distance from the point to the segment
+ * @see #ptSegDistSq(double, double, double, double, double, double)
+ */
+ public double ptSegDistSq(double px, double py)
+ {
+ return ptSegDistSq(getX1(), getY1(), getX2(), getY2(), px, py);
+ }
+
+ /**
+ * Measures the square of the shortest distance from the reference point
+ * to a point on this line segment. If the point is on the segment, the
+ * result will be 0.
+ *
+ * @param p the point
+ * @return the square of the distance from the point to the segment
+ * @throws NullPointerException if p is null
+ * @see #ptSegDistSq(double, double, double, double, double, double)
+ */
+ public double ptSegDistSq(Point2D p)
+ {
+ return ptSegDistSq(getX1(), getY1(), getX2(), getY2(), p.getX(), p.getY());
+ }
+
+ /**
+ * Measures the shortest distance from the reference point to a point on
+ * this line segment. If the point is on the segment, the result will be 0.
+ *
+ * @param px the x coordinate of the point
+ * @param py the y coordinate of the point
+ * @return the distance from the point to the segment
+ * @see #ptSegDist(double, double, double, double, double, double)
+ */
+ public double ptSegDist(double px, double py)
+ {
+ return ptSegDist(getX1(), getY1(), getX2(), getY2(), px, py);
+ }
+
+ /**
+ * Measures the shortest distance from the reference point to a point on
+ * this line segment. If the point is on the segment, the result will be 0.
+ *
+ * @param p the point
+ * @return the distance from the point to the segment
+ * @throws NullPointerException if p is null
+ * @see #ptSegDist(double, double, double, double, double, double)
+ */
+ public double ptSegDist(Point2D p)
+ {
+ return ptSegDist(getX1(), getY1(), getX2(), getY2(), p.getX(), p.getY());
+ }
+
+ /**
+ * Measures the square of the shortest distance from the reference point
+ * to a point on the infinite line extended from the segment. If the point
+ * is on the segment, the result will be 0. If the segment is length 0,
+ * the distance is to the common endpoint.
+ *
+ * @param x1 the first x coordinate of the segment
+ * @param y1 the first y coordinate of the segment
+ * @param x2 the second x coordinate of the segment
+ * @param y2 the second y coordinate of the segment
+ * @param px the x coordinate of the point
+ * @param py the y coordinate of the point
+ * @return the square of the distance from the point to the extended line
+ * @see #ptLineDist(double, double, double, double, double, double)
+ * @see #ptSegDistSq(double, double, double, double, double, double)
+ */
+ public static double ptLineDistSq(double x1, double y1, double x2, double y2,
+ double px, double py)
+ {
+ double pd2 = (x1 - x2) * (x1 - x2) + (y1 - y2) * (y1 - y2);
+
+ double x, y;
+ if (pd2 == 0)
+ {
+ // Points are coincident.
+ x = x1;
+ y = y2;
+ }
+ else
+ {
+ double u = ((px - x1) * (x2 - x1) + (py - y1) * (y2 - y1)) / pd2;
+ x = x1 + u * (x2 - x1);
+ y = y1 + u * (y2 - y1);
+ }
+
+ return (x - px) * (x - px) + (y - py) * (y - py);
+ }
+
+ /**
+ * Measures the shortest distance from the reference point to a point on
+ * the infinite line extended from the segment. If the point is on the
+ * segment, the result will be 0. If the segment is length 0, the distance
+ * is to the common endpoint.
+ *
+ * @param x1 the first x coordinate of the segment
+ * @param y1 the first y coordinate of the segment
+ * @param x2 the second x coordinate of the segment
+ * @param y2 the second y coordinate of the segment
+ * @param px the x coordinate of the point
+ * @param py the y coordinate of the point
+ * @return the distance from the point to the extended line
+ * @see #ptLineDistSq(double, double, double, double, double, double)
+ * @see #ptSegDist(double, double, double, double, double, double)
+ */
+ public static double ptLineDist(double x1, double y1,
+ double x2, double y2,
+ double px, double py)
+ {
+ return Math.sqrt(ptLineDistSq(x1, y1, x2, y2, px, py));
+ }
+
+ /**
+ * Measures the square of the shortest distance from the reference point
+ * to a point on the infinite line extended from this segment. If the point
+ * is on the segment, the result will be 0. If the segment is length 0,
+ * the distance is to the common endpoint.
+ *
+ * @param px the x coordinate of the point
+ * @param py the y coordinate of the point
+ * @return the square of the distance from the point to the extended line
+ * @see #ptLineDistSq(double, double, double, double, double, double)
+ */
+ public double ptLineDistSq(double px, double py)
+ {
+ return ptLineDistSq(getX1(), getY1(), getX2(), getY2(), px, py);
+ }
+
+ /**
+ * Measures the square of the shortest distance from the reference point
+ * to a point on the infinite line extended from this segment. If the point
+ * is on the segment, the result will be 0. If the segment is length 0,
+ * the distance is to the common endpoint.
+ *
+ * @param p the point
+ * @return the square of the distance from the point to the extended line
+ * @throws NullPointerException if p is null
+ * @see #ptLineDistSq(double, double, double, double, double, double)
+ */
+ public double ptLineDistSq(Point2D p)
+ {
+ return ptLineDistSq(getX1(), getY1(), getX2(), getY2(),
+ p.getX(), p.getY());
+ }
+
+ /**
+ * Measures the shortest distance from the reference point to a point on
+ * the infinite line extended from this segment. If the point is on the
+ * segment, the result will be 0. If the segment is length 0, the distance
+ * is to the common endpoint.
+ *
+ * @param px the x coordinate of the point
+ * @param py the y coordinate of the point
+ * @return the distance from the point to the extended line
+ * @see #ptLineDist(double, double, double, double, double, double)
+ */
+ public double ptLineDist(double px, double py)
+ {
+ return ptLineDist(getX1(), getY1(), getX2(), getY2(), px, py);
+ }
+
+ /**
+ * Measures the shortest distance from the reference point to a point on
+ * the infinite line extended from this segment. If the point is on the
+ * segment, the result will be 0. If the segment is length 0, the distance
+ * is to the common endpoint.
+ *
+ * @param p the point
+ * @return the distance from the point to the extended line
+ * @throws NullPointerException if p is null
+ * @see #ptLineDist(double, double, double, double, double, double)
+ */
+ public double ptLineDist(Point2D p)
+ {
+ return ptLineDist(getX1(), getY1(), getX2(), getY2(), p.getX(), p.getY());
+ }
+
+ /**
+ * Test if a point is contained inside the line. Since a line has no area,
+ * this returns false.
+ *
+ * @param x the x coordinate
+ * @param y the y coordinate
+ * @return false; the line does not contain points
+ */
+ public boolean contains(double x, double y)
+ {
+ return false;
+ }
+
+ /**
+ * Test if a point is contained inside the line. Since a line has no area,
+ * this returns false.
+ *
+ * @param p the point
+ * @return false; the line does not contain points
+ */
+ public boolean contains(Point2D p)
+ {
+ return false;
+ }
+
+ /**
+ * Tests if this line intersects the interior of the specified rectangle.
+ *
+ * @param x the x coordinate of the rectangle
+ * @param y the y coordinate of the rectangle
+ * @param w the width of the rectangle
+ * @param h the height of the rectangle
+ * @return true if the line intersects the rectangle
+ */
+ public boolean intersects(double x, double y, double w, double h)
+ {
+ if (w <= 0 || h <= 0)
+ return false;
+ double x1 = getX1();
+ double y1 = getY1();
+ double x2 = getX2();
+ double y2 = getY2();
+
+ if (x1 >= x && x1 <= x + w && y1 >= y && y1 <= y + h)
+ return true;
+ if (x2 >= x && x2 <= x + w && y2 >= y && y2 <= y + h)
+ return true;
+
+ double x3 = x + w;
+ double y3 = y + h;
+
+ return (linesIntersect(x1, y1, x2, y2, x, y, x, y3)
+ || linesIntersect(x1, y1, x2, y2, x, y3, x3, y3)
+ || linesIntersect(x1, y1, x2, y2, x3, y3, x3, y)
+ || linesIntersect(x1, y1, x2, y2, x3, y, x, y));
+ }
+
+ /**
+ * Tests if this line intersects the interior of the specified rectangle.
+ *
+ * @param r the rectangle
+ * @return true if the line intersects the rectangle
+ * @throws NullPointerException if r is null
+ */
+ public boolean intersects(Rectangle2D r)
+ {
+ return intersects(r.getX(), r.getY(), r.getWidth(), r.getHeight());
+ }
+
+ /**
+ * Tests if the line contains a rectangle. Since lines have no area, this
+ * always returns false.
+ *
+ * @param x the x coordinate of the rectangle
+ * @param y the y coordinate of the rectangle
+ * @param w the width of the rectangle
+ * @param h the height of the rectangle
+ * @return false; the line does not contain points
+ */
+ public boolean contains(double x, double y, double w, double h)
+ {
+ return false;
+ }
+
+ /**
+ * Tests if the line contains a rectangle. Since lines have no area, this
+ * always returns false.
+ *
+ * @param r the rectangle
+ * @return false; the line does not contain points
+ */
+ public boolean contains(Rectangle2D r)
+ {
+ return false;
+ }
+
+ /**
+ * Gets a bounding box (not necessarily minimal) for this line.
+ *
+ * @return the integer bounding box
+ * @see #getBounds2D()
+ */
+ public Rectangle getBounds()
+ {
+ return getBounds2D().getBounds();
+ }
+
+ /**
+ * Return a path iterator, possibly applying a transform on the result. This
+ * iterator is not threadsafe.
+ *
+ * @param at the transform, or null
+ * @return a new path iterator
+ */
+ public PathIterator getPathIterator(final AffineTransform at)
+ {
+ return new PathIterator()
+ {
+ /** Current coordinate. */
+ private int current = 0;
+
+ public int getWindingRule()
+ {
+ return WIND_NON_ZERO;
+ }
+
+ public boolean isDone()
+ {
+ return current >= 2;
+ }
+
+ public void next()
+ {
+ current++;
+ }
+
+ public int currentSegment(float[] coords)
+ {
+ int result;
+ switch (current)
+ {
+ case 0:
+ coords[0] = (float) getX1();
+ coords[1] = (float) getY1();
+ result = SEG_MOVETO;
+ break;
+ case 1:
+ coords[0] = (float) getX2();
+ coords[1] = (float) getY2();
+ result = SEG_LINETO;
+ break;
+ default:
+ throw new NoSuchElementException("line iterator out of bounds");
+ }
+ if (at != null)
+ at.transform(coords, 0, coords, 0, 1);
+ return result;
+ }
+
+ public int currentSegment(double[] coords)
+ {
+ int result;
+ switch (current)
+ {
+ case 0:
+ coords[0] = getX1();
+ coords[1] = getY1();
+ result = SEG_MOVETO;
+ break;
+ case 1:
+ coords[0] = getX2();
+ coords[1] = getY2();
+ result = SEG_LINETO;
+ break;
+ default:
+ throw new NoSuchElementException("line iterator out of bounds");
+ }
+ if (at != null)
+ at.transform(coords, 0, coords, 0, 1);
+ return result;
+ }
+ };
+ }
+
+ /**
+ * Return a flat path iterator, possibly applying a transform on the result.
+ * This iterator is not threadsafe.
+ *
+ * @param at the transform, or null
+ * @param flatness ignored, since lines are already flat
+ * @return a new path iterator
+ * @see #getPathIterator(AffineTransform)
+ */
+ public PathIterator getPathIterator(AffineTransform at, double flatness)
+ {
+ return getPathIterator(at);
+ }
+
+ /**
+ * Create a new line of the same run-time type with the same contents as
+ * this one.
+ *
+ * @return the clone
+ *
+ * @exception OutOfMemoryError If there is not enough memory available.
+ *
+ * @since 1.2
+ */
+ public Object clone()
+ {
+ try
+ {
+ return super.clone();
+ }
+ catch (CloneNotSupportedException e)
+ {
+ throw (Error) new InternalError().initCause(e); // Impossible
+ }
+ }
+
+ /**
+ * This class defines a point in <code>double</code> precision.
+ *
+ * @author Eric Blake (ebb9@email.byu.edu)
+ * @since 1.2
+ * @status updated to 1.4
+ */
+ public static class Double extends Line2D
+ {
+ /** The x coordinate of the first point. */
+ public double x1;
+
+ /** The y coordinate of the first point. */
+ public double y1;
+
+ /** The x coordinate of the second point. */
+ public double x2;
+
+ /** The y coordinate of the second point. */
+ public double y2;
+
+ /**
+ * Construct the line segment (0,0)-&gt;(0,0).
+ */
+ public Double()
+ {
+ }
+
+ /**
+ * Construct the line segment with the specified points.
+ *
+ * @param x1 the x coordinate of the first point
+ * @param y1 the y coordinate of the first point
+ * @param x2 the x coordinate of the second point
+ * @param y2 the y coordinate of the second point
+ */
+ public Double(double x1, double y1, double x2, double y2)
+ {
+ this.x1 = x1;
+ this.y1 = y1;
+ this.x2 = x2;
+ this.y2 = y2;
+ }
+
+ /**
+ * Construct the line segment with the specified points.
+ *
+ * @param p1 the first point
+ * @param p2 the second point
+ * @throws NullPointerException if either point is null
+ */
+ public Double(Point2D p1, Point2D p2)
+ {
+ x1 = p1.getX();
+ y1 = p1.getY();
+ x2 = p2.getX();
+ y2 = p2.getY();
+ }
+
+ /**
+ * Return the x coordinate of the first point.
+ *
+ * @return the value of x1
+ */
+ public double getX1()
+ {
+ return x1;
+ }
+
+ /**
+ * Return the y coordinate of the first point.
+ *
+ * @return the value of y1
+ */
+ public double getY1()
+ {
+ return y1;
+ }
+
+ /**
+ * Return the first point.
+ *
+ * @return the point (x1,y1)
+ */
+ public Point2D getP1()
+ {
+ return new Point2D.Double(x1, y1);
+ }
+
+ /**
+ * Return the x coordinate of the second point.
+ *
+ * @return the value of x2
+ */
+ public double getX2()
+ {
+ return x2;
+ }
+
+ /**
+ * Return the y coordinate of the second point.
+ *
+ * @return the value of y2
+ */
+ public double getY2()
+ {
+ return y2;
+ }
+
+ /**
+ * Return the second point.
+ *
+ * @return the point (x2,y2)
+ */
+ public Point2D getP2()
+ {
+ return new Point2D.Double(x2, y2);
+ }
+
+ /**
+ * Set this line to the given points.
+ *
+ * @param x1 the new x coordinate of the first point
+ * @param y1 the new y coordinate of the first point
+ * @param x2 the new x coordinate of the second point
+ * @param y2 the new y coordinate of the second point
+ */
+ public void setLine(double x1, double y1, double x2, double y2)
+ {
+ this.x1 = x1;
+ this.y1 = y1;
+ this.x2 = x2;
+ this.y2 = y2;
+ }
+
+ /**
+ * Return the exact bounds of this line segment.
+ *
+ * @return the bounding box
+ */
+ public Rectangle2D getBounds2D()
+ {
+ double x = Math.min(x1, x2);
+ double y = Math.min(y1, y2);
+ double w = Math.abs(x1 - x2);
+ double h = Math.abs(y1 - y2);
+ return new Rectangle2D.Double(x, y, w, h);
+ }
+ } // class Double
+
+ /**
+ * This class defines a point in <code>float</code> precision.
+ *
+ * @author Eric Blake (ebb9@email.byu.edu)
+ * @since 1.2
+ * @status updated to 1.4
+ */
+ public static class Float extends Line2D
+ {
+ /** The x coordinate of the first point. */
+ public float x1;
+
+ /** The y coordinate of the first point. */
+ public float y1;
+
+ /** The x coordinate of the second point. */
+ public float x2;
+
+ /** The y coordinate of the second point. */
+ public float y2;
+
+ /**
+ * Construct the line segment (0,0)-&gt;(0,0).
+ */
+ public Float()
+ {
+ }
+
+ /**
+ * Construct the line segment with the specified points.
+ *
+ * @param x1 the x coordinate of the first point
+ * @param y1 the y coordinate of the first point
+ * @param x2 the x coordinate of the second point
+ * @param y2 the y coordinate of the second point
+ */
+ public Float(float x1, float y1, float x2, float y2)
+ {
+ this.x1 = x1;
+ this.y1 = y1;
+ this.x2 = x2;
+ this.y2 = y2;
+ }
+
+ /**
+ * Construct the line segment with the specified points.
+ *
+ * @param p1 the first point
+ * @param p2 the second point
+ * @throws NullPointerException if either point is null
+ */
+ public Float(Point2D p1, Point2D p2)
+ {
+ x1 = (float) p1.getX();
+ y1 = (float) p1.getY();
+ x2 = (float) p2.getX();
+ y2 = (float) p2.getY();
+ }
+
+ /**
+ * Return the x coordinate of the first point.
+ *
+ * @return the value of x1
+ */
+ public double getX1()
+ {
+ return x1;
+ }
+
+ /**
+ * Return the y coordinate of the first point.
+ *
+ * @return the value of y1
+ */
+ public double getY1()
+ {
+ return y1;
+ }
+
+ /**
+ * Return the first point.
+ *
+ * @return the point (x1,y1)
+ */
+ public Point2D getP1()
+ {
+ return new Point2D.Float(x1, y1);
+ }
+
+ /**
+ * Return the x coordinate of the second point.
+ *
+ * @return the value of x2
+ */
+ public double getX2()
+ {
+ return x2;
+ }
+
+ /**
+ * Return the y coordinate of the second point.
+ *
+ * @return the value of y2
+ */
+ public double getY2()
+ {
+ return y2;
+ }
+
+ /**
+ * Return the second point.
+ *
+ * @return the point (x2,y2)
+ */
+ public Point2D getP2()
+ {
+ return new Point2D.Float(x2, y2);
+ }
+
+ /**
+ * Set this line to the given points.
+ *
+ * @param x1 the new x coordinate of the first point
+ * @param y1 the new y coordinate of the first point
+ * @param x2 the new x coordinate of the second point
+ * @param y2 the new y coordinate of the second point
+ */
+ public void setLine(double x1, double y1, double x2, double y2)
+ {
+ this.x1 = (float) x1;
+ this.y1 = (float) y1;
+ this.x2 = (float) x2;
+ this.y2 = (float) y2;
+ }
+
+ /**
+ * Set this line to the given points.
+ *
+ * @param x1 the new x coordinate of the first point
+ * @param y1 the new y coordinate of the first point
+ * @param x2 the new x coordinate of the second point
+ * @param y2 the new y coordinate of the second point
+ */
+ public void setLine(float x1, float y1, float x2, float y2)
+ {
+ this.x1 = x1;
+ this.y1 = y1;
+ this.x2 = x2;
+ this.y2 = y2;
+ }
+
+ /**
+ * Return the exact bounds of this line segment.
+ *
+ * @return the bounding box
+ */
+ public Rectangle2D getBounds2D()
+ {
+ float x = Math.min(x1, x2);
+ float y = Math.min(y1, y2);
+ float w = Math.abs(x1 - x2);
+ float h = Math.abs(y1 - y2);
+ return new Rectangle2D.Float(x, y, w, h);
+ }
+ } // class Float
+} // class Line2D
diff --git a/libjava/classpath/java/awt/geom/NoninvertibleTransformException.java b/libjava/classpath/java/awt/geom/NoninvertibleTransformException.java
new file mode 100644
index 000000000..7995a52eb
--- /dev/null
+++ b/libjava/classpath/java/awt/geom/NoninvertibleTransformException.java
@@ -0,0 +1,65 @@
+/* NoninvertibleTransformException.java -- a transform can't be inverted
+ Copyright (C) 2000, 2002 Free Software Foundation
+
+This file is part of GNU Classpath.
+
+GNU Classpath is free software; you can redistribute it and/or modify
+it under the terms of the GNU General Public License as published by
+the Free Software Foundation; either version 2, or (at your option)
+any later version.
+
+GNU Classpath is distributed in the hope that it will be useful, but
+WITHOUT ANY WARRANTY; without even the implied warranty of
+MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
+General Public License for more details.
+
+You should have received a copy of the GNU General Public License
+along with GNU Classpath; see the file COPYING. If not, write to the
+Free Software Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA
+02110-1301 USA.
+
+Linking this library statically or dynamically with other modules is
+making a combined work based on this library. Thus, the terms and
+conditions of the GNU General Public License cover the whole
+combination.
+
+As a special exception, the copyright holders of this library give you
+permission to link this library with independent modules to produce an
+executable, regardless of the license terms of these independent
+modules, and to copy and distribute the resulting executable under
+terms of your choice, provided that you also meet, for each linked
+independent module, the terms and conditions of the license of that
+module. An independent module is a module which is not derived from
+or based on this library. If you modify this library, you may extend
+this exception to your version of the library, but you are not
+obligated to do so. If you do not wish to do so, delete this
+exception statement from your version. */
+
+package java.awt.geom;
+
+/**
+ * Thrown if an operation requires an inverse of an
+ * <code>AffineTransform</code>, but the transform is in a non-invertible
+ * state.
+ *
+ * @author Tom Tromey (tromey@cygnus.com)
+ * @see AffineTransform
+ * @status updated to 1.4
+ */
+public class NoninvertibleTransformException extends Exception
+{
+ /**
+ * Compatible with JDK 1.2+.
+ */
+ private static final long serialVersionUID = 6137225240503990466L;
+
+ /**
+ * Create an exception with a message.
+ *
+ * @param s the message
+ */
+ public NoninvertibleTransformException(String s)
+ {
+ super(s);
+ }
+}
diff --git a/libjava/classpath/java/awt/geom/PathIterator.java b/libjava/classpath/java/awt/geom/PathIterator.java
new file mode 100644
index 000000000..2cd08b9b4
--- /dev/null
+++ b/libjava/classpath/java/awt/geom/PathIterator.java
@@ -0,0 +1,189 @@
+/* PathIterator.java -- describes a shape by iterating over its vertices
+ Copyright (C) 2000, 2002, 2003 Free Software Foundation
+
+This file is part of GNU Classpath.
+
+GNU Classpath is free software; you can redistribute it and/or modify
+it under the terms of the GNU General Public License as published by
+the Free Software Foundation; either version 2, or (at your option)
+any later version.
+
+GNU Classpath is distributed in the hope that it will be useful, but
+WITHOUT ANY WARRANTY; without even the implied warranty of
+MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
+General Public License for more details.
+
+You should have received a copy of the GNU General Public License
+along with GNU Classpath; see the file COPYING. If not, write to the
+Free Software Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA
+02110-1301 USA.
+
+Linking this library statically or dynamically with other modules is
+making a combined work based on this library. Thus, the terms and
+conditions of the GNU General Public License cover the whole
+combination.
+
+As a special exception, the copyright holders of this library give you
+permission to link this library with independent modules to produce an
+executable, regardless of the license terms of these independent
+modules, and to copy and distribute the resulting executable under
+terms of your choice, provided that you also meet, for each linked
+independent module, the terms and conditions of the license of that
+module. An independent module is a module which is not derived from
+or based on this library. If you modify this library, you may extend
+this exception to your version of the library, but you are not
+obligated to do so. If you do not wish to do so, delete this
+exception statement from your version. */
+
+package java.awt.geom;
+
+/**
+ * This interface provides a directed path over the boundary of a shape. The
+ * path can contain 1st through 3rd order Bezier curves (lines, and quadratic
+ * and cubic splines). A shape can have multiple disjoint paths via the
+ * MOVETO directive, and can close a circular path back to the previos
+ * MOVETO via the CLOSE directive.
+ *
+ * @author Tom Tromey (tromey@cygnus.com)
+ * @author Eric Blake (ebb9@email.byu.edu)
+ * @see java.awt.Shape
+ * @see java.awt.Stroke
+ * @see FlatteningPathIterator
+ * @since 1.2
+ * @status updated to 1.4
+ */
+public interface PathIterator
+{
+ /**
+ * The even-odd winding mode: a point is internal to the shape if a ray
+ * from the point to infinity (in any direction) crosses an odd number of
+ * segments.
+ */
+ int WIND_EVEN_ODD = 0;
+
+ /**
+ * The non-zero winding mode: a point is internal to the shape if a ray
+ * from the point to infinity (in any direction) crosses a different number
+ * of segments headed clockwise than those headed counterclockwise.
+ */
+ int WIND_NON_ZERO = 1;
+
+ /**
+ * Starts a new subpath. There is no segment from the previous vertex.
+ */
+ int SEG_MOVETO = 0;
+
+ /**
+ * The current segment is a line.
+ */
+ int SEG_LINETO = 1;
+
+ /**
+ * The current segment is a quadratic parametric curve. It is interpolated
+ * as t varies from 0 to 1 over the current point (CP), first control point
+ * (P1), and final interpolated control point (P2):
+ * <pre>
+ * P(t) = B(2,0)*CP + B(2,1)*P1 + B(2,2)*P2
+ * 0 &lt;= t &lt;= 1
+ * B(n,m) = mth coefficient of nth degree Bernstein polynomial
+ * = C(n,m) * t^(m) * (1 - t)^(n-m)
+ * C(n,m) = Combinations of n things, taken m at a time
+ * = n! / (m! * (n-m)!)
+ * </pre>
+ */
+ int SEG_QUADTO = 2;
+
+ /**
+ * The current segment is a cubic parametric curve (more commonly known as
+ * a Bezier curve). It is interpolated as t varies from 0 to 1 over the
+ * current point (CP), first control point (P1), the second control point
+ * (P2), and final interpolated control point (P3):
+ * <pre>
+ * P(t) = B(3,0)*CP + B(3,1)*P1 + B(3,2)*P2 + B(3,3)*P3
+ * 0 &lt;= t &lt;= 1
+ * B(n,m) = mth coefficient of nth degree Bernstein polynomial
+ * = C(n,m) * t^(m) * (1 - t)^(n-m)
+ * C(n,m) = Combinations of n things, taken m at a time
+ * = n! / (m! * (n-m)!)
+ * </pre>
+ */
+ int SEG_CUBICTO = 3;
+
+ /**
+ * The current segment closes a loop by an implicit line to the previous
+ * SEG_MOVETO coordinate.
+ */
+ int SEG_CLOSE = 4;
+
+ /**
+ * Returns the winding rule to determine which points are inside this path.
+ *
+ * @return the winding rule
+ * @see #WIND_EVEN_ODD
+ * @see #WIND_NON_ZERO
+ */
+ int getWindingRule();
+
+ /**
+ * Tests if the iterator is exhausted. If this returns true, currentSegment
+ * and next may throw a NoSuchElementException (although this is not
+ * required).
+ *
+ * @return true if the iteration is complete
+ */
+ boolean isDone();
+
+ /**
+ * Advance to the next segment in the iteration. It is not specified what
+ * this does if called when isDone() returns true.
+ *
+ * @throws java.util.NoSuchElementException optional when isDone() is true
+ */
+ void next();
+
+ /**
+ * Returns the coordinates of the next point(s), as well as the type of
+ * line segment. The input array must be at least a float[6], to accomodate
+ * up to three (x,y) point pairs (although if you know the iterator is
+ * flat, you can probably get by with a float[2]). If the returned type is
+ * SEG_MOVETO or SEG_LINETO, the first point in the array is modified; if
+ * the returned type is SEG_QUADTO, the first two points are modified; if
+ * the returned type is SEG_CUBICTO, all three points are modified; and if
+ * the returned type is SEG_CLOSE, the array is untouched.
+ *
+ * @param coords the array to place the point coordinates in
+ * @return the segment type
+ * @throws NullPointerException if coords is null
+ * @throws ArrayIndexOutOfBoundsException if coords is too small
+ * @throws java.util.NoSuchElementException optional when isDone() is true
+ * @see #SEG_MOVETO
+ * @see #SEG_LINETO
+ * @see #SEG_QUADTO
+ * @see #SEG_CUBICTO
+ * @see #SEG_CLOSE
+ */
+ int currentSegment(float[] coords);
+
+ /**
+ * Returns the coordinates of the next point(s), as well as the type of
+ * line segment. The input array must be at least a double[6], to accomodate
+ * up to three (x,y) point pairs (although if you know the iterator is
+ * flat, you can probably get by with a double[2]). If the returned type is
+ * SEG_MOVETO or SEG_LINETO, the first point in the array is modified; if
+ * the returned type is SEG_QUADTO, the first two points are modified; if
+ * the returned type is SEG_CUBICTO, all three points are modified; and if
+ * the returned type is SEG_CLOSE, the array is untouched.
+ *
+ * @param coords the array to place the point coordinates in
+ * @return the segment type
+ * @throws NullPointerException if coords is null
+ * @throws ArrayIndexOutOfBoundsException if coords is too small
+ * @throws java.util.NoSuchElementException optional when isDone() is true
+ * @see #SEG_MOVETO
+ * @see #SEG_LINETO
+ * @see #SEG_QUADTO
+ * @see #SEG_CUBICTO
+ * @see #SEG_CLOSE
+ */
+ int currentSegment(double[] coords);
+} // interface PathIterator
diff --git a/libjava/classpath/java/awt/geom/Point2D.java b/libjava/classpath/java/awt/geom/Point2D.java
new file mode 100644
index 000000000..a2689abf8
--- /dev/null
+++ b/libjava/classpath/java/awt/geom/Point2D.java
@@ -0,0 +1,396 @@
+/* Point2D.java -- generic point in 2-D space
+ Copyright (C) 1999, 2000, 2002, 2004, 2006, Free Software Foundation
+
+This file is part of GNU Classpath.
+
+GNU Classpath is free software; you can redistribute it and/or modify
+it under the terms of the GNU General Public License as published by
+the Free Software Foundation; either version 2, or (at your option)
+any later version.
+
+GNU Classpath is distributed in the hope that it will be useful, but
+WITHOUT ANY WARRANTY; without even the implied warranty of
+MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
+General Public License for more details.
+
+You should have received a copy of the GNU General Public License
+along with GNU Classpath; see the file COPYING. If not, write to the
+Free Software Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA
+02110-1301 USA.
+
+Linking this library statically or dynamically with other modules is
+making a combined work based on this library. Thus, the terms and
+conditions of the GNU General Public License cover the whole
+combination.
+
+As a special exception, the copyright holders of this library give you
+permission to link this library with independent modules to produce an
+executable, regardless of the license terms of these independent
+modules, and to copy and distribute the resulting executable under
+terms of your choice, provided that you also meet, for each linked
+independent module, the terms and conditions of the license of that
+module. An independent module is a module which is not derived from
+or based on this library. If you modify this library, you may extend
+this exception to your version of the library, but you are not
+obligated to do so. If you do not wish to do so, delete this
+exception statement from your version. */
+
+
+package java.awt.geom;
+
+/**
+ * This class implements a generic point in 2D Cartesian space. The storage
+ * representation is left up to the subclass. Point includes two useful
+ * nested classes, for float and double storage respectively.
+ *
+ * @author Per Bothner (bothner@cygnus.com)
+ * @author Eric Blake (ebb9@email.byu.edu)
+ * @since 1.2
+ * @status updated to 1.4
+ */
+public abstract class Point2D implements Cloneable
+{
+ /**
+ * The default constructor.
+ *
+ * @see java.awt.Point
+ * @see Point2D.Float
+ * @see Point2D.Double
+ */
+ protected Point2D()
+ {
+ }
+
+ /**
+ * Get the X coordinate, in double precision.
+ *
+ * @return the x coordinate
+ */
+ public abstract double getX();
+
+ /**
+ * Get the Y coordinate, in double precision.
+ *
+ * @return the y coordinate
+ */
+ public abstract double getY();
+
+ /**
+ * Set the location of this point to the new coordinates. There may be a
+ * loss of precision.
+ *
+ * @param x the new x coordinate
+ * @param y the new y coordinate
+ */
+ public abstract void setLocation(double x, double y);
+
+ /**
+ * Set the location of this point to the new coordinates. There may be a
+ * loss of precision.
+ *
+ * @param p the point to copy
+ * @throws NullPointerException if p is null
+ */
+ public void setLocation(Point2D p)
+ {
+ setLocation(p.getX(), p.getY());
+ }
+
+ /**
+ * Return the square of the distance between two points.
+ *
+ * @param x1 the x coordinate of point 1
+ * @param y1 the y coordinate of point 1
+ * @param x2 the x coordinate of point 2
+ * @param y2 the y coordinate of point 2
+ * @return (x2 - x1)^2 + (y2 - y1)^2
+ */
+ public static double distanceSq(double x1, double y1, double x2, double y2)
+ {
+ x2 -= x1;
+ y2 -= y1;
+ return x2 * x2 + y2 * y2;
+ }
+
+ /**
+ * Return the distance between two points.
+ *
+ * @param x1 the x coordinate of point 1
+ * @param y1 the y coordinate of point 1
+ * @param x2 the x coordinate of point 2
+ * @param y2 the y coordinate of point 2
+ * @return the distance from (x1,y1) to (x2,y2)
+ */
+ public static double distance(double x1, double y1, double x2, double y2)
+ {
+ return Math.sqrt(distanceSq(x1, y1, x2, y2));
+ }
+
+ /**
+ * Return the square of the distance from this point to the given one.
+ *
+ * @param x the x coordinate of the other point
+ * @param y the y coordinate of the other point
+ * @return the square of the distance
+ */
+ public double distanceSq(double x, double y)
+ {
+ return distanceSq(getX(), getY(), x, y);
+ }
+
+ /**
+ * Return the square of the distance from this point to the given one.
+ *
+ * @param p the other point
+ * @return the square of the distance
+ * @throws NullPointerException if p is null
+ */
+ public double distanceSq(Point2D p)
+ {
+ return distanceSq(getX(), getY(), p.getX(), p.getY());
+ }
+
+ /**
+ * Return the distance from this point to the given one.
+ *
+ * @param x the x coordinate of the other point
+ * @param y the y coordinate of the other point
+ * @return the distance
+ */
+ public double distance(double x, double y)
+ {
+ return distance(getX(), getY(), x, y);
+ }
+
+ /**
+ * Return the distance from this point to the given one.
+ *
+ * @param p the other point
+ * @return the distance
+ * @throws NullPointerException if p is null
+ */
+ public double distance(Point2D p)
+ {
+ return distance(getX(), getY(), p.getX(), p.getY());
+ }
+
+ /**
+ * Create a new point of the same run-time type with the same contents as
+ * this one.
+ *
+ * @return the clone
+ */
+ public Object clone()
+ {
+ try
+ {
+ return super.clone();
+ }
+ catch (CloneNotSupportedException e)
+ {
+ throw (Error) new InternalError().initCause(e); // Impossible
+ }
+ }
+
+ /**
+ * Return the hashcode for this point. The formula is not documented, but
+ * appears to be the same as:
+ * <pre>
+ * long l = Double.doubleToLongBits(getY());
+ * l = l * 31 ^ Double.doubleToLongBits(getX());
+ * return (int) ((l >> 32) ^ l);
+ * </pre>
+ *
+ * @return the hashcode
+ */
+ public int hashCode()
+ {
+ // Talk about a fun time reverse engineering this one!
+ long l = java.lang.Double.doubleToLongBits(getY());
+ l = l * 31 ^ java.lang.Double.doubleToLongBits(getX());
+ return (int) ((l >> 32) ^ l);
+ }
+
+ /**
+ * Compares two points for equality. This returns true if they have the
+ * same coordinates.
+ *
+ * @param o the point to compare
+ * @return true if it is equal
+ */
+ public boolean equals(Object o)
+ {
+ if (! (o instanceof Point2D))
+ return false;
+ Point2D p = (Point2D) o;
+ return getX() == p.getX() && getY() == p.getY();
+ }
+
+ /**
+ * This class defines a point in <code>double</code> precision.
+ *
+ * @author Eric Blake (ebb9@email.byu.edu)
+ * @since 1.2
+ * @status updated to 1.4
+ */
+ public static class Double extends Point2D
+ {
+ /** The X coordinate. */
+ public double x;
+
+ /** The Y coordinate. */
+ public double y;
+
+ /**
+ * Create a new point at (0,0).
+ */
+ public Double()
+ {
+ }
+
+ /**
+ * Create a new point at (x,y).
+ *
+ * @param x the x coordinate
+ * @param y the y coordinate
+ */
+ public Double(double x, double y)
+ {
+ this.x = x;
+ this.y = y;
+ }
+
+ /**
+ * Return the x coordinate.
+ *
+ * @return the x coordinate
+ */
+ public double getX()
+ {
+ return x;
+ }
+
+ /**
+ * Return the y coordinate.
+ *
+ * @return the y coordinate
+ */
+ public double getY()
+ {
+ return y;
+ }
+
+ /**
+ * Sets the location of this point.
+ *
+ * @param x the new x coordinate
+ * @param y the new y coordinate
+ */
+ public void setLocation(double x, double y)
+ {
+ this.x = x;
+ this.y = y;
+ }
+
+ /**
+ * Returns a string representation of this object. The format is:
+ * <code>"Point2D.Double[" + x + ", " + y + ']'</code>.
+ *
+ * @return a string representation of this object
+ */
+ public String toString()
+ {
+ return "Point2D.Double[" + x + ", " + y + ']';
+ }
+ } // class Double
+
+ /**
+ * This class defines a point in <code>float</code> precision.
+ *
+ * @author Eric Blake (ebb9@email.byu.edu)
+ * @since 1.2
+ * @status updated to 1.4
+ */
+ public static class Float extends Point2D
+ {
+ /** The X coordinate. */
+ public float x;
+
+ /** The Y coordinate. */
+ public float y;
+
+ /**
+ * Create a new point at (0,0).
+ */
+ public Float()
+ {
+ }
+
+ /**
+ * Create a new point at (x,y).
+ *
+ * @param x the x coordinate
+ * @param y the y coordinate
+ */
+ public Float(float x, float y)
+ {
+ this.x = x;
+ this.y = y;
+ }
+
+ /**
+ * Return the x coordinate.
+ *
+ * @return the x coordinate
+ */
+ public double getX()
+ {
+ return x;
+ }
+
+ /**
+ * Return the y coordinate.
+ *
+ * @return the y coordinate
+ */
+ public double getY()
+ {
+ return y;
+ }
+
+ /**
+ * Sets the location of this point.
+ *
+ * @param x the new x coordinate
+ * @param y the new y coordinate
+ */
+ public void setLocation(double x, double y)
+ {
+ this.x = (float) x;
+ this.y = (float) y;
+ }
+
+ /**
+ * Sets the location of this point.
+ *
+ * @param x the new x coordinate
+ * @param y the new y coordinate
+ */
+ public void setLocation(float x, float y)
+ {
+ this.x = x;
+ this.y = y;
+ }
+
+ /**
+ * Returns a string representation of this object. The format is:
+ * <code>"Point2D.Float[" + x + ", " + y + ']'</code>.
+ *
+ * @return a string representation of this object
+ */
+ public String toString()
+ {
+ return "Point2D.Float[" + x + ", " + y + ']';
+ }
+ } // class Float
+} // class Point2D
diff --git a/libjava/classpath/java/awt/geom/QuadCurve2D.java b/libjava/classpath/java/awt/geom/QuadCurve2D.java
new file mode 100644
index 000000000..62c829d30
--- /dev/null
+++ b/libjava/classpath/java/awt/geom/QuadCurve2D.java
@@ -0,0 +1,1467 @@
+/* QuadCurve2D.java -- represents a parameterized quadratic curve in 2-D space
+ Copyright (C) 2002, 2003, 2004 Free Software Foundation
+
+This file is part of GNU Classpath.
+
+GNU Classpath is free software; you can redistribute it and/or modify
+it under the terms of the GNU General Public License as published by
+the Free Software Foundation; either version 2, or (at your option)
+any later version.
+
+GNU Classpath is distributed in the hope that it will be useful, but
+WITHOUT ANY WARRANTY; without even the implied warranty of
+MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
+General Public License for more details.
+
+You should have received a copy of the GNU General Public License
+along with GNU Classpath; see the file COPYING. If not, write to the
+Free Software Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA
+02110-1301 USA.
+
+Linking this library statically or dynamically with other modules is
+making a combined work based on this library. Thus, the terms and
+conditions of the GNU General Public License cover the whole
+combination.
+
+As a special exception, the copyright holders of this library give you
+permission to link this library with independent modules to produce an
+executable, regardless of the license terms of these independent
+modules, and to copy and distribute the resulting executable under
+terms of your choice, provided that you also meet, for each linked
+independent module, the terms and conditions of the license of that
+module. An independent module is a module which is not derived from
+or based on this library. If you modify this library, you may extend
+this exception to your version of the library, but you are not
+obligated to do so. If you do not wish to do so, delete this
+exception statement from your version. */
+
+package java.awt.geom;
+
+import java.awt.Rectangle;
+import java.awt.Shape;
+import java.util.NoSuchElementException;
+
+/**
+ * A two-dimensional curve that is parameterized with a quadratic
+ * function.
+ *
+ * <p><img src="doc-files/QuadCurve2D-1.png" width="350" height="180"
+ * alt="A drawing of a QuadCurve2D" />
+ *
+ * @author Eric Blake (ebb9@email.byu.edu)
+ * @author Graydon Hoare (graydon@redhat.com)
+ * @author Sascha Brawer (brawer@dandelis.ch)
+ * @author Sven de Marothy (sven@physto.se)
+ *
+ * @since 1.2
+ */
+public abstract class QuadCurve2D implements Shape, Cloneable
+{
+ private static final double BIG_VALUE = java.lang.Double.MAX_VALUE / 10.0;
+ private static final double EPSILON = 1E-10;
+
+ /**
+ * Constructs a new QuadCurve2D. Typical users will want to
+ * construct instances of a subclass, such as {@link
+ * QuadCurve2D.Float} or {@link QuadCurve2D.Double}.
+ */
+ protected QuadCurve2D()
+ {
+ }
+
+ /**
+ * Returns the <i>x</i> coordinate of the curve&#x2019;s start
+ * point.
+ */
+ public abstract double getX1();
+
+ /**
+ * Returns the <i>y</i> coordinate of the curve&#x2019;s start
+ * point.
+ */
+ public abstract double getY1();
+
+ /**
+ * Returns the curve&#x2019;s start point.
+ */
+ public abstract Point2D getP1();
+
+ /**
+ * Returns the <i>x</i> coordinate of the curve&#x2019;s control
+ * point.
+ */
+ public abstract double getCtrlX();
+
+ /**
+ * Returns the <i>y</i> coordinate of the curve&#x2019;s control
+ * point.
+ */
+ public abstract double getCtrlY();
+
+ /**
+ * Returns the curve&#x2019;s control point.
+ */
+ public abstract Point2D getCtrlPt();
+
+ /**
+ * Returns the <i>x</i> coordinate of the curve&#x2019;s end
+ * point.
+ */
+ public abstract double getX2();
+
+ /**
+ * Returns the <i>y</i> coordinate of the curve&#x2019;s end
+ * point.
+ */
+ public abstract double getY2();
+
+ /**
+ * Returns the curve&#x2019;s end point.
+ */
+ public abstract Point2D getP2();
+
+ /**
+ * Changes the curve geometry, separately specifying each coordinate
+ * value.
+ *
+ * @param x1 the <i>x</i> coordinate of the curve&#x2019;s new start
+ * point.
+ *
+ * @param y1 the <i>y</i> coordinate of the curve&#x2019;s new start
+ * point.
+ *
+ * @param cx the <i>x</i> coordinate of the curve&#x2019;s new
+ * control point.
+ *
+ * @param cy the <i>y</i> coordinate of the curve&#x2019;s new
+ * control point.
+ *
+ * @param x2 the <i>x</i> coordinate of the curve&#x2019;s new end
+ * point.
+ *
+ * @param y2 the <i>y</i> coordinate of the curve&#x2019;s new end
+ * point.
+ */
+ public abstract void setCurve(double x1, double y1, double cx, double cy,
+ double x2, double y2);
+
+ /**
+ * Changes the curve geometry, passing coordinate values in an
+ * array.
+ *
+ * @param coords an array containing the new coordinate values. The
+ * <i>x</i> coordinate of the new start point is located at
+ * <code>coords[offset]</code>, its <i>y</i> coordinate at
+ * <code>coords[offset + 1]</code>. The <i>x</i> coordinate of the
+ * new control point is located at <code>coords[offset + 2]</code>,
+ * its <i>y</i> coordinate at <code>coords[offset + 3]</code>. The
+ * <i>x</i> coordinate of the new end point is located at
+ * <code>coords[offset + 4]</code>, its <i>y</i> coordinate at
+ * <code>coords[offset + 5]</code>.
+ *
+ * @param offset the offset of the first coordinate value in
+ * <code>coords</code>.
+ */
+ public void setCurve(double[] coords, int offset)
+ {
+ setCurve(coords[offset++], coords[offset++], coords[offset++],
+ coords[offset++], coords[offset++], coords[offset++]);
+ }
+
+ /**
+ * Changes the curve geometry, specifying coordinate values in
+ * separate Point objects.
+ *
+ * <p><img src="doc-files/QuadCurve2D-1.png" width="350" height="180"
+ * alt="A drawing of a QuadCurve2D" />
+ *
+ * <p>The curve does not keep any reference to the passed point
+ * objects. Therefore, a later change to <code>p1</code>,
+ * <code>c</code> <code>p2</code> will not affect the curve
+ * geometry.
+ *
+ * @param p1 the new start point.
+ * @param c the new control point.
+ * @param p2 the new end point.
+ */
+ public void setCurve(Point2D p1, Point2D c, Point2D p2)
+ {
+ setCurve(p1.getX(), p1.getY(), c.getX(), c.getY(), p2.getX(), p2.getY());
+ }
+
+ /**
+ * Changes the curve geometry, specifying coordinate values in an
+ * array of Point objects.
+ *
+ * <p><img src="doc-files/QuadCurve2D-1.png" width="350" height="180"
+ * alt="A drawing of a QuadCurve2D" />
+ *
+ * <p>The curve does not keep references to the passed point
+ * objects. Therefore, a later change to the <code>pts</code> array
+ * or any of its elements will not affect the curve geometry.
+ *
+ * @param pts an array containing the points. The new start point
+ * is located at <code>pts[offset]</code>, the new control
+ * point at <code>pts[offset + 1]</code>, and the new end point
+ * at <code>pts[offset + 2]</code>.
+ *
+ * @param offset the offset of the start point in <code>pts</code>.
+ */
+ public void setCurve(Point2D[] pts, int offset)
+ {
+ setCurve(pts[offset].getX(), pts[offset].getY(), pts[offset + 1].getX(),
+ pts[offset + 1].getY(), pts[offset + 2].getX(),
+ pts[offset + 2].getY());
+ }
+
+ /**
+ * Changes the geometry of the curve to that of another curve.
+ *
+ * @param c the curve whose coordinates will be copied.
+ */
+ public void setCurve(QuadCurve2D c)
+ {
+ setCurve(c.getX1(), c.getY1(), c.getCtrlX(), c.getCtrlY(), c.getX2(),
+ c.getY2());
+ }
+
+ /**
+ * Calculates the squared flatness of a quadratic curve, directly
+ * specifying each coordinate value. The flatness is the distance of
+ * the control point to the line between start and end point.
+ *
+ * <p><img src="doc-files/QuadCurve2D-4.png" width="350" height="180"
+ * alt="A drawing that illustrates the flatness" />
+ *
+ * <p>In the above drawing, the straight line connecting start point
+ * P1 and end point P2 is depicted in gray. The result will be the
+ * the square of the distance between C and the gray line, i.e.
+ * the squared length of the red line.
+ *
+ * @param x1 the <i>x</i> coordinate of the start point P1.
+ * @param y1 the <i>y</i> coordinate of the start point P1.
+ * @param cx the <i>x</i> coordinate of the control point C.
+ * @param cy the <i>y</i> coordinate of the control point C.
+ * @param x2 the <i>x</i> coordinate of the end point P2.
+ * @param y2 the <i>y</i> coordinate of the end point P2.
+ */
+ public static double getFlatnessSq(double x1, double y1, double cx,
+ double cy, double x2, double y2)
+ {
+ return Line2D.ptSegDistSq(x1, y1, x2, y2, cx, cy);
+ }
+
+ /**
+ * Calculates the flatness of a quadratic curve, directly specifying
+ * each coordinate value. The flatness is the distance of the
+ * control point to the line between start and end point.
+ *
+ * <p><img src="doc-files/QuadCurve2D-4.png" width="350" height="180"
+ * alt="A drawing that illustrates the flatness" />
+ *
+ * <p>In the above drawing, the straight line connecting start point
+ * P1 and end point P2 is depicted in gray. The result will be the
+ * the distance between C and the gray line, i.e. the length of
+ * the red line.
+ *
+ * @param x1 the <i>x</i> coordinate of the start point P1.
+ * @param y1 the <i>y</i> coordinate of the start point P1.
+ * @param cx the <i>x</i> coordinate of the control point C.
+ * @param cy the <i>y</i> coordinate of the control point C.
+ * @param x2 the <i>x</i> coordinate of the end point P2.
+ * @param y2 the <i>y</i> coordinate of the end point P2.
+ */
+ public static double getFlatness(double x1, double y1, double cx, double cy,
+ double x2, double y2)
+ {
+ return Line2D.ptSegDist(x1, y1, x2, y2, cx, cy);
+ }
+
+ /**
+ * Calculates the squared flatness of a quadratic curve, specifying
+ * the coordinate values in an array. The flatness is the distance
+ * of the control point to the line between start and end point.
+ *
+ * <p><img src="doc-files/QuadCurve2D-4.png" width="350" height="180"
+ * alt="A drawing that illustrates the flatness" />
+ *
+ * <p>In the above drawing, the straight line connecting start point
+ * P1 and end point P2 is depicted in gray. The result will be the
+ * the square of the distance between C and the gray line, i.e.
+ * the squared length of the red line.
+ *
+ * @param coords an array containing the coordinate values. The
+ * <i>x</i> coordinate of the start point P1 is located at
+ * <code>coords[offset]</code>, its <i>y</i> coordinate at
+ * <code>coords[offset + 1]</code>. The <i>x</i> coordinate of the
+ * control point C is located at <code>coords[offset + 2]</code>,
+ * its <i>y</i> coordinate at <code>coords[offset + 3]</code>. The
+ * <i>x</i> coordinate of the end point P2 is located at
+ * <code>coords[offset + 4]</code>, its <i>y</i> coordinate at
+ * <code>coords[offset + 5]</code>.
+ *
+ * @param offset the offset of the first coordinate value in
+ * <code>coords</code>.
+ */
+ public static double getFlatnessSq(double[] coords, int offset)
+ {
+ return Line2D.ptSegDistSq(coords[offset], coords[offset + 1],
+ coords[offset + 4], coords[offset + 5],
+ coords[offset + 2], coords[offset + 3]);
+ }
+
+ /**
+ * Calculates the flatness of a quadratic curve, specifying the
+ * coordinate values in an array. The flatness is the distance of
+ * the control point to the line between start and end point.
+ *
+ * <p><img src="doc-files/QuadCurve2D-4.png" width="350" height="180"
+ * alt="A drawing that illustrates the flatness" />
+ *
+ * <p>In the above drawing, the straight line connecting start point
+ * P1 and end point P2 is depicted in gray. The result will be the
+ * the the distance between C and the gray line, i.e. the length of
+ * the red line.
+ *
+ * @param coords an array containing the coordinate values. The
+ * <i>x</i> coordinate of the start point P1 is located at
+ * <code>coords[offset]</code>, its <i>y</i> coordinate at
+ * <code>coords[offset + 1]</code>. The <i>x</i> coordinate of the
+ * control point C is located at <code>coords[offset + 2]</code>,
+ * its <i>y</i> coordinate at <code>coords[offset + 3]</code>. The
+ * <i>x</i> coordinate of the end point P2 is located at
+ * <code>coords[offset + 4]</code>, its <i>y</i> coordinate at
+ * <code>coords[offset + 5]</code>.
+ *
+ * @param offset the offset of the first coordinate value in
+ * <code>coords</code>.
+ */
+ public static double getFlatness(double[] coords, int offset)
+ {
+ return Line2D.ptSegDist(coords[offset], coords[offset + 1],
+ coords[offset + 4], coords[offset + 5],
+ coords[offset + 2], coords[offset + 3]);
+ }
+
+ /**
+ * Calculates the squared flatness of this curve. The flatness is
+ * the distance of the control point to the line between start and
+ * end point.
+ *
+ * <p><img src="doc-files/QuadCurve2D-4.png" width="350" height="180"
+ * alt="A drawing that illustrates the flatness" />
+ *
+ * <p>In the above drawing, the straight line connecting start point
+ * P1 and end point P2 is depicted in gray. The result will be the
+ * the square of the distance between C and the gray line, i.e. the
+ * squared length of the red line.
+ */
+ public double getFlatnessSq()
+ {
+ return Line2D.ptSegDistSq(getX1(), getY1(), getX2(), getY2(), getCtrlX(),
+ getCtrlY());
+ }
+
+ /**
+ * Calculates the flatness of this curve. The flatness is the
+ * distance of the control point to the line between start and end
+ * point.
+ *
+ * <p><img src="doc-files/QuadCurve2D-4.png" width="350" height="180"
+ * alt="A drawing that illustrates the flatness" />
+ *
+ * <p>In the above drawing, the straight line connecting start point
+ * P1 and end point P2 is depicted in gray. The result will be the
+ * the distance between C and the gray line, i.e. the length of the
+ * red line.
+ */
+ public double getFlatness()
+ {
+ return Line2D.ptSegDist(getX1(), getY1(), getX2(), getY2(), getCtrlX(),
+ getCtrlY());
+ }
+
+ /**
+ * Subdivides this curve into two halves.
+ *
+ * <p><img src="doc-files/QuadCurve2D-3.png" width="700"
+ * height="180" alt="A drawing that illustrates the effects of
+ * subdividing a QuadCurve2D" />
+ *
+ * @param left a curve whose geometry will be set to the left half
+ * of this curve, or <code>null</code> if the caller is not
+ * interested in the left half.
+ *
+ * @param right a curve whose geometry will be set to the right half
+ * of this curve, or <code>null</code> if the caller is not
+ * interested in the right half.
+ */
+ public void subdivide(QuadCurve2D left, QuadCurve2D right)
+ {
+ // Use empty slots at end to share single array.
+ double[] d = new double[]
+ {
+ getX1(), getY1(), getCtrlX(), getCtrlY(), getX2(), getY2(),
+ 0, 0, 0, 0
+ };
+ subdivide(d, 0, d, 0, d, 4);
+ if (left != null)
+ left.setCurve(d, 0);
+ if (right != null)
+ right.setCurve(d, 4);
+ }
+
+ /**
+ * Subdivides a quadratic curve into two halves.
+ *
+ * <p><img src="doc-files/QuadCurve2D-3.png" width="700"
+ * height="180" alt="A drawing that illustrates the effects of
+ * subdividing a QuadCurve2D" />
+ *
+ * @param src the curve to be subdivided.
+ *
+ * @param left a curve whose geometry will be set to the left half
+ * of <code>src</code>, or <code>null</code> if the caller is not
+ * interested in the left half.
+ *
+ * @param right a curve whose geometry will be set to the right half
+ * of <code>src</code>, or <code>null</code> if the caller is not
+ * interested in the right half.
+ */
+ public static void subdivide(QuadCurve2D src, QuadCurve2D left,
+ QuadCurve2D right)
+ {
+ src.subdivide(left, right);
+ }
+
+ /**
+ * Subdivides a quadratic curve into two halves, passing all
+ * coordinates in an array.
+ *
+ * <p><img src="doc-files/QuadCurve2D-3.png" width="700"
+ * height="180" alt="A drawing that illustrates the effects of
+ * subdividing a QuadCurve2D" />
+ *
+ * <p>The left end point and the right start point will always be
+ * identical. Memory-concious programmers thus may want to pass the
+ * same array for both <code>left</code> and <code>right</code>, and
+ * set <code>rightOff</code> to <code>leftOff + 4</code>.
+ *
+ * @param src an array containing the coordinates of the curve to be
+ * subdivided. The <i>x</i> coordinate of the start point is
+ * located at <code>src[srcOff]</code>, its <i>y</i> at
+ * <code>src[srcOff + 1]</code>. The <i>x</i> coordinate of the
+ * control point is located at <code>src[srcOff + 2]</code>, its
+ * <i>y</i> at <code>src[srcOff + 3]</code>. The <i>x</i>
+ * coordinate of the end point is located at <code>src[srcOff +
+ * 4]</code>, its <i>y</i> at <code>src[srcOff + 5]</code>.
+ *
+ * @param srcOff an offset into <code>src</code>, specifying
+ * the index of the start point&#x2019;s <i>x</i> coordinate.
+ *
+ * @param left an array that will receive the coordinates of the
+ * left half of <code>src</code>. It is acceptable to pass
+ * <code>src</code>. A caller who is not interested in the left half
+ * can pass <code>null</code>.
+ *
+ * @param leftOff an offset into <code>left</code>, specifying the
+ * index where the start point&#x2019;s <i>x</i> coordinate will be
+ * stored.
+ *
+ * @param right an array that will receive the coordinates of the
+ * right half of <code>src</code>. It is acceptable to pass
+ * <code>src</code> or <code>left</code>. A caller who is not
+ * interested in the right half can pass <code>null</code>.
+ *
+ * @param rightOff an offset into <code>right</code>, specifying the
+ * index where the start point&#x2019;s <i>x</i> coordinate will be
+ * stored.
+ */
+ public static void subdivide(double[] src, int srcOff, double[] left,
+ int leftOff, double[] right, int rightOff)
+ {
+ double x1;
+ double y1;
+ double xc;
+ double yc;
+ double x2;
+ double y2;
+
+ x1 = src[srcOff];
+ y1 = src[srcOff + 1];
+ xc = src[srcOff + 2];
+ yc = src[srcOff + 3];
+ x2 = src[srcOff + 4];
+ y2 = src[srcOff + 5];
+
+ if (left != null)
+ {
+ left[leftOff] = x1;
+ left[leftOff + 1] = y1;
+ }
+
+ if (right != null)
+ {
+ right[rightOff + 4] = x2;
+ right[rightOff + 5] = y2;
+ }
+
+ x1 = (x1 + xc) / 2;
+ x2 = (xc + x2) / 2;
+ xc = (x1 + x2) / 2;
+ y1 = (y1 + yc) / 2;
+ y2 = (y2 + yc) / 2;
+ yc = (y1 + y2) / 2;
+
+ if (left != null)
+ {
+ left[leftOff + 2] = x1;
+ left[leftOff + 3] = y1;
+ left[leftOff + 4] = xc;
+ left[leftOff + 5] = yc;
+ }
+
+ if (right != null)
+ {
+ right[rightOff] = xc;
+ right[rightOff + 1] = yc;
+ right[rightOff + 2] = x2;
+ right[rightOff + 3] = y2;
+ }
+ }
+
+ /**
+ * Finds the non-complex roots of a quadratic equation, placing the
+ * results into the same array as the equation coefficients. The
+ * following equation is being solved:
+ *
+ * <blockquote><code>eqn[2]</code> &#xb7; <i>x</i><sup>2</sup>
+ * + <code>eqn[1]</code> &#xb7; <i>x</i>
+ * + <code>eqn[0]</code>
+ * = 0
+ * </blockquote>
+ *
+ * <p>For some background about solving quadratic equations, see the
+ * article <a href=
+ * "http://planetmath.org/encyclopedia/QuadraticFormula.html"
+ * >&#x201c;Quadratic Formula&#x201d;</a> in <a href=
+ * "http://planetmath.org/">PlanetMath</a>. For an extensive library
+ * of numerical algorithms written in the C programming language,
+ * see the <a href="http://www.gnu.org/software/gsl/">GNU Scientific
+ * Library</a>.
+ *
+ * @see #solveQuadratic(double[], double[])
+ * @see CubicCurve2D#solveCubic(double[], double[])
+ *
+ * @param eqn an array with the coefficients of the equation. When
+ * this procedure has returned, <code>eqn</code> will contain the
+ * non-complex solutions of the equation, in no particular order.
+ *
+ * @return the number of non-complex solutions. A result of 0
+ * indicates that the equation has no non-complex solutions. A
+ * result of -1 indicates that the equation is constant (i.e.,
+ * always or never zero).
+ *
+ * @author Brian Gough (bjg@network-theory.com)
+ * (original C implementation in the <a href=
+ * "http://www.gnu.org/software/gsl/">GNU Scientific Library</a>)
+ *
+ * @author Sascha Brawer (brawer@dandelis.ch)
+ * (adaptation to Java)
+ */
+ public static int solveQuadratic(double[] eqn)
+ {
+ return solveQuadratic(eqn, eqn);
+ }
+
+ /**
+ * Finds the non-complex roots of a quadratic equation. The
+ * following equation is being solved:
+ *
+ * <blockquote><code>eqn[2]</code> &#xb7; <i>x</i><sup>2</sup>
+ * + <code>eqn[1]</code> &#xb7; <i>x</i>
+ * + <code>eqn[0]</code>
+ * = 0
+ * </blockquote>
+ *
+ * <p>For some background about solving quadratic equations, see the
+ * article <a href=
+ * "http://planetmath.org/encyclopedia/QuadraticFormula.html"
+ * >&#x201c;Quadratic Formula&#x201d;</a> in <a href=
+ * "http://planetmath.org/">PlanetMath</a>. For an extensive library
+ * of numerical algorithms written in the C programming language,
+ * see the <a href="http://www.gnu.org/software/gsl/">GNU Scientific
+ * Library</a>.
+ *
+ * @see CubicCurve2D#solveCubic(double[],double[])
+ *
+ * @param eqn an array with the coefficients of the equation.
+ *
+ * @param res an array into which the non-complex roots will be
+ * stored. The results may be in an arbitrary order. It is safe to
+ * pass the same array object reference for both <code>eqn</code>
+ * and <code>res</code>.
+ *
+ * @return the number of non-complex solutions. A result of 0
+ * indicates that the equation has no non-complex solutions. A
+ * result of -1 indicates that the equation is constant (i.e.,
+ * always or never zero).
+ *
+ * @author Brian Gough (bjg@network-theory.com)
+ * (original C implementation in the <a href=
+ * "http://www.gnu.org/software/gsl/">GNU Scientific Library</a>)
+ *
+ * @author Sascha Brawer (brawer@dandelis.ch)
+ * (adaptation to Java)
+ */
+ public static int solveQuadratic(double[] eqn, double[] res)
+ {
+ // Taken from poly/solve_quadratic.c in the GNU Scientific Library
+ // (GSL), cvs revision 1.7 of 2003-07-26. For the original source,
+ // see http://www.gnu.org/software/gsl/
+ //
+ // Brian Gough, the author of that code, has granted the
+ // permission to use it in GNU Classpath under the GNU Classpath
+ // license, and has assigned the copyright to the Free Software
+ // Foundation.
+ //
+ // The Java implementation is very similar to the GSL code, but
+ // not a strict one-to-one copy. For example, GSL would sort the
+ // result.
+ double a;
+ double b;
+ double c;
+ double disc;
+
+ c = eqn[0];
+ b = eqn[1];
+ a = eqn[2];
+
+ // Check for linear or constant functions. This is not done by the
+ // GNU Scientific Library. Without this special check, we
+ // wouldn't return -1 for constant functions, and 2 instead of 1
+ // for linear functions.
+ if (a == 0)
+ {
+ if (b == 0)
+ return -1;
+
+ res[0] = -c / b;
+ return 1;
+ }
+
+ disc = b * b - 4 * a * c;
+
+ if (disc < 0)
+ return 0;
+
+ if (disc == 0)
+ {
+ // The GNU Scientific Library returns two identical results here.
+ // We just return one.
+ res[0] = -0.5 * b / a;
+ return 1;
+ }
+
+ // disc > 0
+ if (b == 0)
+ {
+ double r;
+
+ r = Math.abs(0.5 * Math.sqrt(disc) / a);
+ res[0] = -r;
+ res[1] = r;
+ }
+ else
+ {
+ double sgnb;
+ double temp;
+
+ sgnb = (b > 0 ? 1 : -1);
+ temp = -0.5 * (b + sgnb * Math.sqrt(disc));
+
+ // The GNU Scientific Library sorts the result here. We don't.
+ res[0] = temp / a;
+ res[1] = c / temp;
+ }
+ return 2;
+ }
+
+ /**
+ * Determines whether a point is inside the area bounded
+ * by the curve and the straight line connecting its end points.
+ *
+ * <p><img src="doc-files/QuadCurve2D-5.png" width="350" height="180"
+ * alt="A drawing of the area spanned by the curve" />
+ *
+ * <p>The above drawing illustrates in which area points are
+ * considered &#x201c;inside&#x201d; a QuadCurve2D.
+ */
+ public boolean contains(double x, double y)
+ {
+ if (! getBounds2D().contains(x, y))
+ return false;
+
+ return ((getAxisIntersections(x, y, true, BIG_VALUE) & 1) != 0);
+ }
+
+ /**
+ * Determines whether a point is inside the area bounded
+ * by the curve and the straight line connecting its end points.
+ *
+ * <p><img src="doc-files/QuadCurve2D-5.png" width="350" height="180"
+ * alt="A drawing of the area spanned by the curve" />
+ *
+ * <p>The above drawing illustrates in which area points are
+ * considered &#x201c;inside&#x201d; a QuadCurve2D.
+ */
+ public boolean contains(Point2D p)
+ {
+ return contains(p.getX(), p.getY());
+ }
+
+ /**
+ * Determines whether any part of a rectangle is inside the area bounded
+ * by the curve and the straight line connecting its end points.
+ *
+ * <p><img src="doc-files/QuadCurve2D-5.png" width="350" height="180"
+ * alt="A drawing of the area spanned by the curve" />
+ *
+ * <p>The above drawing illustrates in which area points are
+ * considered &#x201c;inside&#x201d; in a CubicCurve2D.
+ */
+ public boolean intersects(double x, double y, double w, double h)
+ {
+ if (! getBounds2D().contains(x, y, w, h))
+ return false;
+
+ /* Does any edge intersect? */
+ if (getAxisIntersections(x, y, true, w) != 0 /* top */
+ || getAxisIntersections(x, y + h, true, w) != 0 /* bottom */
+ || getAxisIntersections(x + w, y, false, h) != 0 /* right */
+ || getAxisIntersections(x, y, false, h) != 0) /* left */
+ return true;
+
+ /* No intersections, is any point inside? */
+ if ((getAxisIntersections(x, y, true, BIG_VALUE) & 1) != 0)
+ return true;
+
+ return false;
+ }
+
+ /**
+ * Determines whether any part of a Rectangle2D is inside the area bounded
+ * by the curve and the straight line connecting its end points.
+ * @see #intersects(double, double, double, double)
+ */
+ public boolean intersects(Rectangle2D r)
+ {
+ return intersects(r.getX(), r.getY(), r.getWidth(), r.getHeight());
+ }
+
+ /**
+ * Determines whether a rectangle is entirely inside the area bounded
+ * by the curve and the straight line connecting its end points.
+ *
+ * <p><img src="doc-files/QuadCurve2D-5.png" width="350" height="180"
+ * alt="A drawing of the area spanned by the curve" />
+ *
+ * <p>The above drawing illustrates in which area points are
+ * considered &#x201c;inside&#x201d; a QuadCurve2D.
+ * @see #contains(double, double)
+ */
+ public boolean contains(double x, double y, double w, double h)
+ {
+ if (! getBounds2D().intersects(x, y, w, h))
+ return false;
+
+ /* Does any edge intersect? */
+ if (getAxisIntersections(x, y, true, w) != 0 /* top */
+ || getAxisIntersections(x, y + h, true, w) != 0 /* bottom */
+ || getAxisIntersections(x + w, y, false, h) != 0 /* right */
+ || getAxisIntersections(x, y, false, h) != 0) /* left */
+ return false;
+
+ /* No intersections, is any point inside? */
+ if ((getAxisIntersections(x, y, true, BIG_VALUE) & 1) != 0)
+ return true;
+
+ return false;
+ }
+
+ /**
+ * Determines whether a Rectangle2D is entirely inside the area that is
+ * bounded by the curve and the straight line connecting its end points.
+ * @see #contains(double, double, double, double)
+ */
+ public boolean contains(Rectangle2D r)
+ {
+ return contains(r.getX(), r.getY(), r.getWidth(), r.getHeight());
+ }
+
+ /**
+ * Determines the smallest rectangle that encloses the
+ * curve&#x2019;s start, end and control point. As the illustration
+ * below shows, the invisible control point may cause the bounds to
+ * be much larger than the area that is actually covered by the
+ * curve.
+ *
+ * <p><img src="doc-files/QuadCurve2D-2.png" width="350" height="180"
+ * alt="An illustration of the bounds of a QuadCurve2D" />
+ */
+ public Rectangle getBounds()
+ {
+ return getBounds2D().getBounds();
+ }
+
+ public PathIterator getPathIterator(final AffineTransform at)
+ {
+ return new PathIterator()
+ {
+ /** Current coordinate. */
+ private int current = 0;
+
+ public int getWindingRule()
+ {
+ return WIND_NON_ZERO;
+ }
+
+ public boolean isDone()
+ {
+ return current >= 2;
+ }
+
+ public void next()
+ {
+ current++;
+ }
+
+ public int currentSegment(float[] coords)
+ {
+ int result;
+ switch (current)
+ {
+ case 0:
+ coords[0] = (float) getX1();
+ coords[1] = (float) getY1();
+ result = SEG_MOVETO;
+ break;
+ case 1:
+ coords[0] = (float) getCtrlX();
+ coords[1] = (float) getCtrlY();
+ coords[2] = (float) getX2();
+ coords[3] = (float) getY2();
+ result = SEG_QUADTO;
+ break;
+ default:
+ throw new NoSuchElementException("quad iterator out of bounds");
+ }
+ if (at != null)
+ at.transform(coords, 0, coords, 0, 2);
+ return result;
+ }
+
+ public int currentSegment(double[] coords)
+ {
+ int result;
+ switch (current)
+ {
+ case 0:
+ coords[0] = getX1();
+ coords[1] = getY1();
+ result = SEG_MOVETO;
+ break;
+ case 1:
+ coords[0] = getCtrlX();
+ coords[1] = getCtrlY();
+ coords[2] = getX2();
+ coords[3] = getY2();
+ result = SEG_QUADTO;
+ break;
+ default:
+ throw new NoSuchElementException("quad iterator out of bounds");
+ }
+ if (at != null)
+ at.transform(coords, 0, coords, 0, 2);
+ return result;
+ }
+ };
+ }
+
+ public PathIterator getPathIterator(AffineTransform at, double flatness)
+ {
+ return new FlatteningPathIterator(getPathIterator(at), flatness);
+ }
+
+ /**
+ * Creates a new curve with the same contents as this one.
+ *
+ * @return the clone.
+ */
+ public Object clone()
+ {
+ try
+ {
+ return super.clone();
+ }
+ catch (CloneNotSupportedException e)
+ {
+ throw (Error) new InternalError().initCause(e); // Impossible
+ }
+ }
+
+ /**
+ * Helper method used by contains() and intersects() methods
+ * Return the number of curve/line intersections on a given axis
+ * extending from a certain point. useYaxis is true for using the Y axis,
+ * @param x x coordinate of the origin point
+ * @param y y coordinate of the origin point
+ * @param useYaxis axis to follow, if true the positive Y axis is used,
+ * false uses the positive X axis.
+ *
+ * This is an implementation of the line-crossings algorithm,
+ * Detailed in an article on Eric Haines' page:
+ * http://www.acm.org/tog/editors/erich/ptinpoly/
+ */
+ private int getAxisIntersections(double x, double y, boolean useYaxis,
+ double distance)
+ {
+ int nCrossings = 0;
+ double a0;
+ double a1;
+ double a2;
+ double b0;
+ double b1;
+ double b2;
+ double[] r = new double[3];
+ int nRoots;
+
+ a0 = a2 = 0.0;
+
+ if (useYaxis)
+ {
+ a0 = getY1() - y;
+ a1 = getCtrlY() - y;
+ a2 = getY2() - y;
+ b0 = getX1() - x;
+ b1 = getCtrlX() - x;
+ b2 = getX2() - x;
+ }
+ else
+ {
+ a0 = getX1() - x;
+ a1 = getCtrlX() - x;
+ a2 = getX2() - x;
+ b0 = getY1() - y;
+ b1 = getCtrlY() - y;
+ b2 = getY2() - y;
+ }
+
+ /* If the axis intersects a start/endpoint, shift it up by some small
+ amount to guarantee the line is 'inside'
+ If this is not done,bad behaviour may result for points on that axis. */
+ if (a0 == 0.0 || a2 == 0.0)
+ {
+ double small = getFlatness() * EPSILON;
+ if (a0 == 0.0)
+ a0 -= small;
+
+ if (a2 == 0.0)
+ a2 -= small;
+ }
+
+ r[0] = a0;
+ r[1] = 2 * (a1 - a0);
+ r[2] = (a2 - 2 * a1 + a0);
+
+ nRoots = solveQuadratic(r);
+ for (int i = 0; i < nRoots; i++)
+ {
+ double t = r[i];
+ if (t >= 0.0 && t <= 1.0)
+ {
+ double crossing = t * t * (b2 - 2 * b1 + b0) + 2 * t * (b1 - b0)
+ + b0;
+ /* single root is always doubly degenerate in quads */
+ if (crossing > 0 && crossing < distance)
+ nCrossings += (nRoots == 1) ? 2 : 1;
+ }
+ }
+
+ if (useYaxis)
+ {
+ if (Line2D.linesIntersect(b0, a0, b2, a2, EPSILON, 0.0, distance, 0.0))
+ nCrossings++;
+ }
+ else
+ {
+ if (Line2D.linesIntersect(a0, b0, a2, b2, 0.0, EPSILON, 0.0, distance))
+ nCrossings++;
+ }
+
+ return (nCrossings);
+ }
+
+ /**
+ * A two-dimensional curve that is parameterized with a quadratic
+ * function and stores coordinate values in double-precision
+ * floating-point format.
+ *
+ * @see QuadCurve2D.Float
+ *
+ * @author Eric Blake (ebb9@email.byu.edu)
+ * @author Sascha Brawer (brawer@dandelis.ch)
+ */
+ public static class Double extends QuadCurve2D
+ {
+ /**
+ * The <i>x</i> coordinate of the curve&#x2019;s start point.
+ */
+ public double x1;
+
+ /**
+ * The <i>y</i> coordinate of the curve&#x2019;s start point.
+ */
+ public double y1;
+
+ /**
+ * The <i>x</i> coordinate of the curve&#x2019;s control point.
+ */
+ public double ctrlx;
+
+ /**
+ * The <i>y</i> coordinate of the curve&#x2019;s control point.
+ */
+ public double ctrly;
+
+ /**
+ * The <i>x</i> coordinate of the curve&#x2019;s end point.
+ */
+ public double x2;
+
+ /**
+ * The <i>y</i> coordinate of the curve&#x2019;s end point.
+ */
+ public double y2;
+
+ /**
+ * Constructs a new QuadCurve2D that stores its coordinate values
+ * in double-precision floating-point format. All points are
+ * initially at position (0, 0).
+ */
+ public Double()
+ {
+ }
+
+ /**
+ * Constructs a new QuadCurve2D that stores its coordinate values
+ * in double-precision floating-point format, specifying the
+ * initial position of each point.
+ *
+ * @param x1 the <i>x</i> coordinate of the curve&#x2019;s start
+ * point.
+ *
+ * @param y1 the <i>y</i> coordinate of the curve&#x2019;s start
+ * point.
+ *
+ * @param cx the <i>x</i> coordinate of the curve&#x2019;s control
+ * point.
+ *
+ * @param cy the <i>y</i> coordinate of the curve&#x2019;s control
+ * point.
+ *
+ * @param x2 the <i>x</i> coordinate of the curve&#x2019;s end
+ * point.
+ *
+ * @param y2 the <i>y</i> coordinate of the curve&#x2019;s end
+ * point.
+ */
+ public Double(double x1, double y1, double cx, double cy, double x2,
+ double y2)
+ {
+ this.x1 = x1;
+ this.y1 = y1;
+ ctrlx = cx;
+ ctrly = cy;
+ this.x2 = x2;
+ this.y2 = y2;
+ }
+
+ /**
+ * Returns the <i>x</i> coordinate of the curve&#x2019;s start
+ * point.
+ */
+ public double getX1()
+ {
+ return x1;
+ }
+
+ /**
+ * Returns the <i>y</i> coordinate of the curve&#x2019;s start
+ * point.
+ */
+ public double getY1()
+ {
+ return y1;
+ }
+
+ /**
+ * Returns the curve&#x2019;s start point.
+ */
+ public Point2D getP1()
+ {
+ return new Point2D.Double(x1, y1);
+ }
+
+ /**
+ * Returns the <i>x</i> coordinate of the curve&#x2019;s control
+ * point.
+ */
+ public double getCtrlX()
+ {
+ return ctrlx;
+ }
+
+ /**
+ * Returns the <i>y</i> coordinate of the curve&#x2019;s control
+ * point.
+ */
+ public double getCtrlY()
+ {
+ return ctrly;
+ }
+
+ /**
+ * Returns the curve&#x2019;s control point.
+ */
+ public Point2D getCtrlPt()
+ {
+ return new Point2D.Double(ctrlx, ctrly);
+ }
+
+ /**
+ * Returns the <i>x</i> coordinate of the curve&#x2019;s end
+ * point.
+ */
+ public double getX2()
+ {
+ return x2;
+ }
+
+ /**
+ * Returns the <i>y</i> coordinate of the curve&#x2019;s end
+ * point.
+ */
+ public double getY2()
+ {
+ return y2;
+ }
+
+ /**
+ * Returns the curve&#x2019;s end point.
+ */
+ public Point2D getP2()
+ {
+ return new Point2D.Double(x2, y2);
+ }
+
+ /**
+ * Changes the geometry of the curve.
+ *
+ * @param x1 the <i>x</i> coordinate of the curve&#x2019;s new
+ * start point.
+ *
+ * @param y1 the <i>y</i> coordinate of the curve&#x2019;s new
+ * start point.
+ *
+ * @param cx the <i>x</i> coordinate of the curve&#x2019;s new
+ * control point.
+ *
+ * @param cy the <i>y</i> coordinate of the curve&#x2019;s new
+ * control point.
+ *
+ * @param x2 the <i>x</i> coordinate of the curve&#x2019;s new
+ * end point.
+ *
+ * @param y2 the <i>y</i> coordinate of the curve&#x2019;s new
+ * end point.
+ */
+ public void setCurve(double x1, double y1, double cx, double cy,
+ double x2, double y2)
+ {
+ this.x1 = x1;
+ this.y1 = y1;
+ ctrlx = cx;
+ ctrly = cy;
+ this.x2 = x2;
+ this.y2 = y2;
+ }
+
+ /**
+ * Determines the smallest rectangle that encloses the
+ * curve&#x2019;s start, end and control point. As the
+ * illustration below shows, the invisible control point may cause
+ * the bounds to be much larger than the area that is actually
+ * covered by the curve.
+ *
+ * <p><img src="doc-files/QuadCurve2D-2.png" width="350" height="180"
+ * alt="An illustration of the bounds of a QuadCurve2D" />
+ */
+ public Rectangle2D getBounds2D()
+ {
+ double nx1 = Math.min(Math.min(x1, ctrlx), x2);
+ double ny1 = Math.min(Math.min(y1, ctrly), y2);
+ double nx2 = Math.max(Math.max(x1, ctrlx), x2);
+ double ny2 = Math.max(Math.max(y1, ctrly), y2);
+ return new Rectangle2D.Double(nx1, ny1, nx2 - nx1, ny2 - ny1);
+ }
+ }
+
+ /**
+ * A two-dimensional curve that is parameterized with a quadratic
+ * function and stores coordinate values in single-precision
+ * floating-point format.
+ *
+ * @see QuadCurve2D.Double
+ *
+ * @author Eric Blake (ebb9@email.byu.edu)
+ * @author Sascha Brawer (brawer@dandelis.ch)
+ */
+ public static class Float extends QuadCurve2D
+ {
+ /**
+ * The <i>x</i> coordinate of the curve&#x2019;s start point.
+ */
+ public float x1;
+
+ /**
+ * The <i>y</i> coordinate of the curve&#x2019;s start point.
+ */
+ public float y1;
+
+ /**
+ * The <i>x</i> coordinate of the curve&#x2019;s control point.
+ */
+ public float ctrlx;
+
+ /**
+ * The <i>y</i> coordinate of the curve&#x2019;s control point.
+ */
+ public float ctrly;
+
+ /**
+ * The <i>x</i> coordinate of the curve&#x2019;s end point.
+ */
+ public float x2;
+
+ /**
+ * The <i>y</i> coordinate of the curve&#x2019;s end point.
+ */
+ public float y2;
+
+ /**
+ * Constructs a new QuadCurve2D that stores its coordinate values
+ * in single-precision floating-point format. All points are
+ * initially at position (0, 0).
+ */
+ public Float()
+ {
+ }
+
+ /**
+ * Constructs a new QuadCurve2D that stores its coordinate values
+ * in single-precision floating-point format, specifying the
+ * initial position of each point.
+ *
+ * @param x1 the <i>x</i> coordinate of the curve&#x2019;s start
+ * point.
+ *
+ * @param y1 the <i>y</i> coordinate of the curve&#x2019;s start
+ * point.
+ *
+ * @param cx the <i>x</i> coordinate of the curve&#x2019;s control
+ * point.
+ *
+ * @param cy the <i>y</i> coordinate of the curve&#x2019;s control
+ * point.
+ *
+ * @param x2 the <i>x</i> coordinate of the curve&#x2019;s end
+ * point.
+ *
+ * @param y2 the <i>y</i> coordinate of the curve&#x2019;s end
+ * point.
+ */
+ public Float(float x1, float y1, float cx, float cy, float x2, float y2)
+ {
+ this.x1 = x1;
+ this.y1 = y1;
+ ctrlx = cx;
+ ctrly = cy;
+ this.x2 = x2;
+ this.y2 = y2;
+ }
+
+ /**
+ * Returns the <i>x</i> coordinate of the curve&#x2019;s start
+ * point.
+ */
+ public double getX1()
+ {
+ return x1;
+ }
+
+ /**
+ * Returns the <i>y</i> coordinate of the curve&#x2019;s start
+ * point.
+ */
+ public double getY1()
+ {
+ return y1;
+ }
+
+ /**
+ * Returns the curve&#x2019;s start point.
+ */
+ public Point2D getP1()
+ {
+ return new Point2D.Float(x1, y1);
+ }
+
+ /**
+ * Returns the <i>x</i> coordinate of the curve&#x2019;s control
+ * point.
+ */
+ public double getCtrlX()
+ {
+ return ctrlx;
+ }
+
+ /**
+ * Returns the <i>y</i> coordinate of the curve&#x2019;s control
+ * point.
+ */
+ public double getCtrlY()
+ {
+ return ctrly;
+ }
+
+ /**
+ * Returns the curve&#x2019;s control point.
+ */
+ public Point2D getCtrlPt()
+ {
+ return new Point2D.Float(ctrlx, ctrly);
+ }
+
+ /**
+ * Returns the <i>x</i> coordinate of the curve&#x2019;s end
+ * point.
+ */
+ public double getX2()
+ {
+ return x2;
+ }
+
+ /**
+ * Returns the <i>y</i> coordinate of the curve&#x2019;s end
+ * point.
+ */
+ public double getY2()
+ {
+ return y2;
+ }
+
+ /**
+ * Returns the curve&#x2019;s end point.
+ */
+ public Point2D getP2()
+ {
+ return new Point2D.Float(x2, y2);
+ }
+
+ /**
+ * Changes the geometry of the curve, specifying coordinate values
+ * as double-precision floating-point numbers.
+ *
+ * @param x1 the <i>x</i> coordinate of the curve&#x2019;s new
+ * start point.
+ *
+ * @param y1 the <i>y</i> coordinate of the curve&#x2019;s new
+ * start point.
+ *
+ * @param cx the <i>x</i> coordinate of the curve&#x2019;s new
+ * control point.
+ *
+ * @param cy the <i>y</i> coordinate of the curve&#x2019;s new
+ * control point.
+ *
+ * @param x2 the <i>x</i> coordinate of the curve&#x2019;s new
+ * end point.
+ *
+ * @param y2 the <i>y</i> coordinate of the curve&#x2019;s new
+ * end point.
+ */
+ public void setCurve(double x1, double y1, double cx, double cy,
+ double x2, double y2)
+ {
+ this.x1 = (float) x1;
+ this.y1 = (float) y1;
+ ctrlx = (float) cx;
+ ctrly = (float) cy;
+ this.x2 = (float) x2;
+ this.y2 = (float) y2;
+ }
+
+ /**
+ * Changes the geometry of the curve, specifying coordinate values
+ * as single-precision floating-point numbers.
+ *
+ * @param x1 the <i>x</i> coordinate of the curve&#x2019;s new
+ * start point.
+ *
+ * @param y1 the <i>y</i> coordinate of the curve&#x2019;s new
+ * start point.
+ *
+ * @param cx the <i>x</i> coordinate of the curve&#x2019;s new
+ * control point.
+ *
+ * @param cy the <i>y</i> coordinate of the curve&#x2019;s new
+ * control point.
+ *
+ * @param x2 the <i>x</i> coordinate of the curve&#x2019;s new
+ * end point.
+ *
+ * @param y2 the <i>y</i> coordinate of the curve&#x2019;s new
+ * end point.
+ */
+ public void setCurve(float x1, float y1, float cx, float cy, float x2,
+ float y2)
+ {
+ this.x1 = x1;
+ this.y1 = y1;
+ ctrlx = cx;
+ ctrly = cy;
+ this.x2 = x2;
+ this.y2 = y2;
+ }
+
+ /**
+ * Determines the smallest rectangle that encloses the
+ * curve&#x2019;s start, end and control point. As the
+ * illustration below shows, the invisible control point may cause
+ * the bounds to be much larger than the area that is actually
+ * covered by the curve.
+ *
+ * <p><img src="doc-files/QuadCurve2D-2.png" width="350" height="180"
+ * alt="An illustration of the bounds of a QuadCurve2D" />
+ */
+ public Rectangle2D getBounds2D()
+ {
+ float nx1 = Math.min(Math.min(x1, ctrlx), x2);
+ float ny1 = Math.min(Math.min(y1, ctrly), y2);
+ float nx2 = Math.max(Math.max(x1, ctrlx), x2);
+ float ny2 = Math.max(Math.max(y1, ctrly), y2);
+ return new Rectangle2D.Float(nx1, ny1, nx2 - nx1, ny2 - ny1);
+ }
+ }
+}
diff --git a/libjava/classpath/java/awt/geom/Rectangle2D.java b/libjava/classpath/java/awt/geom/Rectangle2D.java
new file mode 100644
index 000000000..6a255f953
--- /dev/null
+++ b/libjava/classpath/java/awt/geom/Rectangle2D.java
@@ -0,0 +1,992 @@
+/* Rectangle2D.java -- generic rectangles in 2-D space
+ Copyright (C) 2000, 2001, 2002, 2004 Free Software Foundation
+
+This file is part of GNU Classpath.
+
+GNU Classpath is free software; you can redistribute it and/or modify
+it under the terms of the GNU General Public License as published by
+the Free Software Foundation; either version 2, or (at your option)
+any later version.
+
+GNU Classpath is distributed in the hope that it will be useful, but
+WITHOUT ANY WARRANTY; without even the implied warranty of
+MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
+General Public License for more details.
+
+You should have received a copy of the GNU General Public License
+along with GNU Classpath; see the file COPYING. If not, write to the
+Free Software Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA
+02110-1301 USA.
+
+Linking this library statically or dynamically with other modules is
+making a combined work based on this library. Thus, the terms and
+conditions of the GNU General Public License cover the whole
+combination.
+
+As a special exception, the copyright holders of this library give you
+permission to link this library with independent modules to produce an
+executable, regardless of the license terms of these independent
+modules, and to copy and distribute the resulting executable under
+terms of your choice, provided that you also meet, for each linked
+independent module, the terms and conditions of the license of that
+module. An independent module is a module which is not derived from
+or based on this library. If you modify this library, you may extend
+this exception to your version of the library, but you are not
+obligated to do so. If you do not wish to do so, delete this
+exception statement from your version. */
+
+
+package java.awt.geom;
+
+import java.util.NoSuchElementException;
+
+/**
+ * This class describes a rectangle by a point (x,y) and dimension (w x h).
+ * The actual storage is left up to subclasses.
+ *
+ * <p>It is valid for a rectangle to have negative width or height; but it
+ * is considered to have no area or internal points. Therefore, the behavior
+ * in methods like <code>contains</code> or <code>intersects</code> is
+ * undefined unless the rectangle has positive width and height.
+ *
+ * @author Tom Tromey (tromey@cygnus.com)
+ * @author Eric Blake (ebb9@email.byu.edu)
+ * @since 1.2
+ * @status updated to 1.4
+ */
+public abstract class Rectangle2D extends RectangularShape
+{
+ /**
+ * The point lies left of the rectangle (p.x &lt; r.x).
+ *
+ * @see #outcode(double, double)
+ */
+ public static final int OUT_LEFT = 1;
+
+ /**
+ * The point lies above the rectangle (p.y &lt; r.y).
+ *
+ * @see #outcode(double, double)
+ */
+ public static final int OUT_TOP = 2;
+
+ /**
+ * The point lies right of the rectangle (p.x &gt; r.maxX).
+ *
+ * @see #outcode(double, double)
+ */
+ public static final int OUT_RIGHT = 4;
+
+ /**
+ * The point lies below of the rectangle (p.y &gt; r.maxY).
+ *
+ * @see #outcode(double, double)
+ */
+ public static final int OUT_BOTTOM = 8;
+
+ /**
+ * Default constructor.
+ */
+ protected Rectangle2D()
+ {
+ }
+
+ /**
+ * Set the bounding box of this rectangle.
+ *
+ * @param x the new X coordinate
+ * @param y the new Y coordinate
+ * @param w the new width
+ * @param h the new height
+ */
+ public abstract void setRect(double x, double y, double w, double h);
+
+ /**
+ * Set the bounding box of this rectangle from the given one.
+ *
+ * @param r rectangle to copy
+ * @throws NullPointerException if r is null
+ */
+ public void setRect(Rectangle2D r)
+ {
+ setRect(r.getX(), r.getY(), r.getWidth(), r.getHeight());
+ }
+
+ /**
+ * Tests if the specified line intersects the interior of this rectangle.
+ *
+ * @param x1 the first x coordinate of line segment
+ * @param y1 the first y coordinate of line segment
+ * @param x2 the second x coordinate of line segment
+ * @param y2 the second y coordinate of line segment
+ * @return true if the line intersects the rectangle
+ */
+ public boolean intersectsLine(double x1, double y1, double x2, double y2)
+ {
+ double x = getX();
+ double y = getY();
+ double w = getWidth();
+ double h = getHeight();
+ if (w <= 0 || h <= 0)
+ return false;
+
+ if (x1 >= x && x1 <= x + w && y1 >= y && y1 <= y + h)
+ return true;
+ if (x2 >= x && x2 <= x + w && y2 >= y && y2 <= y + h)
+ return true;
+
+ double x3 = x + w;
+ double y3 = y + h;
+
+ return (Line2D.linesIntersect(x1, y1, x2, y2, x, y, x, y3)
+ || Line2D.linesIntersect(x1, y1, x2, y2, x, y3, x3, y3)
+ || Line2D.linesIntersect(x1, y1, x2, y2, x3, y3, x3, y)
+ || Line2D.linesIntersect(x1, y1, x2, y2, x3, y, x, y));
+ }
+
+ /**
+ * Tests if the specified line intersects the interior of this rectangle.
+ *
+ * @param l the line segment
+ * @return true if the line intersects the rectangle
+ * @throws NullPointerException if l is null
+ */
+ public boolean intersectsLine(Line2D l)
+ {
+ return intersectsLine(l.getX1(), l.getY1(), l.getX2(), l.getY2());
+ }
+
+ /**
+ * Determine where the point lies with respect to this rectangle. The
+ * result will be the binary OR of the appropriate bit masks.
+ *
+ * @param x the x coordinate to check
+ * @param y the y coordinate to check
+ * @return the binary OR of the result
+ * @see #OUT_LEFT
+ * @see #OUT_TOP
+ * @see #OUT_RIGHT
+ * @see #OUT_BOTTOM
+ */
+ public abstract int outcode(double x, double y);
+
+ /**
+ * Determine where the point lies with respect to this rectangle. The
+ * result will be the binary OR of the appropriate bit masks.
+ *
+ * @param p the point to check
+ * @return the binary OR of the result
+ * @throws NullPointerException if p is null
+ * @see #OUT_LEFT
+ * @see #OUT_TOP
+ * @see #OUT_RIGHT
+ * @see #OUT_BOTTOM
+ */
+ public int outcode(Point2D p)
+ {
+ return outcode(p.getX(), p.getY());
+ }
+
+ /**
+ * Set the bounding box of this rectangle.
+ *
+ * @param x the new X coordinate
+ * @param y the new Y coordinate
+ * @param w the new width
+ * @param h the new height
+ */
+ public void setFrame(double x, double y, double w, double h)
+ {
+ setRect(x, y, w, h);
+ }
+
+ /**
+ * Returns the bounds of this rectangle. A pretty useless method, as this
+ * is already a rectangle.
+ *
+ * @return a copy of this rectangle
+ */
+ public Rectangle2D getBounds2D()
+ {
+ return (Rectangle2D) clone();
+ }
+
+ /**
+ * Test if the given point is contained in the rectangle.
+ *
+ * @param x the x coordinate of the point
+ * @param y the y coordinate of the point
+ * @return true if (x,y) is in the rectangle
+ */
+ public boolean contains(double x, double y)
+ {
+ double mx = getX();
+ double my = getY();
+ double w = getWidth();
+ double h = getHeight();
+ return w > 0 && h > 0 && x >= mx && x < mx + w && y >= my && y < my + h;
+ }
+
+ /**
+ * Tests if the given rectangle intersects this one. In other words, test if
+ * the two rectangles share at least one internal point.
+ *
+ * @param x the x coordinate of the other rectangle
+ * @param y the y coordinate of the other rectangle
+ * @param w the width of the other rectangle
+ * @param h the height of the other rectangle
+ * @return true if the rectangles intersect
+ */
+ public boolean intersects(double x, double y, double w, double h)
+ {
+ double mx = getX();
+ double my = getY();
+ double mw = getWidth();
+ double mh = getHeight();
+ return w > 0 && h > 0 && mw > 0 && mh > 0
+ && x < mx + mw && x + w > mx && y < my + mh && y + h > my;
+ }
+
+ /**
+ * Tests if this rectangle contains the given one. In other words, test if
+ * this rectangle contains all points in the given one.
+ *
+ * @param x the x coordinate of the other rectangle
+ * @param y the y coordinate of the other rectangle
+ * @param w the width of the other rectangle
+ * @param h the height of the other rectangle
+ * @return true if this rectangle contains the other
+ */
+ public boolean contains(double x, double y, double w, double h)
+ {
+ double mx = getX();
+ double my = getY();
+ double mw = getWidth();
+ double mh = getHeight();
+ return w > 0 && h > 0 && mw > 0 && mh > 0
+ && x >= mx && x + w <= mx + mw && y >= my && y + h <= my + mh;
+ }
+
+ /**
+ * Return a new rectangle which is the intersection of this and the given
+ * one. The result will be empty if there is no intersection.
+ *
+ * @param r the rectangle to be intersected
+ * @return the intersection
+ * @throws NullPointerException if r is null
+ */
+ public abstract Rectangle2D createIntersection(Rectangle2D r);
+
+ /**
+ * Intersects a pair of rectangles, and places the result in the
+ * destination; this can be used to avoid object creation. This method
+ * even works when the destination is also a source, although you stand
+ * to lose the original data.
+ *
+ * @param src1 the first source
+ * @param src2 the second source
+ * @param dest the destination for the intersection
+ * @throws NullPointerException if any rectangle is null
+ */
+ public static void intersect(Rectangle2D src1, Rectangle2D src2,
+ Rectangle2D dest)
+ {
+ double x = Math.max(src1.getX(), src2.getX());
+ double y = Math.max(src1.getY(), src2.getY());
+ double maxx = Math.min(src1.getMaxX(), src2.getMaxX());
+ double maxy = Math.min(src1.getMaxY(), src2.getMaxY());
+ dest.setRect(x, y, maxx - x, maxy - y);
+ }
+
+ /**
+ * Return a new rectangle which is the union of this and the given one.
+ *
+ * @param r the rectangle to be merged
+ * @return the union
+ * @throws NullPointerException if r is null
+ */
+ public abstract Rectangle2D createUnion(Rectangle2D r);
+
+ /**
+ * Joins a pair of rectangles, and places the result in the destination;
+ * this can be used to avoid object creation. This method even works when
+ * the destination is also a source, although you stand to lose the
+ * original data.
+ *
+ * @param src1 the first source
+ * @param src2 the second source
+ * @param dest the destination for the union
+ * @throws NullPointerException if any rectangle is null
+ */
+ public static void union(Rectangle2D src1, Rectangle2D src2,
+ Rectangle2D dest)
+ {
+ double x = Math.min(src1.getX(), src2.getX());
+ double y = Math.min(src1.getY(), src2.getY());
+ double maxx = Math.max(src1.getMaxX(), src2.getMaxX());
+ double maxy = Math.max(src1.getMaxY(), src2.getMaxY());
+ dest.setRect(x, y, maxx - x, maxy - y);
+ }
+
+ /**
+ * Modifies this rectangle so that it represents the smallest rectangle
+ * that contains both the existing rectangle and the specified point.
+ * However, if the point falls on one of the two borders which are not
+ * inside the rectangle, a subsequent call to <code>contains</code> may
+ * return false.
+ *
+ * @param newx the X coordinate of the point to add to this rectangle
+ * @param newy the Y coordinate of the point to add to this rectangle
+ */
+ public void add(double newx, double newy)
+ {
+ double minx = Math.min(getX(), newx);
+ double maxx = Math.max(getMaxX(), newx);
+ double miny = Math.min(getY(), newy);
+ double maxy = Math.max(getMaxY(), newy);
+ setRect(minx, miny, maxx - minx, maxy - miny);
+ }
+
+ /**
+ * Modifies this rectangle so that it represents the smallest rectangle
+ * that contains both the existing rectangle and the specified point.
+ * However, if the point falls on one of the two borders which are not
+ * inside the rectangle, a subsequent call to <code>contains</code> may
+ * return false.
+ *
+ * @param p the point to add to this rectangle
+ * @throws NullPointerException if p is null
+ */
+ public void add(Point2D p)
+ {
+ add(p.getX(), p.getY());
+ }
+
+ /**
+ * Modifies this rectangle so that it represents the smallest rectangle
+ * that contains both the existing rectangle and the specified rectangle.
+ *
+ * @param r the rectangle to add to this rectangle
+ * @throws NullPointerException if r is null
+ * @see #union(Rectangle2D, Rectangle2D, Rectangle2D)
+ */
+ public void add(Rectangle2D r)
+ {
+ union(this, r, this);
+ }
+
+ /**
+ * Return an iterator along the shape boundary. If the optional transform
+ * is provided, the iterator is transformed accordingly. Each call returns
+ * a new object, independent from others in use. This iterator is thread
+ * safe; modifications to the rectangle do not affect the results of this
+ * path instance.
+ *
+ * @param at an optional transform to apply to the iterator
+ * @return a new iterator over the boundary
+ * @since 1.2
+ */
+ public PathIterator getPathIterator(final AffineTransform at)
+ {
+ final double minx = getX();
+ final double miny = getY();
+ final double maxx = minx + getWidth();
+ final double maxy = miny + getHeight();
+ return new PathIterator()
+ {
+ /** Current coordinate. */
+ private int current = (maxx <= minx && maxy <= miny) ? 6 : 0;
+
+ public int getWindingRule()
+ {
+ // A test program showed that Sun J2SE 1.3.1 and 1.4.1_01
+ // return WIND_NON_ZERO paths. While this does not really
+ // make any difference for rectangles (because they are not
+ // self-intersecting), it seems appropriate to behave
+ // identically.
+
+ return WIND_NON_ZERO;
+ }
+
+ public boolean isDone()
+ {
+ return current > 5;
+ }
+
+ public void next()
+ {
+ current++;
+ }
+
+ public int currentSegment(float[] coords)
+ {
+ switch (current)
+ {
+ case 1:
+ coords[0] = (float) maxx;
+ coords[1] = (float) miny;
+ break;
+ case 2:
+ coords[0] = (float) maxx;
+ coords[1] = (float) maxy;
+ break;
+ case 3:
+ coords[0] = (float) minx;
+ coords[1] = (float) maxy;
+ break;
+ case 0:
+ case 4:
+ coords[0] = (float) minx;
+ coords[1] = (float) miny;
+ break;
+ case 5:
+ return SEG_CLOSE;
+ default:
+ throw new NoSuchElementException("rect iterator out of bounds");
+ }
+ if (at != null)
+ at.transform(coords, 0, coords, 0, 1);
+ return current == 0 ? SEG_MOVETO : SEG_LINETO;
+ }
+
+ public int currentSegment(double[] coords)
+ {
+ switch (current)
+ {
+ case 1:
+ coords[0] = maxx;
+ coords[1] = miny;
+ break;
+ case 2:
+ coords[0] = maxx;
+ coords[1] = maxy;
+ break;
+ case 3:
+ coords[0] = minx;
+ coords[1] = maxy;
+ break;
+ case 0:
+ case 4:
+ coords[0] = minx;
+ coords[1] = miny;
+ break;
+ case 5:
+ return SEG_CLOSE;
+ default:
+ throw new NoSuchElementException("rect iterator out of bounds");
+ }
+ if (at != null)
+ at.transform(coords, 0, coords, 0, 1);
+ return current == 0 ? SEG_MOVETO : SEG_LINETO;
+ }
+ };
+ }
+
+ /**
+ * Return an iterator along the shape boundary. If the optional transform
+ * is provided, the iterator is transformed accordingly. Each call returns
+ * a new object, independent from others in use. This iterator is thread
+ * safe; modifications to the rectangle do not affect the results of this
+ * path instance. As the rectangle is already flat, the flatness parameter
+ * is ignored.
+ *
+ * @param at an optional transform to apply to the iterator
+ * @param flatness the maximum distance for deviation from the real boundary
+ * @return a new iterator over the boundary
+ * @since 1.2
+ */
+ public PathIterator getPathIterator(AffineTransform at, double flatness)
+ {
+ return getPathIterator(at);
+ }
+
+ /**
+ * Return the hashcode for this rectangle. The formula is not documented, but
+ * appears to be the same as:
+ * <pre>
+ * long l = Double.doubleToLongBits(getX())
+ * + 37 * Double.doubleToLongBits(getY())
+ * + 43 * Double.doubleToLongBits(getWidth())
+ * + 47 * Double.doubleToLongBits(getHeight());
+ * return (int) ((l &gt;&gt; 32) ^ l);
+ * </pre>
+ *
+ * @return the hashcode
+ */
+ public int hashCode()
+ {
+ // Talk about a fun time reverse engineering this one!
+ long l = java.lang.Double.doubleToLongBits(getX())
+ + 37 * java.lang.Double.doubleToLongBits(getY())
+ + 43 * java.lang.Double.doubleToLongBits(getWidth())
+ + 47 * java.lang.Double.doubleToLongBits(getHeight());
+ return (int) ((l >> 32) ^ l);
+ }
+
+ /**
+ * Tests this rectangle for equality against the specified object. This
+ * will be true if an only if the specified object is an instance of
+ * Rectangle2D with the same coordinates and dimensions.
+ *
+ * @param obj the object to test against for equality
+ * @return true if the specified object is equal to this one
+ */
+ public boolean equals(Object obj)
+ {
+ if (! (obj instanceof Rectangle2D))
+ return false;
+ Rectangle2D r = (Rectangle2D) obj;
+ return r.getX() == getX() && r.getY() == getY()
+ && r.getWidth() == getWidth() && r.getHeight() == getHeight();
+ }
+
+ /**
+ * This class defines a rectangle in <code>double</code> precision.
+ *
+ * @author Eric Blake (ebb9@email.byu.edu)
+ * @since 1.2
+ * @status updated to 1.4
+ */
+ public static class Double extends Rectangle2D
+ {
+ /** The x coordinate of the lower left corner. */
+ public double x;
+
+ /** The y coordinate of the lower left corner. */
+ public double y;
+
+ /** The width of the rectangle. */
+ public double width;
+
+ /** The height of the rectangle. */
+ public double height;
+
+ /**
+ * Create a rectangle at (0,0) with width 0 and height 0.
+ */
+ public Double()
+ {
+ }
+
+ /**
+ * Create a rectangle with the given values.
+ *
+ * @param x the x coordinate
+ * @param y the y coordinate
+ * @param w the width
+ * @param h the height
+ */
+ public Double(double x, double y, double w, double h)
+ {
+ this.x = x;
+ this.y = y;
+ width = w;
+ height = h;
+ }
+
+ /**
+ * Return the X coordinate.
+ *
+ * @return the value of x
+ */
+ public double getX()
+ {
+ return x;
+ }
+
+ /**
+ * Return the Y coordinate.
+ *
+ * @return the value of y
+ */
+ public double getY()
+ {
+ return y;
+ }
+
+ /**
+ * Return the width.
+ *
+ * @return the value of width
+ */
+ public double getWidth()
+ {
+ return width;
+ }
+
+ /**
+ * Return the height.
+ *
+ * @return the value of height
+ */
+ public double getHeight()
+ {
+ return height;
+ }
+
+ /**
+ * Test if the rectangle is empty.
+ *
+ * @return true if width or height is not positive
+ */
+ public boolean isEmpty()
+ {
+ return width <= 0 || height <= 0;
+ }
+
+ /**
+ * Set the contents of this rectangle to those specified.
+ *
+ * @param x the x coordinate
+ * @param y the y coordinate
+ * @param w the width
+ * @param h the height
+ */
+ public void setRect(double x, double y, double w, double h)
+ {
+ this.x = x;
+ this.y = y;
+ width = w;
+ height = h;
+ }
+
+ /**
+ * Set the contents of this rectangle to those specified.
+ *
+ * @param r the rectangle to copy
+ * @throws NullPointerException if r is null
+ */
+ public void setRect(Rectangle2D r)
+ {
+ x = r.getX();
+ y = r.getY();
+ width = r.getWidth();
+ height = r.getHeight();
+ }
+
+ /**
+ * Determine where the point lies with respect to this rectangle. The
+ * result will be the binary OR of the appropriate bit masks.
+ *
+ * @param x the x coordinate to check
+ * @param y the y coordinate to check
+ * @return the binary OR of the result
+ * @see #OUT_LEFT
+ * @see #OUT_TOP
+ * @see #OUT_RIGHT
+ * @see #OUT_BOTTOM
+ * @since 1.2
+ */
+ public int outcode(double x, double y)
+ {
+ int result = 0;
+ if (width <= 0)
+ result |= OUT_LEFT | OUT_RIGHT;
+ else if (x < this.x)
+ result |= OUT_LEFT;
+ else if (x > this.x + width)
+ result |= OUT_RIGHT;
+ if (height <= 0)
+ result |= OUT_BOTTOM | OUT_TOP;
+ else if (y < this.y) // Remember that +y heads top-to-bottom.
+ result |= OUT_TOP;
+ else if (y > this.y + height)
+ result |= OUT_BOTTOM;
+ return result;
+ }
+
+ /**
+ * Returns the bounds of this rectangle. A pretty useless method, as this
+ * is already a rectangle.
+ *
+ * @return a copy of this rectangle
+ */
+ public Rectangle2D getBounds2D()
+ {
+ return new Double(x, y, width, height);
+ }
+
+ /**
+ * Return a new rectangle which is the intersection of this and the given
+ * one. The result will be empty if there is no intersection.
+ *
+ * @param r the rectangle to be intersected
+ * @return the intersection
+ * @throws NullPointerException if r is null
+ */
+ public Rectangle2D createIntersection(Rectangle2D r)
+ {
+ Double res = new Double();
+ intersect(this, r, res);
+ return res;
+ }
+
+ /**
+ * Return a new rectangle which is the union of this and the given one.
+ *
+ * @param r the rectangle to be merged
+ * @return the union
+ * @throws NullPointerException if r is null
+ */
+ public Rectangle2D createUnion(Rectangle2D r)
+ {
+ Double res = new Double();
+ union(this, r, res);
+ return res;
+ }
+
+ /**
+ * Returns a string representation of this rectangle. This is in the form
+ * <code>getClass().getName() + "[x=" + x + ",y=" + y + ",w=" + width
+ * + ",h=" + height + ']'</code>.
+ *
+ * @return a string representation of this rectangle
+ */
+ public String toString()
+ {
+ return getClass().getName() + "[x=" + x + ",y=" + y + ",w=" + width
+ + ",h=" + height + ']';
+ }
+ }
+
+ /**
+ * This class defines a rectangle in <code>float</code> precision.
+ *
+ * @author Eric Blake (ebb9@email.byu.edu)
+ * @since 1.2
+ * @status updated to 1.4
+ */
+ public static class Float extends Rectangle2D
+ {
+ /** The x coordinate of the lower left corner. */
+ public float x;
+
+ /** The y coordinate of the lower left corner. */
+ public float y;
+
+ /** The width of the rectangle. */
+ public float width;
+
+ /** The height of the rectangle. */
+ public float height;
+
+ /**
+ * Create a rectangle at (0,0) with width 0 and height 0.
+ */
+ public Float()
+ {
+ }
+
+ /**
+ * Create a rectangle with the given values.
+ *
+ * @param x the x coordinate
+ * @param y the y coordinate
+ * @param w the width
+ * @param h the height
+ */
+ public Float(float x, float y, float w, float h)
+ {
+ this.x = x;
+ this.y = y;
+ width = w;
+ height = h;
+ }
+
+ /**
+ * Create a rectangle with the given values.
+ *
+ * @param x the x coordinate
+ * @param y the y coordinate
+ * @param w the width
+ * @param h the height
+ */
+ Float(double x, double y, double w, double h)
+ {
+ this.x = (float) x;
+ this.y = (float) y;
+ width = (float) w;
+ height = (float) h;
+ }
+
+ /**
+ * Return the X coordinate.
+ *
+ * @return the value of x
+ */
+ public double getX()
+ {
+ return x;
+ }
+
+ /**
+ * Return the Y coordinate.
+ *
+ * @return the value of y
+ */
+ public double getY()
+ {
+ return y;
+ }
+
+ /**
+ * Return the width.
+ *
+ * @return the value of width
+ */
+ public double getWidth()
+ {
+ return width;
+ }
+
+ /**
+ * Return the height.
+ *
+ * @return the value of height
+ */
+ public double getHeight()
+ {
+ return height;
+ }
+
+ /**
+ * Test if the rectangle is empty.
+ *
+ * @return true if width or height is not positive
+ */
+ public boolean isEmpty()
+ {
+ return width <= 0 || height <= 0;
+ }
+
+ /**
+ * Set the contents of this rectangle to those specified.
+ *
+ * @param x the x coordinate
+ * @param y the y coordinate
+ * @param w the width
+ * @param h the height
+ */
+ public void setRect(float x, float y, float w, float h)
+ {
+ this.x = x;
+ this.y = y;
+ width = w;
+ height = h;
+ }
+
+ /**
+ * Set the contents of this rectangle to those specified.
+ *
+ * @param x the x coordinate
+ * @param y the y coordinate
+ * @param w the width
+ * @param h the height
+ */
+ public void setRect(double x, double y, double w, double h)
+ {
+ this.x = (float) x;
+ this.y = (float) y;
+ width = (float) w;
+ height = (float) h;
+ }
+
+ /**
+ * Set the contents of this rectangle to those specified.
+ *
+ * @param r the rectangle to copy
+ * @throws NullPointerException if r is null
+ */
+ public void setRect(Rectangle2D r)
+ {
+ x = (float) r.getX();
+ y = (float) r.getY();
+ width = (float) r.getWidth();
+ height = (float) r.getHeight();
+ }
+
+ /**
+ * Determine where the point lies with respect to this rectangle. The
+ * result will be the binary OR of the appropriate bit masks.
+ *
+ * @param x the x coordinate to check
+ * @param y the y coordinate to check
+ * @return the binary OR of the result
+ * @see #OUT_LEFT
+ * @see #OUT_TOP
+ * @see #OUT_RIGHT
+ * @see #OUT_BOTTOM
+ * @since 1.2
+ */
+ public int outcode(double x, double y)
+ {
+ int result = 0;
+ if (width <= 0)
+ result |= OUT_LEFT | OUT_RIGHT;
+ else if (x < this.x)
+ result |= OUT_LEFT;
+ else if (x > this.x + width)
+ result |= OUT_RIGHT;
+ if (height <= 0)
+ result |= OUT_BOTTOM | OUT_TOP;
+ else if (y < this.y) // Remember that +y heads top-to-bottom.
+ result |= OUT_TOP;
+ else if (y > this.y + height)
+ result |= OUT_BOTTOM;
+ return result;
+ }
+
+ /**
+ * Returns the bounds of this rectangle. A pretty useless method, as this
+ * is already a rectangle.
+ *
+ * @return a copy of this rectangle
+ */
+ public Rectangle2D getBounds2D()
+ {
+ return new Float(x, y, width, height);
+ }
+
+ /**
+ * Return a new rectangle which is the intersection of this and the given
+ * one. The result will be empty if there is no intersection.
+ *
+ * @param r the rectangle to be intersected
+ * @return the intersection
+ * @throws NullPointerException if r is null
+ */
+ public Rectangle2D createIntersection(Rectangle2D r)
+ {
+ Float res = new Float();
+ intersect(this, r, res);
+ return res;
+ }
+
+ /**
+ * Return a new rectangle which is the union of this and the given one.
+ *
+ * @param r the rectangle to be merged
+ * @return the union
+ * @throws NullPointerException if r is null
+ */
+ public Rectangle2D createUnion(Rectangle2D r)
+ {
+ Float res = new Float();
+ union(this, r, res);
+ return res;
+ }
+
+ /**
+ * Returns a string representation of this rectangle. This is in the form
+ * <code>getClass().getName() + "[x=" + x + ",y=" + y + ",w=" + width
+ * + ",h=" + height + ']'</code>.
+ *
+ * @return a string representation of this rectangle
+ */
+ public String toString()
+ {
+ return getClass().getName() + "[x=" + x + ",y=" + y + ",w=" + width
+ + ",h=" + height + ']';
+ }
+ }
+}
diff --git a/libjava/classpath/java/awt/geom/RectangularShape.java b/libjava/classpath/java/awt/geom/RectangularShape.java
new file mode 100644
index 000000000..68bc451cc
--- /dev/null
+++ b/libjava/classpath/java/awt/geom/RectangularShape.java
@@ -0,0 +1,382 @@
+/* RectangularShape.java -- a rectangular frame for several generic shapes
+ Copyright (C) 2000, 2002 Free Software Foundation
+
+This file is part of GNU Classpath.
+
+GNU Classpath is free software; you can redistribute it and/or modify
+it under the terms of the GNU General Public License as published by
+the Free Software Foundation; either version 2, or (at your option)
+any later version.
+
+GNU Classpath is distributed in the hope that it will be useful, but
+WITHOUT ANY WARRANTY; without even the implied warranty of
+MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
+General Public License for more details.
+
+You should have received a copy of the GNU General Public License
+along with GNU Classpath; see the file COPYING. If not, write to the
+Free Software Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA
+02110-1301 USA.
+
+Linking this library statically or dynamically with other modules is
+making a combined work based on this library. Thus, the terms and
+conditions of the GNU General Public License cover the whole
+combination.
+
+As a special exception, the copyright holders of this library give you
+permission to link this library with independent modules to produce an
+executable, regardless of the license terms of these independent
+modules, and to copy and distribute the resulting executable under
+terms of your choice, provided that you also meet, for each linked
+independent module, the terms and conditions of the license of that
+module. An independent module is a module which is not derived from
+or based on this library. If you modify this library, you may extend
+this exception to your version of the library, but you are not
+obligated to do so. If you do not wish to do so, delete this
+exception statement from your version. */
+
+
+package java.awt.geom;
+
+import java.awt.Rectangle;
+import java.awt.Shape;
+
+/**
+ * This class provides a generic framework, and several helper methods, for
+ * subclasses which represent geometric objects inside a rectangular frame.
+ * This does not specify any geometry except for the bounding box.
+ *
+ * @author Tom Tromey (tromey@cygnus.com)
+ * @author Eric Blake (ebb9@email.byu.edu)
+ * @since 1.2
+ * @see Arc2D
+ * @see Ellipse2D
+ * @see Rectangle2D
+ * @see RoundRectangle2D
+ * @status updated to 1.4
+ */
+public abstract class RectangularShape implements Shape, Cloneable
+{
+ /**
+ * Default constructor.
+ */
+ protected RectangularShape()
+ {
+ }
+
+ /**
+ * Get the x coordinate of the upper-left corner of the framing rectangle.
+ *
+ * @return the x coordinate
+ */
+ public abstract double getX();
+
+ /**
+ * Get the y coordinate of the upper-left corner of the framing rectangle.
+ *
+ * @return the y coordinate
+ */
+ public abstract double getY();
+
+ /**
+ * Get the width of the framing rectangle.
+ *
+ * @return the width
+ */
+ public abstract double getWidth();
+
+ /**
+ * Get the height of the framing rectangle.
+ *
+ * @return the height
+ */
+ public abstract double getHeight();
+
+ /**
+ * Get the minimum x coordinate in the frame. This is misnamed, or else
+ * Sun has a bug, because the implementation returns getX() even when
+ * getWidth() is negative.
+ *
+ * @return the minimum x coordinate
+ */
+ public double getMinX()
+ {
+ return getX();
+ }
+
+ /**
+ * Get the minimum y coordinate in the frame. This is misnamed, or else
+ * Sun has a bug, because the implementation returns getY() even when
+ * getHeight() is negative.
+ *
+ * @return the minimum y coordinate
+ */
+ public double getMinY()
+ {
+ return getY();
+ }
+
+ /**
+ * Get the maximum x coordinate in the frame. This is misnamed, or else
+ * Sun has a bug, because the implementation returns getX()+getWidth() even
+ * when getWidth() is negative.
+ *
+ * @return the maximum x coordinate
+ */
+ public double getMaxX()
+ {
+ return getX() + getWidth();
+ }
+
+ /**
+ * Get the maximum y coordinate in the frame. This is misnamed, or else
+ * Sun has a bug, because the implementation returns getY()+getHeight() even
+ * when getHeight() is negative.
+ *
+ * @return the maximum y coordinate
+ */
+ public double getMaxY()
+ {
+ return getY() + getHeight();
+ }
+
+ /**
+ * Return the x coordinate of the center point of the framing rectangle.
+ *
+ * @return the central x coordinate
+ */
+ public double getCenterX()
+ {
+ return getX() + getWidth() / 2;
+ }
+
+ /**
+ * Return the y coordinate of the center point of the framing rectangle.
+ *
+ * @return the central y coordinate
+ */
+ public double getCenterY()
+ {
+ return getY() + getHeight() / 2;
+ }
+
+ /**
+ * Return the frame around this object. Note that this may be a looser
+ * bounding box than getBounds2D.
+ *
+ * @return the frame, in double precision
+ * @see #setFrame(double, double, double, double)
+ */
+ public Rectangle2D getFrame()
+ {
+ return new Rectangle2D.Double(getX(), getY(), getWidth(), getHeight());
+ }
+
+ /**
+ * Test if the shape is empty, meaning that no points are inside it.
+ *
+ * @return true if the shape is empty
+ */
+ public abstract boolean isEmpty();
+
+ /**
+ * Set the framing rectangle of this shape to the given coordinate and size.
+ *
+ * @param x the new x coordinate
+ * @param y the new y coordinate
+ * @param w the new width
+ * @param h the new height
+ * @see #getFrame()
+ */
+ public abstract void setFrame(double x, double y, double w, double h);
+
+ /**
+ * Set the framing rectangle of this shape to the given coordinate and size.
+ *
+ * @param p the new point
+ * @param d the new dimension
+ * @throws NullPointerException if p or d is null
+ * @see #getFrame()
+ */
+ public void setFrame(Point2D p, Dimension2D d)
+ {
+ setFrame(p.getX(), p.getY(), d.getWidth(), d.getHeight());
+ }
+
+ /**
+ * Set the framing rectangle of this shape to the given rectangle.
+ *
+ * @param r the new framing rectangle
+ * @throws NullPointerException if r is null
+ * @see #getFrame()
+ */
+ public void setFrame(Rectangle2D r)
+ {
+ setFrame(r.getX(), r.getY(), r.getWidth(), r.getHeight());
+ }
+
+ /**
+ * Set the framing rectangle of this shape using two points on a diagonal.
+ * The area will be positive.
+ *
+ * @param x1 the first x coordinate
+ * @param y1 the first y coordinate
+ * @param x2 the second x coordinate
+ * @param y2 the second y coordinate
+ */
+ public void setFrameFromDiagonal(double x1, double y1, double x2, double y2)
+ {
+ if (x1 > x2)
+ {
+ double t = x2;
+ x2 = x1;
+ x1 = t;
+ }
+ if (y1 > y2)
+ {
+ double t = y2;
+ y2 = y1;
+ y1 = t;
+ }
+ setFrame(x1, y1, x2 - x1, y2 - y1);
+ }
+
+ /**
+ * Set the framing rectangle of this shape using two points on a diagonal.
+ * The area will be positive.
+ *
+ * @param p1 the first point
+ * @param p2 the second point
+ * @throws NullPointerException if either point is null
+ */
+ public void setFrameFromDiagonal(Point2D p1, Point2D p2)
+ {
+ setFrameFromDiagonal(p1.getX(), p1.getY(), p2.getX(), p2.getY());
+ }
+
+ /**
+ * Set the framing rectangle of this shape using the center of the frame,
+ * and one of the four corners. The area will be positive.
+ *
+ * @param centerX the x coordinate at the center
+ * @param centerY the y coordinate at the center
+ * @param cornerX the x coordinate at a corner
+ * @param cornerY the y coordinate at a corner
+ */
+ public void setFrameFromCenter(double centerX, double centerY,
+ double cornerX, double cornerY)
+ {
+ double halfw = Math.abs(cornerX - centerX);
+ double halfh = Math.abs(cornerY - centerY);
+ setFrame(centerX - halfw, centerY - halfh, halfw + halfw, halfh + halfh);
+ }
+
+ /**
+ * Set the framing rectangle of this shape using the center of the frame,
+ * and one of the four corners. The area will be positive.
+ *
+ * @param center the center point
+ * @param corner a corner point
+ * @throws NullPointerException if either point is null
+ */
+ public void setFrameFromCenter(Point2D center, Point2D corner)
+ {
+ setFrameFromCenter(center.getX(), center.getY(),
+ corner.getX(), corner.getY());
+ }
+
+ /**
+ * Tests if a point is inside the boundary of the shape.
+ *
+ * @param p the point to test
+ * @return true if the point is inside the shape
+ * @throws NullPointerException if p is null
+ * @see #contains(double, double)
+ */
+ public boolean contains(Point2D p)
+ {
+ return contains(p.getX(), p.getY());
+ }
+
+ /**
+ * Tests if a rectangle and this shape share common internal points.
+ *
+ * @param r the rectangle to test
+ * @return true if the rectangle intersects this shpae
+ * @throws NullPointerException if r is null
+ * @see #intersects(double, double, double, double)
+ */
+ public boolean intersects(Rectangle2D r)
+ {
+ return intersects(r.getX(), r.getY(), r.getWidth(), r.getHeight());
+ }
+
+ /**
+ * Tests if the shape completely contains the given rectangle.
+ *
+ * @param r the rectangle to test
+ * @return true if r is contained in this shape
+ * @throws NullPointerException if r is null
+ * @see #contains(double, double, double, double)
+ */
+ public boolean contains(Rectangle2D r)
+ {
+ return contains(r.getX(), r.getY(), r.getWidth(), r.getHeight());
+ }
+
+ /**
+ * Returns a bounding box for this shape, in integer format. Notice that you
+ * may get a tighter bound with getBounds2D.
+ *
+ * @return a bounding box
+ */
+ public Rectangle getBounds()
+ {
+ double x = getX();
+ double y = getY();
+ double maxx = Math.ceil(x + getWidth());
+ double maxy = Math.ceil(y + getHeight());
+ x = Math.floor(x);
+ y = Math.floor(y);
+ return new Rectangle((int) x, (int) y, (int) (maxx - x), (int) (maxy - y));
+ }
+
+ /**
+ * Return an iterator along the shape boundary. If the optional transform
+ * is provided, the iterator is transformed accordingly. The path is
+ * flattened until all segments differ from the curve by at most the value
+ * of the flatness parameter, within the limits of the default interpolation
+ * recursion limit of 1024 segments between actual points. Each call
+ * returns a new object, independent from others in use. The result is
+ * threadsafe if and only if the iterator returned by
+ * {@link #getPathIterator(AffineTransform)} is as well.
+ *
+ * @param at an optional transform to apply to the iterator
+ * @param flatness the desired flatness
+ * @return a new iterator over the boundary
+ * @throws IllegalArgumentException if flatness is invalid
+ * @since 1.2
+ */
+ public PathIterator getPathIterator(AffineTransform at, double flatness)
+ {
+ return new FlatteningPathIterator(getPathIterator(at), flatness);
+ }
+
+ /**
+ * Create a new shape of the same run-time type with the same contents as
+ * this one.
+ *
+ * @return the clone
+ */
+ public Object clone()
+ {
+ try
+ {
+ return super.clone();
+ }
+ catch (CloneNotSupportedException e)
+ {
+ throw (Error) new InternalError().initCause(e); // Impossible
+ }
+ }
+} // class RectangularShape
diff --git a/libjava/classpath/java/awt/geom/RoundRectangle2D.java b/libjava/classpath/java/awt/geom/RoundRectangle2D.java
new file mode 100644
index 000000000..19a7b4237
--- /dev/null
+++ b/libjava/classpath/java/awt/geom/RoundRectangle2D.java
@@ -0,0 +1,584 @@
+/* RoundRectangle2D.java -- represents a rectangle with rounded corners
+ Copyright (C) 2000, 2002, 2003, 2004, 2006, Free Software Foundation
+
+This file is part of GNU Classpath.
+
+GNU Classpath is free software; you can redistribute it and/or modify
+it under the terms of the GNU General Public License as published by
+the Free Software Foundation; either version 2, or (at your option)
+any later version.
+
+GNU Classpath is distributed in the hope that it will be useful, but
+WITHOUT ANY WARRANTY; without even the implied warranty of
+MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
+General Public License for more details.
+
+You should have received a copy of the GNU General Public License
+along with GNU Classpath; see the file COPYING. If not, write to the
+Free Software Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA
+02110-1301 USA.
+
+Linking this library statically or dynamically with other modules is
+making a combined work based on this library. Thus, the terms and
+conditions of the GNU General Public License cover the whole
+combination.
+
+As a special exception, the copyright holders of this library give you
+permission to link this library with independent modules to produce an
+executable, regardless of the license terms of these independent
+modules, and to copy and distribute the resulting executable under
+terms of your choice, provided that you also meet, for each linked
+independent module, the terms and conditions of the license of that
+module. An independent module is a module which is not derived from
+or based on this library. If you modify this library, you may extend
+this exception to your version of the library, but you are not
+obligated to do so. If you do not wish to do so, delete this
+exception statement from your version. */
+
+package java.awt.geom;
+
+
+
+/** This class implements a rectangle with rounded corners.
+ * @author Tom Tromey (tromey@cygnus.com)
+ * @date December 3, 2000
+ */
+public abstract class RoundRectangle2D extends RectangularShape
+{
+ /**
+ * Return the arc height of this round rectangle. The arc height and width
+ * control the roundness of the corners of the rectangle.
+ *
+ * @return The arc height.
+ *
+ * @see #getArcWidth()
+ */
+ public abstract double getArcHeight();
+
+ /**
+ * Return the arc width of this round rectangle. The arc width and height
+ * control the roundness of the corners of the rectangle.
+ *
+ * @return The arc width.
+ *
+ * @see #getArcHeight()
+ */
+ public abstract double getArcWidth();
+
+ /**
+ * Set the values of this round rectangle.
+ *
+ * @param x The x coordinate
+ * @param y The y coordinate
+ * @param w The width
+ * @param h The height
+ * @param arcWidth The arc width
+ * @param arcHeight The arc height
+ */
+ public abstract void setRoundRect(double x, double y, double w, double h,
+ double arcWidth, double arcHeight);
+
+ /**
+ * Create a RoundRectangle2D. This is protected because this class
+ * is abstract and cannot be instantiated.
+ */
+ protected RoundRectangle2D()
+ {
+ }
+
+ /**
+ * Return true if this object contains the specified point.
+ * @param x The x coordinate
+ * @param y The y coordinate
+ */
+ public boolean contains(double x, double y)
+ {
+ double mx = getX();
+ double mw = getWidth();
+ if (x < mx || x >= mx + mw)
+ return false;
+ double my = getY();
+ double mh = getHeight();
+ if (y < my || y >= my + mh)
+ return false;
+
+ // Now check to see if the point is in range of an arc.
+ double dy = Math.min(Math.abs(my - y), Math.abs(my + mh - y));
+ double dx = Math.min(Math.abs(mx - x), Math.abs(mx + mw - x));
+
+ // The arc dimensions are that of the corresponding ellipse
+ // thus a 90 degree segment is half of that.
+ double aw = getArcWidth() / 2.0;
+ double ah = getArcHeight() / 2.0;
+ if (dx > aw || dy > ah)
+ return true;
+
+ // At this point DX represents the distance from the nearest edge
+ // of the rectangle. But we want to transform it to represent the
+ // scaled distance from the center of the ellipse that forms the
+ // arc. Hence this code:
+ dy = (ah - dy) / ah;
+ dx = (aw - dx) / aw;
+
+ return dx * dx + dy * dy <= 1.0;
+ }
+
+ /**
+ * Return true if this object contains the specified rectangle
+ * @param x The x coordinate
+ * @param y The y coordinate
+ * @param w The width
+ * @param h The height
+ */
+ public boolean contains(double x, double y, double w, double h)
+ {
+ // We have to check all four points here (for ordinary rectangles
+ // we can just check opposing corners).
+ return (contains(x, y) && contains(x, y + h) && contains(x + w, y + h)
+ && contains(x + w, y));
+ }
+
+ /**
+ * Return a new path iterator which iterates over this rectangle.
+ *
+ * @param at An affine transform to apply to the object
+ */
+ public PathIterator getPathIterator(final AffineTransform at)
+ {
+ double arcW = Math.min(getArcWidth(), getWidth());
+ double arcH = Math.min(getArcHeight(), getHeight());
+
+ // check for special cases...
+ if (arcW <= 0 || arcH <= 0)
+ {
+ Rectangle2D r = new Rectangle2D.Double(getX(), getY(), getWidth(),
+ getHeight());
+ return r.getPathIterator(at);
+ }
+ else if (arcW >= getWidth() && arcH >= getHeight())
+ {
+ Ellipse2D e = new Ellipse2D.Double(getX(), getY(), getWidth(),
+ getHeight());
+ return e.getPathIterator(at);
+ }
+
+ // otherwise return the standard case...
+ return new PathIterator()
+ {
+ double x = getX();
+ double y = getY();
+ double w = getWidth();
+ double h = getHeight();
+ double arcW = Math.min(getArcWidth(), w);
+ double arcH = Math.min(getArcHeight(), h);
+ Arc2D.Double arc = new Arc2D.Double();
+ PathIterator corner;
+ int step = -1;
+
+ public int currentSegment(double[] coords)
+ {
+ if (corner != null) // steps 1, 3, 5 and 7
+ {
+ int r = corner.currentSegment(coords);
+ if (r == SEG_MOVETO)
+ r = SEG_LINETO;
+ return r;
+ }
+ if (step == -1)
+ {
+ // move to the start position
+ coords[0] = x + w - arcW / 2;
+ coords[1] = y;
+ }
+ else if (step == 0)
+ {
+ // top line
+ coords[0] = x + arcW / 2;
+ coords[1] = y;
+ }
+ else if (step == 2)
+ {
+ // left line
+ coords[0] = x;
+ coords[1] = y + h - arcH / 2;
+ }
+ else if (step == 4)
+ {
+ // bottom line
+ coords[0] = x + w - arcW / 2;
+ coords[1] = y + h;
+ }
+ else if (step == 6)
+ {
+ // right line
+ coords[0] = x + w;
+ coords[1] = y + arcH / 2;
+ }
+ if (at != null)
+ at.transform(coords, 0, coords, 0, 1);
+ return step == -1 ? SEG_MOVETO : SEG_LINETO;
+ }
+
+ public int currentSegment(float[] coords) {
+ if (corner != null) // steps 1, 3, 5 and 7
+ {
+ int r = corner.currentSegment(coords);
+ if (r == SEG_MOVETO)
+ r = SEG_LINETO;
+ return r;
+ }
+ if (step == -1)
+ {
+ // move to the start position
+ coords[0] = (float) (x + w - arcW / 2);
+ coords[1] = (float) y;
+ }
+ else if (step == 0)
+ {
+ // top line
+ coords[0] = (float) (x + arcW / 2);
+ coords[1] = (float) y;
+ }
+ else if (step == 2)
+ {
+ // left line
+ coords[0] = (float) x;
+ coords[1] = (float) (y + h - arcH / 2);
+ }
+ else if (step == 4)
+ {
+ // bottom line
+ coords[0] = (float) (x + w - arcW / 2);
+ coords[1] = (float) (y + h);
+ }
+ else if (step == 6)
+ {
+ // right line
+ coords[0] = (float) (x + w);
+ coords[1] = (float) (y + arcH / 2);
+ }
+ if (at != null)
+ at.transform(coords, 0, coords, 0, 1);
+ return step == -1 ? SEG_MOVETO : SEG_LINETO;
+ }
+
+ public int getWindingRule() {
+ return WIND_NON_ZERO;
+ }
+
+ public boolean isDone() {
+ return step >= 8;
+ }
+
+ public void next()
+ {
+ if (corner != null)
+ {
+ corner.next();
+ if (corner.isDone())
+ {
+ corner = null;
+ step++;
+ }
+ }
+ else
+ {
+ step++;
+ if (step == 1)
+ {
+ // create top left corner
+ arc.setArc(x, y, arcW, arcH, 90, 90, Arc2D.OPEN);
+ corner = arc.getPathIterator(at);
+ }
+ else if (step == 3)
+ {
+ // create bottom left corner
+ arc.setArc(x, y + h - arcH, arcW, arcH, 180, 90,
+ Arc2D.OPEN);
+ corner = arc.getPathIterator(at);
+ }
+ else if (step == 5)
+ {
+ // create bottom right corner
+ arc.setArc(x + w - arcW, y + h - arcH, arcW, arcH, 270, 90,
+ Arc2D.OPEN);
+ corner = arc.getPathIterator(at);
+ }
+ else if (step == 7)
+ {
+ // create top right corner
+ arc.setArc(x + w - arcW, y, arcW, arcH, 0, 90, Arc2D.OPEN);
+ corner = arc.getPathIterator(at);
+ }
+ }
+ }
+ };
+ }
+
+ /**
+ * Return true if the given rectangle intersects this shape.
+ * @param x The x coordinate
+ * @param y The y coordinate
+ * @param w The width
+ * @param h The height
+ */
+ public boolean intersects(double x, double y, double w, double h)
+ {
+ // Check if any corner is within the rectangle
+ return (contains(x, y) || contains(x, y + h) || contains(x + w, y + h)
+ || contains(x + w, y));
+ }
+
+ /**
+ * Set the boundary of this round rectangle.
+ * @param x The x coordinate
+ * @param y The y coordinate
+ * @param w The width
+ * @param h The height
+ */
+ public void setFrame(double x, double y, double w, double h)
+ {
+ // This is a bit lame.
+ setRoundRect(x, y, w, h, getArcWidth(), getArcHeight());
+ }
+
+ /**
+ * Set the values of this round rectangle to be the same as those
+ * of the argument.
+ * @param rr The round rectangle to copy
+ */
+ public void setRoundRect(RoundRectangle2D rr)
+ {
+ setRoundRect(rr.getX(), rr.getY(), rr.getWidth(), rr.getHeight(),
+ rr.getArcWidth(), rr.getArcHeight());
+ }
+
+ /**
+ * A subclass of RoundRectangle which keeps its parameters as
+ * doubles.
+ */
+ public static class Double extends RoundRectangle2D
+ {
+ /** The height of the corner arc. */
+ public double archeight;
+
+ /** The width of the corner arc. */
+ public double arcwidth;
+
+ /** The x coordinate of this object. */
+ public double x;
+
+ /** The y coordinate of this object. */
+ public double y;
+
+ /** The width of this object. */
+ public double width;
+
+ /** The height of this object. */
+ public double height;
+
+ /**
+ * Construct a new instance, with all parameters set to 0.
+ */
+ public Double()
+ {
+ }
+
+ /**
+ * Construct a new instance with the given arguments.
+ * @param x The x coordinate
+ * @param y The y coordinate
+ * @param w The width
+ * @param h The height
+ * @param arcWidth The arc width
+ * @param arcHeight The arc height
+ */
+ public Double(double x, double y, double w, double h, double arcWidth,
+ double arcHeight)
+ {
+ this.x = x;
+ this.y = y;
+ this.width = w;
+ this.height = h;
+ this.arcwidth = arcWidth;
+ this.archeight = arcHeight;
+ }
+
+ public double getArcHeight()
+ {
+ return archeight;
+ }
+
+ public double getArcWidth()
+ {
+ return arcwidth;
+ }
+
+ public Rectangle2D getBounds2D()
+ {
+ return new Rectangle2D.Double(x, y, width, height);
+ }
+
+ public double getX()
+ {
+ return x;
+ }
+
+ public double getY()
+ {
+ return y;
+ }
+
+ public double getWidth()
+ {
+ return width;
+ }
+
+ public double getHeight()
+ {
+ return height;
+ }
+
+ public boolean isEmpty()
+ {
+ return width <= 0 || height <= 0;
+ }
+
+ public void setRoundRect(double x, double y, double w, double h,
+ double arcWidth, double arcHeight)
+ {
+ this.x = x;
+ this.y = y;
+ this.width = w;
+ this.height = h;
+ this.arcwidth = arcWidth;
+ this.archeight = arcHeight;
+ }
+ } // class Double
+
+ /**
+ * A subclass of RoundRectangle which keeps its parameters as
+ * floats.
+ */
+ public static class Float extends RoundRectangle2D
+ {
+ /** The height of the corner arc. */
+ public float archeight;
+
+ /** The width of the corner arc. */
+ public float arcwidth;
+
+ /** The x coordinate of this object. */
+ public float x;
+
+ /** The y coordinate of this object. */
+ public float y;
+
+ /** The width of this object. */
+ public float width;
+
+ /** The height of this object. */
+ public float height;
+
+ /**
+ * Construct a new instance, with all parameters set to 0.
+ */
+ public Float()
+ {
+ }
+
+ /**
+ * Construct a new instance with the given arguments.
+ * @param x The x coordinate
+ * @param y The y coordinate
+ * @param w The width
+ * @param h The height
+ * @param arcWidth The arc width
+ * @param arcHeight The arc height
+ */
+ public Float(float x, float y, float w, float h, float arcWidth,
+ float arcHeight)
+ {
+ this.x = x;
+ this.y = y;
+ this.width = w;
+ this.height = h;
+ this.arcwidth = arcWidth;
+ this.archeight = arcHeight;
+ }
+
+ public double getArcHeight()
+ {
+ return archeight;
+ }
+
+ public double getArcWidth()
+ {
+ return arcwidth;
+ }
+
+ public Rectangle2D getBounds2D()
+ {
+ return new Rectangle2D.Float(x, y, width, height);
+ }
+
+ public double getX()
+ {
+ return x;
+ }
+
+ public double getY()
+ {
+ return y;
+ }
+
+ public double getWidth()
+ {
+ return width;
+ }
+
+ public double getHeight()
+ {
+ return height;
+ }
+
+ public boolean isEmpty()
+ {
+ return width <= 0 || height <= 0;
+ }
+
+ /**
+ * Sets the dimensions for this rounded rectangle.
+ *
+ * @param x the x-coordinate of the top left corner.
+ * @param y the y-coordinate of the top left corner.
+ * @param w the width of the rectangle.
+ * @param h the height of the rectangle.
+ * @param arcWidth the arc width.
+ * @param arcHeight the arc height.
+ *
+ * @see #setRoundRect(double, double, double, double, double, double)
+ */
+ public void setRoundRect(float x, float y, float w, float h,
+ float arcWidth, float arcHeight)
+ {
+ this.x = x;
+ this.y = y;
+ this.width = w;
+ this.height = h;
+ this.arcwidth = arcWidth;
+ this.archeight = arcHeight;
+ }
+
+ public void setRoundRect(double x, double y, double w, double h,
+ double arcWidth, double arcHeight)
+ {
+ this.x = (float) x;
+ this.y = (float) y;
+ this.width = (float) w;
+ this.height = (float) h;
+ this.arcwidth = (float) arcWidth;
+ this.archeight = (float) arcHeight;
+ }
+ } // class Float
+} // class RoundRectangle2D
diff --git a/libjava/classpath/java/awt/geom/doc-files/Area-1.png b/libjava/classpath/java/awt/geom/doc-files/Area-1.png
new file mode 100644
index 000000000..44650f2d8
--- /dev/null
+++ b/libjava/classpath/java/awt/geom/doc-files/Area-1.png
Binary files differ
diff --git a/libjava/classpath/java/awt/geom/doc-files/CubicCurve2D-1.png b/libjava/classpath/java/awt/geom/doc-files/CubicCurve2D-1.png
new file mode 100644
index 000000000..1784509be
--- /dev/null
+++ b/libjava/classpath/java/awt/geom/doc-files/CubicCurve2D-1.png
Binary files differ
diff --git a/libjava/classpath/java/awt/geom/doc-files/CubicCurve2D-2.png b/libjava/classpath/java/awt/geom/doc-files/CubicCurve2D-2.png
new file mode 100644
index 000000000..1ddae9fc8
--- /dev/null
+++ b/libjava/classpath/java/awt/geom/doc-files/CubicCurve2D-2.png
Binary files differ
diff --git a/libjava/classpath/java/awt/geom/doc-files/CubicCurve2D-3.png b/libjava/classpath/java/awt/geom/doc-files/CubicCurve2D-3.png
new file mode 100644
index 000000000..b200dad37
--- /dev/null
+++ b/libjava/classpath/java/awt/geom/doc-files/CubicCurve2D-3.png
Binary files differ
diff --git a/libjava/classpath/java/awt/geom/doc-files/CubicCurve2D-4.png b/libjava/classpath/java/awt/geom/doc-files/CubicCurve2D-4.png
new file mode 100644
index 000000000..e57ffdc5c
--- /dev/null
+++ b/libjava/classpath/java/awt/geom/doc-files/CubicCurve2D-4.png
Binary files differ
diff --git a/libjava/classpath/java/awt/geom/doc-files/CubicCurve2D-5.png b/libjava/classpath/java/awt/geom/doc-files/CubicCurve2D-5.png
new file mode 100644
index 000000000..701ab138f
--- /dev/null
+++ b/libjava/classpath/java/awt/geom/doc-files/CubicCurve2D-5.png
Binary files differ
diff --git a/libjava/classpath/java/awt/geom/doc-files/Ellipse-1.png b/libjava/classpath/java/awt/geom/doc-files/Ellipse-1.png
new file mode 100644
index 000000000..8317db661
--- /dev/null
+++ b/libjava/classpath/java/awt/geom/doc-files/Ellipse-1.png
Binary files differ
diff --git a/libjava/classpath/java/awt/geom/doc-files/FlatteningPathIterator-1.html b/libjava/classpath/java/awt/geom/doc-files/FlatteningPathIterator-1.html
new file mode 100644
index 000000000..5a52d693e
--- /dev/null
+++ b/libjava/classpath/java/awt/geom/doc-files/FlatteningPathIterator-1.html
@@ -0,0 +1,481 @@
+<?xml version="1.0" encoding="US-ASCII"?>
+<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"
+ "http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">
+<html xmlns="http://www.w3.org/1999/xhtml" xml:lang="en" lang="en">
+<head>
+ <title>The GNU Implementation of java.awt.geom.FlatteningPathIterator</title>
+ <meta name="author" content="Sascha Brawer" />
+ <style type="text/css"><!--
+ td { white-space: nowrap; }
+ li { margin: 2mm 0; }
+ --></style>
+</head>
+<body>
+
+<h1>The GNU Implementation of FlatteningPathIterator</h1>
+
+<p><i><a href="http://www.dandelis.ch/people/brawer/">Sascha
+Brawer</a>, November 2003</i></p>
+
+<p>This document describes the GNU implementation of the class
+<code>java.awt.geom.FlatteningPathIterator</code>. It does
+<em>not</em> describe how a programmer should use this class; please
+refer to the generated API documentation for this purpose. Instead, it
+is intended for maintenance programmers who want to understand the
+implementation, for example because they want to extend the class or
+fix a bug.</p>
+
+
+<h2>Data Structures</h2>
+
+<p>The algorithm uses a stack. Its allocation is delayed to the time
+when the source path iterator actually returns the first curved
+segment (either <code>SEG_QUADTO</code> or <code>SEG_CUBICTO</code>).
+If the input path does not contain any curved segments, the value of
+the <code>stack</code> variable stays <code>null</code>. In this quite
+common case, the memory consumption is minimal.</p>
+
+<dl><dt><code>stack</code></dt><dd>The variable <code>stack</code> is
+a <code>double</code> array that holds the start, control and end
+points of individual sub-segments.</dd>
+
+<dt><code>recLevel</code></dt><dd>The variable <code>recLevel</code>
+holds how many recursive sub-divisions were needed to calculate a
+segment. The original curve has recursion level 0. For each
+sub-division, the corresponding recursion level is increased by
+one.</dd>
+
+<dt><code>stackSize</code></dt><dd>Finally, the variable
+<code>stackSize</code> indicates how many sub-segments are stored on
+the stack.</dd></dl>
+
+<h2>Algorithm</h2>
+
+<p>The implementation separately processes each segment that the
+base iterator returns.</p>
+
+<p>In the case of <code>SEG_CLOSE</code>,
+<code>SEG_MOVETO</code> and <code>SEG_LINETO</code> segments, the
+implementation simply hands the segment to the consumer, without actually
+doing anything.</p>
+
+<p>Any <code>SEG_QUADTO</code> and <code>SEG_CUBICTO</code> segments
+need to be flattened. Flattening is performed with a fixed-sized
+stack, holding the coordinates of subdivided segments. When the base
+iterator returns a <code>SEG_QUADTO</code> and
+<code>SEG_CUBICTO</code> segments, it is recursively flattened as
+follows:</p>
+
+<ol><li>Intialization: Allocate memory for the stack (unless a
+sufficiently large stack has been allocated previously). Push the
+original quadratic or cubic curve onto the stack. Mark that segment as
+having a <code>recLevel</code> of zero.</li>
+
+<li>If the stack is empty, flattening the segment is complete,
+and the next segment is fetched from the base iterator.</li>
+
+<li>If the stack is not empty, pop a curve segment from the
+stack.
+
+ <ul><li>If its <code>recLevel</code> exceeds the recursion limit,
+ hand the current segment to the consumer.</li>
+
+ <li>Calculate the squared flatness of the segment. If it smaller
+ than <code>flatnessSq</code>, hand the current segment to the
+ consumer.</li>
+
+ <li>Otherwise, split the segment in two halves. Push the right
+ half onto the stack. Then, push the left half onto the stack.
+ Continue with step two.</li></ul></li>
+</ol>
+
+<p>The implementation is slightly complicated by the fact that
+consumers <em>pull</em> the flattened segments from the
+<code>FlatteningPathIterator</code>. This means that we actually
+cannot &#x201c;hand the curent segment over to the consumer.&#x201d;
+But the algorithm is easier to understand if one assumes a
+<em>push</em> paradigm.</p>
+
+
+<h2>Example</h2>
+
+<p>The following example shows how a
+<code>FlatteningPathIterator</code> processes a
+<code>SEG_QUADTO</code> segment. It is (arbitrarily) assumed that the
+recursion limit was set to 2.</p>
+
+<blockquote>
+<table border="1" cellspacing="0" cellpadding="8">
+ <tr align="center" valign="baseline">
+ <th></th><th>A</th><th>B</th><th>C</th>
+ <th>D</th><th>E</th><th>F</th><th>G</th><th>H</th>
+ </tr>
+ <tr align="center" valign="baseline">
+ <th><code>stack[0]</code></th>
+ <td>&#x2014;</td>
+ <td>&#x2014;</td>
+ <td><i>S<sub>ll</sub>.x</i></td>
+ <td>&#x2014;</td>
+ <td>&#x2014;</td>
+ <td>&#x2014;</td>
+ <td>&#x2014;</td>
+ <td>&#x2014;</td>
+ </tr>
+ <tr align="center" valign="baseline">
+ <th><code>stack[1]</code></th>
+ <td>&#x2014;</td>
+ <td>&#x2014;</td>
+ <td><i>S<sub>ll</sub>.y</i></td>
+ <td>&#x2014;</td>
+ <td>&#x2014;</td>
+ <td>&#x2014;</td>
+ <td>&#x2014;</td>
+ <td>&#x2014;</td>
+ </tr>
+ <tr align="center" valign="baseline">
+ <th><code>stack[2]</code></th>
+ <td>&#x2014;</td>
+ <td>&#x2014;</td>
+ <td><i>C<sub>ll</sub>.x</i></td>
+ <td>&#x2014;</td>
+ <td>&#x2014;</td>
+ <td>&#x2014;</td>
+ <td>&#x2014;</td>
+ <td>&#x2014;</td>
+ </tr>
+ <tr align="center" valign="baseline">
+ <th><code>stack[3]</code></th>
+ <td>&#x2014;</td>
+ <td>&#x2014;</td>
+ <td><i>C<sub>ll</sub>.y</i></td>
+ <td>&#x2014;</td>
+ <td>&#x2014;</td>
+ <td>&#x2014;</td>
+ <td>&#x2014;</td>
+ <td>&#x2014;</td>
+ </tr>
+ <tr align="center" valign="baseline">
+ <th><code>stack[4]</code></th>
+ <td>&#x2014;</td>
+ <td><i>S<sub>l</sub>.x</i></td>
+ <td><i>E<sub>ll</sub>.x</i>
+ = <i>S<sub>lr</sub>.x</i></td>
+ <td><i>S<sub>lr</sub>.x</i></td>
+ <td>&#x2014;</td>
+ <td><i>S<sub>rl</sub>.x</i></td>
+ <td>&#x2014;</td>
+ <td>&#x2014;</td>
+ </tr>
+ <tr align="center" valign="baseline">
+ <th><code>stack[5]</code></th>
+ <td>&#x2014;</td>
+ <td><i>S<sub>l</sub>.y</i></td>
+ <td><i>E<sub>ll</sub>.x</i>
+ = <i>S<sub>lr</sub>.y</i></td>
+ <td><i>S<sub>lr</sub>.y</i></td>
+ <td>&#x2014;</td>
+ <td><i>S<sub>rl</sub>.y</i></td>
+ <td>&#x2014;</td>
+ <td>&#x2014;</td>
+ </tr>
+ <tr align="center" valign="baseline">
+ <th><code>stack[6]</code></th>
+ <td>&#x2014;</td>
+ <td><i>C<sub>l</sub>.x</i></td>
+ <td><i>C<sub>lr</sub>.x</i></td>
+ <td><i>C<sub>lr</sub>.x</i></td>
+ <td>&#x2014;</td>
+ <td><i>C<sub>rl</sub>.x</i></td>
+ <td>&#x2014;</td>
+ <td>&#x2014;</td>
+ </tr>
+ <tr align="center" valign="baseline">
+ <th><code>stack[7]</code></th>
+ <td>&#x2014;</td>
+ <td><i>C<sub>l</sub>.y</i></td>
+ <td><i>C<sub>lr</sub>.y</i></td>
+ <td><i>C<sub>lr</sub>.y</i></td>
+ <td>&#x2014;</td>
+ <td><i>C<sub>rl</sub>.y</i></td>
+ <td>&#x2014;</td>
+ <td>&#x2014;</td>
+ </tr>
+ <tr align="center" valign="baseline">
+ <th><code>stack[8]</code></th>
+ <td><i>S.x</i></td>
+ <td><i>E<sub>l</sub>.x</i>
+ = <i>S<sub>r</sub>.x</i></td>
+ <td><i>E<sub>lr</sub>.x</i>
+ = <i>S<sub>r</sub>.x</i></td>
+ <td><i>E<sub>lr</sub>.x</i>
+ = <i>S<sub>r</sub>.x</i></td>
+ <td><i>S<sub>r</sub>.x</i></td>
+ <td><i>E<sub>rl</sub>.x</i>
+ = <i>S<sub>rr</sub>.x</i></td>
+ <td><i>S<sub>rr</sub>.x</i></td>
+ <td>&#x2014;</td>
+ </tr>
+ <tr align="center" valign="baseline">
+ <th><code>stack[9]</code></th>
+ <td><i>S.y</i></td>
+ <td><i>E<sub>l</sub>.y</i>
+ = <i>S<sub>r</sub>.y</i></td>
+ <td><i>E<sub>lr</sub>.y</i>
+ = <i>S<sub>r</sub>.y</i></td>
+ <td><i>E<sub>lr</sub>.y</i>
+ = <i>S<sub>r</sub>.y</i></td>
+ <td><i>S<sub>r</sub>.y</i></td>
+ <td><i>E<sub>rl</sub>.y</i>
+ = <i>S<sub>rr</sub>.y</i></td>
+ <td><i>S<sub>rr</sub>.y</i></td>
+ <td>&#x2014;</td>
+ </tr>
+ <tr align="center" valign="baseline">
+ <th><code>stack[10]</code></th>
+ <td><i>C.x</i></td>
+ <td><i>C<sub>r</sub>.x</i></td>
+ <td><i>C<sub>r</sub>.x</i></td>
+ <td><i>C<sub>r</sub>.x</i></td>
+ <td><i>C<sub>r</sub>.x</i></td>
+ <td><i>C<sub>rr</sub>.x</i></td>
+ <td><i>C<sub>rr</sub>.x</i></td>
+ <td>&#x2014;</td>
+ </tr>
+ <tr align="center" valign="baseline">
+ <th><code>stack[11]</code></th>
+ <td><i>C.y</i></td>
+ <td><i>C<sub>r</sub>.y</i></td>
+ <td><i>C<sub>r</sub>.y</i></td>
+ <td><i>C<sub>r</sub>.y</i></td>
+ <td><i>C<sub>r</sub>.y</i></td>
+ <td><i>C<sub>rr</sub>.y</i></td>
+ <td><i>C<sub>rr</sub>.y</i></td>
+ <td>&#x2014;</td>
+ </tr>
+ <tr align="center" valign="baseline">
+ <th><code>stack[12]</code></th>
+ <td><i>E.x</i></td>
+ <td><i>E<sub>r</sub>.x</i></td>
+ <td><i>E<sub>r</sub>.x</i></td>
+ <td><i>E<sub>r</sub>.x</i></td>
+ <td><i>E<sub>r</sub>.x</i></td>
+ <td><i>E<sub>rr</sub>.x</i></td>
+ <td><i>E<sub>rr</sub>.x</i></td>
+ <td>&#x2014;</td>
+ </tr>
+ <tr align="center" valign="baseline">
+ <th><code>stack[13]</code></th>
+ <td><i>E.y</i></td>
+ <td><i>E<sub>r</sub>.y</i></td>
+ <td><i>E<sub>r</sub>.y</i></td>
+ <td><i>E<sub>r</sub>.y</i></td>
+ <td><i>E<sub>r</sub>.y</i></td>
+ <td><i>E<sub>rr</sub>.y</i></td>
+ <td><i>E<sub>rr</sub>.x</i></td>
+ <td>&#x2014;</td>
+ </tr>
+ <tr align="center" valign="baseline">
+ <th><code>stackSize</code></th>
+ <td>1</td>
+ <td>2</td>
+ <td>3</td>
+ <td>2</td>
+ <td>1</td>
+ <td>2</td>
+ <td>1</td>
+ <td>0</td>
+ </tr>
+ <tr align="center" valign="baseline">
+ <th><code>recLevel[2]</code></th>
+ <td>&#x2014;</td>
+ <td>&#x2014;</td>
+ <td>2</td>
+ <td>&#x2014;</td>
+ <td>&#x2014;</td>
+ <td>&#x2014;</td>
+ <td>&#x2014;</td>
+ <td>&#x2014;</td>
+ </tr>
+ <tr align="center" valign="baseline">
+ <th><code>recLevel[1]</code></th>
+ <td>&#x2014;</td>
+ <td>1</td>
+ <td>2</td>
+ <td>2</td>
+ <td>&#x2014;</td>
+ <td>2</td>
+ <td>&#x2014;</td>
+ <td>&#x2014;</td>
+ </tr>
+ <tr align="center" valign="baseline">
+ <th><code>recLevel[0]</code></th>
+ <td>0</td>
+ <td>1</td>
+ <td>1</td>
+ <td>1</td>
+ <td>1</td>
+ <td>2</td>
+ <td>2</td>
+ <td>&#x2014;</td>
+ </tr>
+ </table>
+</blockquote>
+
+<ol>
+
+<li>The data structures are initialized as follows.
+
+<ul><li>The segment&#x2019;s end point <i>E</i>, control point
+<i>C</i>, and start point <i>S</i> are pushed onto the stack.</li>
+
+ <li>Currently, the curve in the stack would be approximated by one
+ single straight line segment (<i>S</i> &#x2013; <i>E</i>).
+ Therefore, <code>stackSize</code> is set to 1.</li>
+
+ <li>This single straight line segment is approximating the original
+ curve, which can be seen as the result of zero recursive
+ splits. Therefore, <code>recLevel[0]</code> is set to
+ zero.</li></ul>
+
+Column A shows the state after the initialization step.</li>
+
+<li>The algorithm proceeds by taking the topmost curve segment
+(<i>S</i> &#x2013; <i>C</i> &#x2013; <i>E</i>) from the stack.
+
+ <ul><li>The recursion level of this segment (stored in
+ <code>recLevel[0]</code>) is zero, which is smaller than
+ the limit 2.</li>
+
+ <li>The method <code>java.awt.geom.QuadCurve2D.getFlatnessSq</code>
+ is called to calculate the squared flatness.</li>
+
+ <li>For the sake of argument, we assume that the squared flatness is
+ exceeding the threshold stored in <code>flatnessSq</code>. Thus, the
+ curve segment <i>S</i> &#x2013; <i>C</i> &#x2013; <i>E</i> gets
+ subdivided into a left and a right half, namely
+ <i>S<sub>l</sub></i> &#x2013; <i>C<sub>l</sub></i> &#x2013;
+ <i>E<sub>l</sub></i> and <i>S<sub>r</sub></i> &#x2013;
+ <i>C<sub>r</sub></i> &#x2013; <i>E<sub>r</sub></i>. Both halves are
+ pushed onto the stack, so the left half is now on top.
+
+ <br />&nbsp;<br />The left half starts at the same point
+ as the original curve, so <i>S<sub>l</sub></i> has the same
+ coordinates as <i>S</i>. Similarly, the end point of the right
+ half and of the original curve are identical
+ (<i>E<sub>r</sub></i> = <i>E</i>). More interestingly, the left
+ half ends where the right half starts. Because
+ <i>E<sub>l</sub></i> = <i>S<sub>r</sub></i>, their coordinates need
+ to be stored only once, which amounts to saving 16 bytes (two
+ <code>double</code> values) for each iteration.</li></ul>
+
+Column B shows the state after the first iteration.</li>
+
+<li>Again, the topmost curve segment (<i>S<sub>l</sub></i>
+&#x2013; <i>C<sub>l</sub></i> &#x2013; <i>E<sub>l</sub></i>) is
+taken from the stack.
+
+ <ul><li>The recursion level of this segment (stored in
+ <code>recLevel[1]</code>) is 1, which is smaller than
+ the limit 2.</li>
+
+ <li>The method <code>java.awt.geom.QuadCurve2D.getFlatnessSq</code>
+ is called to calculate the squared flatness.</li>
+
+ <li>Assuming that the segment is still not considered
+ flat enough, it gets subdivided into a left
+ (<i>S<sub>ll</sub></i> &#x2013; <i>C<sub>ll</sub></i> &#x2013;
+ <i>E<sub>ll</sub></i>) and a right (<i>S<sub>lr</sub></i>
+ &#x2013; <i>C<sub>lr</sub></i> &#x2013; <i>E<sub>lr</sub></i>)
+ half.</li></ul>
+
+Column C shows the state after the second iteration.</li>
+
+<li>The topmost curve segment (<i>S<sub>ll</sub></i> &#x2013;
+<i>C<sub>ll</sub></i> &#x2013; <i>E<sub>ll</sub></i>) is popped from
+the stack.
+
+ <ul><li>The recursion level of this segment (stored in
+ <code>recLevel[2]</code>) is 2, which is <em>not</em> smaller than
+ the limit 2. Therefore, a <code>SEG_LINETO</code> (from
+ <i>S<sub>ll</sub></i> to <i>E<sub>ll</sub></i>) is passed to the
+ consumer.</li></ul>
+
+ The new state is shown in column D.</li>
+
+
+<li>The topmost curve segment (<i>S<sub>lr</sub></i> &#x2013;
+<i>C<sub>lr</sub></i> &#x2013; <i>E<sub>lr</sub></i>) is popped from
+the stack.
+
+ <ul><li>The recursion level of this segment (stored in
+ <code>recLevel[1]</code>) is 2, which is <em>not</em> smaller than
+ the limit 2. Therefore, a <code>SEG_LINETO</code> (from
+ <i>S<sub>lr</sub></i> to <i>E<sub>lr</sub></i>) is passed to the
+ consumer.</li></ul>
+
+ The new state is shown in column E.</li>
+
+<li>The algorithm proceeds by taking the topmost curve segment
+(<i>S<sub>r</sub></i> &#x2013; <i>C<sub>r</sub></i> &#x2013;
+<i>E<sub>r</sub></i>) from the stack.
+
+ <ul><li>The recursion level of this segment (stored in
+ <code>recLevel[0]</code>) is 1, which is smaller than
+ the limit 2.</li>
+
+ <li>The method <code>java.awt.geom.QuadCurve2D.getFlatnessSq</code>
+ is called to calculate the squared flatness.</li>
+
+ <li>For the sake of argument, we again assume that the squared
+ flatness is exceeding the threshold stored in
+ <code>flatnessSq</code>. Thus, the curve segment
+ (<i>S<sub>r</sub></i> &#x2013; <i>C<sub>r</sub></i> &#x2013;
+ <i>E<sub>r</sub></i>) is subdivided into a left and a right half,
+ namely
+ <i>S<sub>rl</sub></i> &#x2013; <i>C<sub>rl</sub></i> &#x2013;
+ <i>E<sub>rl</sub></i> and <i>S<sub>rr</sub></i> &#x2013;
+ <i>C<sub>rr</sub></i> &#x2013; <i>E<sub>rr</sub></i>. Both halves
+ are pushed onto the stack.</li></ul>
+
+ The new state is shown in column F.</li>
+
+<li>The topmost curve segment (<i>S<sub>rl</sub></i> &#x2013;
+<i>C<sub>rl</sub></i> &#x2013; <i>E<sub>rl</sub></i>) is popped from
+the stack.
+
+ <ul><li>The recursion level of this segment (stored in
+ <code>recLevel[2]</code>) is 2, which is <em>not</em> smaller than
+ the limit 2. Therefore, a <code>SEG_LINETO</code> (from
+ <i>S<sub>rl</sub></i> to <i>E<sub>rl</sub></i>) is passed to the
+ consumer.</li></ul>
+
+ The new state is shown in column G.</li>
+
+<li>The topmost curve segment (<i>S<sub>rr</sub></i> &#x2013;
+<i>C<sub>rr</sub></i> &#x2013; <i>E<sub>rr</sub></i>) is popped from
+the stack.
+
+ <ul><li>The recursion level of this segment (stored in
+ <code>recLevel[2]</code>) is 2, which is <em>not</em> smaller than
+ the limit 2. Therefore, a <code>SEG_LINETO</code> (from
+ <i>S<sub>rr</sub></i> to <i>E<sub>rr</sub></i>) is passed to the
+ consumer.</li></ul>
+
+ The new state is shown in column H.</li>
+
+<li>The stack is now empty. The FlatteningPathIterator will fetch the
+next segment from the base iterator, and process it.</li>
+
+</ol>
+
+<p>In order to split the most recently pushed segment, the
+<code>subdivideQuadratic()</code> method passes <code>stack</code>
+directly to
+<code>QuadCurve2D.subdivide(double[],int,double[],int,double[],int)</code>.
+Because the stack grows towards the beginning of the array, no data
+needs to be copied around: <code>subdivide</code> will directly store
+the result into the stack, which will have the contents shown to the
+right.</p>
+
+</body>
+</html>
diff --git a/libjava/classpath/java/awt/geom/doc-files/GeneralPath-1.png b/libjava/classpath/java/awt/geom/doc-files/GeneralPath-1.png
new file mode 100644
index 000000000..d1d75d575
--- /dev/null
+++ b/libjava/classpath/java/awt/geom/doc-files/GeneralPath-1.png
Binary files differ
diff --git a/libjava/classpath/java/awt/geom/doc-files/QuadCurve2D-1.png b/libjava/classpath/java/awt/geom/doc-files/QuadCurve2D-1.png
new file mode 100644
index 000000000..7c2ec0ea9
--- /dev/null
+++ b/libjava/classpath/java/awt/geom/doc-files/QuadCurve2D-1.png
Binary files differ
diff --git a/libjava/classpath/java/awt/geom/doc-files/QuadCurve2D-2.png b/libjava/classpath/java/awt/geom/doc-files/QuadCurve2D-2.png
new file mode 100644
index 000000000..496180c44
--- /dev/null
+++ b/libjava/classpath/java/awt/geom/doc-files/QuadCurve2D-2.png
Binary files differ
diff --git a/libjava/classpath/java/awt/geom/doc-files/QuadCurve2D-3.png b/libjava/classpath/java/awt/geom/doc-files/QuadCurve2D-3.png
new file mode 100644
index 000000000..a7557ba7b
--- /dev/null
+++ b/libjava/classpath/java/awt/geom/doc-files/QuadCurve2D-3.png
Binary files differ
diff --git a/libjava/classpath/java/awt/geom/doc-files/QuadCurve2D-4.png b/libjava/classpath/java/awt/geom/doc-files/QuadCurve2D-4.png
new file mode 100644
index 000000000..835c0643b
--- /dev/null
+++ b/libjava/classpath/java/awt/geom/doc-files/QuadCurve2D-4.png
Binary files differ
diff --git a/libjava/classpath/java/awt/geom/doc-files/QuadCurve2D-5.png b/libjava/classpath/java/awt/geom/doc-files/QuadCurve2D-5.png
new file mode 100644
index 000000000..72110cd5a
--- /dev/null
+++ b/libjava/classpath/java/awt/geom/doc-files/QuadCurve2D-5.png
Binary files differ
diff --git a/libjava/classpath/java/awt/geom/package.html b/libjava/classpath/java/awt/geom/package.html
new file mode 100644
index 000000000..c8ee8272f
--- /dev/null
+++ b/libjava/classpath/java/awt/geom/package.html
@@ -0,0 +1,46 @@
+<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 3.2 Final//EN">
+<!-- package.html - describes classes in java.awt.geom package.
+ Copyright (C) 2002 Free Software Foundation, Inc.
+
+This file is part of GNU Classpath.
+
+GNU Classpath is free software; you can redistribute it and/or modify
+it under the terms of the GNU General Public License as published by
+the Free Software Foundation; either version 2, or (at your option)
+any later version.
+
+GNU Classpath is distributed in the hope that it will be useful, but
+WITHOUT ANY WARRANTY; without even the implied warranty of
+MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
+General Public License for more details.
+
+You should have received a copy of the GNU General Public License
+along with GNU Classpath; see the file COPYING. If not, write to the
+Free Software Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA
+02110-1301 USA.
+
+Linking this library statically or dynamically with other modules is
+making a combined work based on this library. Thus, the terms and
+conditions of the GNU General Public License cover the whole
+combination.
+
+As a special exception, the copyright holders of this library give you
+permission to link this library with independent modules to produce an
+executable, regardless of the license terms of these independent
+modules, and to copy and distribute the resulting executable under
+terms of your choice, provided that you also meet, for each linked
+independent module, the terms and conditions of the license of that
+module. An independent module is a module which is not derived from
+or based on this library. If you modify this library, you may extend
+this exception to your version of the library, but you are not
+obligated to do so. If you do not wish to do so, delete this
+exception statement from your version. -->
+
+<html>
+<head><title>GNU Classpath - java.awt.geom</title></head>
+
+<body>
+<p>Classes to represent 2D objects and different path transformations.</p>
+
+</body>
+</html>