summaryrefslogtreecommitdiff
path: root/libjava/classpath/java/awt/geom/Arc2D.java
diff options
context:
space:
mode:
authorupstream source tree <ports@midipix.org>2015-03-15 20:14:05 -0400
committerupstream source tree <ports@midipix.org>2015-03-15 20:14:05 -0400
commit554fd8c5195424bdbcabf5de30fdc183aba391bd (patch)
tree976dc5ab7fddf506dadce60ae936f43f58787092 /libjava/classpath/java/awt/geom/Arc2D.java
downloadcbb-gcc-4.6.4-554fd8c5195424bdbcabf5de30fdc183aba391bd.tar.bz2
cbb-gcc-4.6.4-554fd8c5195424bdbcabf5de30fdc183aba391bd.tar.xz
obtained gcc-4.6.4.tar.bz2 from upstream website;upstream
verified gcc-4.6.4.tar.bz2.sig; imported gcc-4.6.4 source tree from verified upstream tarball. downloading a git-generated archive based on the 'upstream' tag should provide you with a source tree that is binary identical to the one extracted from the above tarball. if you have obtained the source via the command 'git clone', however, do note that line-endings of files in your working directory might differ from line-endings of the respective files in the upstream repository.
Diffstat (limited to 'libjava/classpath/java/awt/geom/Arc2D.java')
-rw-r--r--libjava/classpath/java/awt/geom/Arc2D.java1413
1 files changed, 1413 insertions, 0 deletions
diff --git a/libjava/classpath/java/awt/geom/Arc2D.java b/libjava/classpath/java/awt/geom/Arc2D.java
new file mode 100644
index 000000000..928c5cfc8
--- /dev/null
+++ b/libjava/classpath/java/awt/geom/Arc2D.java
@@ -0,0 +1,1413 @@
+/* Arc2D.java -- represents an arc in 2-D space
+ Copyright (C) 2002, 2003, 2004 Free Software Foundation
+
+This file is part of GNU Classpath.
+
+GNU Classpath is free software; you can redistribute it and/or modify
+it under the terms of the GNU General Public License as published by
+the Free Software Foundation; either version 2, or (at your option)
+any later version.
+
+GNU Classpath is distributed in the hope that it will be useful, but
+WITHOUT ANY WARRANTY; without even the implied warranty of
+MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
+General Public License for more details.
+
+You should have received a copy of the GNU General Public License
+along with GNU Classpath; see the file COPYING. If not, write to the
+Free Software Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA
+02110-1301 USA.
+
+Linking this library statically or dynamically with other modules is
+making a combined work based on this library. Thus, the terms and
+conditions of the GNU General Public License cover the whole
+combination.
+
+As a special exception, the copyright holders of this library give you
+permission to link this library with independent modules to produce an
+executable, regardless of the license terms of these independent
+modules, and to copy and distribute the resulting executable under
+terms of your choice, provided that you also meet, for each linked
+independent module, the terms and conditions of the license of that
+module. An independent module is a module which is not derived from
+or based on this library. If you modify this library, you may extend
+this exception to your version of the library, but you are not
+obligated to do so. If you do not wish to do so, delete this
+exception statement from your version. */
+
+package java.awt.geom;
+
+import java.util.NoSuchElementException;
+
+
+/**
+ * This class represents all arcs (segments of an ellipse in 2-D space). The
+ * arcs are defined by starting angle and extent (arc length) in degrees, as
+ * opposed to radians (like the rest of Java), and can be open, chorded, or
+ * wedge shaped. The angles are skewed according to the ellipse, so that 45
+ * degrees always points to the upper right corner (positive x, negative y)
+ * of the bounding rectangle. A positive extent draws a counterclockwise arc,
+ * and while the angle can be any value, the path iterator only traverses the
+ * first 360 degrees. Storage is up to the subclasses.
+ *
+ * @author Eric Blake (ebb9@email.byu.edu)
+ * @author Sven de Marothy (sven@physto.se)
+ * @since 1.2
+ */
+public abstract class Arc2D extends RectangularShape
+{
+ /**
+ * An open arc, with no segment connecting the endpoints. This type of
+ * arc still contains the same points as a chorded version.
+ */
+ public static final int OPEN = 0;
+
+ /**
+ * A closed arc with a single segment connecting the endpoints (a chord).
+ */
+ public static final int CHORD = 1;
+
+ /**
+ * A closed arc with two segments, one from each endpoint, meeting at the
+ * center of the ellipse.
+ */
+ public static final int PIE = 2;
+
+ /** The closure type of this arc. This is package-private to avoid an
+ * accessor method. */
+ int type;
+
+ /**
+ * Create a new arc, with the specified closure type.
+ *
+ * @param type one of {@link #OPEN}, {@link #CHORD}, or {@link #PIE}.
+ * @throws IllegalArgumentException if type is invalid
+ */
+ protected Arc2D(int type)
+ {
+ if (type < OPEN || type > PIE)
+ throw new IllegalArgumentException();
+ this.type = type;
+ }
+
+ /**
+ * Get the starting angle of the arc in degrees.
+ *
+ * @return the starting angle
+ * @see #setAngleStart(double)
+ */
+ public abstract double getAngleStart();
+
+ /**
+ * Get the extent angle of the arc in degrees.
+ *
+ * @return the extent angle
+ * @see #setAngleExtent(double)
+ */
+ public abstract double getAngleExtent();
+
+ /**
+ * Return the closure type of the arc.
+ *
+ * @return the closure type
+ * @see #OPEN
+ * @see #CHORD
+ * @see #PIE
+ * @see #setArcType(int)
+ */
+ public int getArcType()
+ {
+ return type;
+ }
+
+ /**
+ * Returns the starting point of the arc.
+ *
+ * @return the start point
+ */
+ public Point2D getStartPoint()
+ {
+ double angle = Math.toRadians(getAngleStart());
+ double rx = getWidth() / 2;
+ double ry = getHeight() / 2;
+ double x = getX() + rx + rx * Math.cos(angle);
+ double y = getY() + ry - ry * Math.sin(angle);
+ return new Point2D.Double(x, y);
+ }
+
+ /**
+ * Returns the ending point of the arc.
+ *
+ * @return the end point
+ */
+ public Point2D getEndPoint()
+ {
+ double angle = Math.toRadians(getAngleStart() + getAngleExtent());
+ double rx = getWidth() / 2;
+ double ry = getHeight() / 2;
+ double x = getX() + rx + rx * Math.cos(angle);
+ double y = getY() + ry - ry * Math.sin(angle);
+ return new Point2D.Double(x, y);
+ }
+
+ /**
+ * Set the parameters of the arc. The angles are in degrees, and a positive
+ * extent sweeps counterclockwise (from the positive x-axis to the negative
+ * y-axis).
+ *
+ * @param x the new x coordinate of the upper left of the bounding box
+ * @param y the new y coordinate of the upper left of the bounding box
+ * @param w the new width of the bounding box
+ * @param h the new height of the bounding box
+ * @param start the start angle, in degrees
+ * @param extent the arc extent, in degrees
+ * @param type one of {@link #OPEN}, {@link #CHORD}, or {@link #PIE}
+ * @throws IllegalArgumentException if type is invalid
+ */
+ public abstract void setArc(double x, double y, double w, double h,
+ double start, double extent, int type);
+
+ /**
+ * Set the parameters of the arc. The angles are in degrees, and a positive
+ * extent sweeps counterclockwise (from the positive x-axis to the negative
+ * y-axis).
+ *
+ * @param p the upper left point of the bounding box
+ * @param d the dimensions of the bounding box
+ * @param start the start angle, in degrees
+ * @param extent the arc extent, in degrees
+ * @param type one of {@link #OPEN}, {@link #CHORD}, or {@link #PIE}
+ * @throws IllegalArgumentException if type is invalid
+ * @throws NullPointerException if p or d is null
+ */
+ public void setArc(Point2D p, Dimension2D d, double start, double extent,
+ int type)
+ {
+ setArc(p.getX(), p.getY(), d.getWidth(), d.getHeight(), start, extent, type);
+ }
+
+ /**
+ * Set the parameters of the arc. The angles are in degrees, and a positive
+ * extent sweeps counterclockwise (from the positive x-axis to the negative
+ * y-axis).
+ *
+ * @param r the new bounding box
+ * @param start the start angle, in degrees
+ * @param extent the arc extent, in degrees
+ * @param type one of {@link #OPEN}, {@link #CHORD}, or {@link #PIE}
+ * @throws IllegalArgumentException if type is invalid
+ * @throws NullPointerException if r is null
+ */
+ public void setArc(Rectangle2D r, double start, double extent, int type)
+ {
+ setArc(r.getX(), r.getY(), r.getWidth(), r.getHeight(), start, extent, type);
+ }
+
+ /**
+ * Set the parameters of the arc from the given one.
+ *
+ * @param a the arc to copy
+ * @throws NullPointerException if a is null
+ */
+ public void setArc(Arc2D a)
+ {
+ setArc(a.getX(), a.getY(), a.getWidth(), a.getHeight(), a.getAngleStart(),
+ a.getAngleExtent(), a.getArcType());
+ }
+
+ /**
+ * Set the parameters of the arc. The angles are in degrees, and a positive
+ * extent sweeps counterclockwise (from the positive x-axis to the negative
+ * y-axis). This controls the center point and radius, so the arc will be
+ * circular.
+ *
+ * @param x the x coordinate of the center of the circle
+ * @param y the y coordinate of the center of the circle
+ * @param r the radius of the circle
+ * @param start the start angle, in degrees
+ * @param extent the arc extent, in degrees
+ * @param type one of {@link #OPEN}, {@link #CHORD}, or {@link #PIE}
+ * @throws IllegalArgumentException if type is invalid
+ */
+ public void setArcByCenter(double x, double y, double r, double start,
+ double extent, int type)
+ {
+ setArc(x - r, y - r, r + r, r + r, start, extent, type);
+ }
+
+ /**
+ * Sets the parameters of the arc by finding the tangents of two lines, and
+ * using the specified radius. The arc will be circular, will begin on the
+ * tangent point of the line extending from p1 to p2, and will end on the
+ * tangent point of the line extending from p2 to p3.
+ *
+ * XXX What happens if the points are colinear, or the radius negative?
+ *
+ * @param p1 the first point
+ * @param p2 the tangent line intersection point
+ * @param p3 the third point
+ * @param r the radius of the arc
+ * @throws NullPointerException if any point is null
+ */
+ public void setArcByTangent(Point2D p1, Point2D p2, Point2D p3, double r)
+ {
+ if ((p2.getX() - p1.getX()) * (p3.getY() - p1.getY())
+ - (p3.getX() - p1.getX()) * (p2.getY() - p1.getY()) > 0)
+ {
+ Point2D p = p3;
+ p3 = p1;
+ p1 = p;
+ }
+
+ // normalized tangent vectors
+ double dx1 = (p1.getX() - p2.getX()) / p1.distance(p2);
+ double dy1 = (p1.getY() - p2.getY()) / p1.distance(p2);
+ double dx2 = (p2.getX() - p3.getX()) / p3.distance(p2);
+ double dy2 = (p2.getY() - p3.getY()) / p3.distance(p2);
+ double theta1 = Math.atan2(dx1, dy1);
+ double theta2 = Math.atan2(dx2, dy2);
+
+ double dx = r * Math.cos(theta2) - r * Math.cos(theta1);
+ double dy = -r * Math.sin(theta2) + r * Math.sin(theta1);
+
+ if (theta1 < 0)
+ theta1 += 2 * Math.PI;
+ if (theta2 < 0)
+ theta2 += 2 * Math.PI;
+ if (theta2 < theta1)
+ theta2 += 2 * Math.PI;
+
+ // Vectors of the lines, not normalized, note we change
+ // the direction of line 2.
+ dx1 = p1.getX() - p2.getX();
+ dy1 = p1.getY() - p2.getY();
+ dx2 = p3.getX() - p2.getX();
+ dy2 = p3.getY() - p2.getY();
+
+ // Calculate the tangent point to the second line
+ double t2 = -(dx1 * dy - dy1 * dx) / (dx2 * dy1 - dx1 * dy2);
+ double x2 = t2 * (p3.getX() - p2.getX()) + p2.getX();
+ double y2 = t2 * (p3.getY() - p2.getY()) + p2.getY();
+
+ // calculate the center point
+ double x = x2 - r * Math.cos(theta2);
+ double y = y2 + r * Math.sin(theta2);
+
+ setArc(x - r, y - r, 2 * r, 2 * r, Math.toDegrees(theta1),
+ Math.toDegrees(theta2 - theta1), getArcType());
+ }
+
+ /**
+ * Set the start, in degrees.
+ *
+ * @param start the new start angle
+ * @see #getAngleStart()
+ */
+ public abstract void setAngleStart(double start);
+
+ /**
+ * Set the extent, in degrees.
+ *
+ * @param extent the new extent angle
+ * @see #getAngleExtent()
+ */
+ public abstract void setAngleExtent(double extent);
+
+ /**
+ * Sets the starting angle to the angle of the given point relative to
+ * the center of the arc. The extent remains constant; in other words,
+ * this rotates the arc.
+ *
+ * @param p the new start point
+ * @throws NullPointerException if p is null
+ * @see #getStartPoint()
+ * @see #getAngleStart()
+ */
+ public void setAngleStart(Point2D p)
+ {
+ // Normalize.
+ double x = p.getX() - (getX() + getWidth() / 2);
+ double y = p.getY() - (getY() + getHeight() / 2);
+ setAngleStart(Math.toDegrees(Math.atan2(-y, x)));
+ }
+
+ /**
+ * Sets the starting and extent angles to those of the given points
+ * relative to the center of the arc. The arc will be non-empty, and will
+ * extend counterclockwise.
+ *
+ * @param x1 the first x coordinate
+ * @param y1 the first y coordinate
+ * @param x2 the second x coordinate
+ * @param y2 the second y coordinate
+ * @see #setAngleStart(Point2D)
+ */
+ public void setAngles(double x1, double y1, double x2, double y2)
+ {
+ // Normalize the points.
+ double mx = getX();
+ double my = getY();
+ double mw = getWidth();
+ double mh = getHeight();
+ x1 = x1 - (mx + mw / 2);
+ y1 = y1 - (my + mh / 2);
+ x2 = x2 - (mx + mw / 2);
+ y2 = y2 - (my + mh / 2);
+ double start = Math.toDegrees(Math.atan2(-y1, x1));
+ double extent = Math.toDegrees(Math.atan2(-y2, x2)) - start;
+ if (extent < 0)
+ extent += 360;
+ setAngleStart(start);
+ setAngleExtent(extent);
+ }
+
+ /**
+ * Sets the starting and extent angles to those of the given points
+ * relative to the center of the arc. The arc will be non-empty, and will
+ * extend counterclockwise.
+ *
+ * @param p1 the first point
+ * @param p2 the second point
+ * @throws NullPointerException if either point is null
+ * @see #setAngleStart(Point2D)
+ */
+ public void setAngles(Point2D p1, Point2D p2)
+ {
+ setAngles(p1.getX(), p1.getY(), p2.getX(), p2.getY());
+ }
+
+ /**
+ * Set the closure type of this arc.
+ *
+ * @param type one of {@link #OPEN}, {@link #CHORD}, or {@link #PIE}
+ * @throws IllegalArgumentException if type is invalid
+ * @see #getArcType()
+ */
+ public void setArcType(int type)
+ {
+ if (type < OPEN || type > PIE)
+ throw new IllegalArgumentException();
+ this.type = type;
+ }
+
+ /**
+ * Sets the location and bounds of the ellipse of which this arc is a part.
+ *
+ * @param x the new x coordinate
+ * @param y the new y coordinate
+ * @param w the new width
+ * @param h the new height
+ * @see #getFrame()
+ */
+ public void setFrame(double x, double y, double w, double h)
+ {
+ setArc(x, y, w, h, getAngleStart(), getAngleExtent(), type);
+ }
+
+ /**
+ * Gets the bounds of the arc. This is much tighter than
+ * <code>getBounds</code>, as it takes into consideration the start and
+ * end angles, and the center point of a pie wedge, rather than just the
+ * overall ellipse.
+ *
+ * @return the bounds of the arc
+ * @see #getBounds()
+ */
+ public Rectangle2D getBounds2D()
+ {
+ double extent = getAngleExtent();
+ if (Math.abs(extent) >= 360)
+ return makeBounds(getX(), getY(), getWidth(), getHeight());
+
+ // Find the minimal bounding box. This determined by its extrema,
+ // which are the center, the endpoints of the arc, and any local
+ // maximum contained by the arc.
+ double rX = getWidth() / 2;
+ double rY = getHeight() / 2;
+ double centerX = getX() + rX;
+ double centerY = getY() + rY;
+
+ Point2D p1 = getStartPoint();
+ Rectangle2D result = makeBounds(p1.getX(), p1.getY(), 0, 0);
+ result.add(getEndPoint());
+
+ if (type == PIE)
+ result.add(centerX, centerY);
+ if (containsAngle(0))
+ result.add(centerX + rX, centerY);
+ if (containsAngle(90))
+ result.add(centerX, centerY - rY);
+ if (containsAngle(180))
+ result.add(centerX - rX, centerY);
+ if (containsAngle(270))
+ result.add(centerX, centerY + rY);
+
+ return result;
+ }
+
+ /**
+ * Construct a bounding box in a precision appropriate for the subclass.
+ *
+ * @param x the x coordinate
+ * @param y the y coordinate
+ * @param w the width
+ * @param h the height
+ * @return the rectangle for use in getBounds2D
+ */
+ protected abstract Rectangle2D makeBounds(double x, double y, double w,
+ double h);
+
+ /**
+ * Tests if the given angle, in degrees, is included in the arc.
+ * All angles are normalized to be between 0 and 360 degrees.
+ *
+ * @param a the angle to test
+ * @return true if it is contained
+ */
+ public boolean containsAngle(double a)
+ {
+ double start = getAngleStart();
+ double extent = getAngleExtent();
+ double end = start + extent;
+
+ if (extent == 0)
+ return false;
+
+ if (extent >= 360 || extent <= -360)
+ return true;
+
+ if (extent < 0)
+ {
+ end = start;
+ start += extent;
+ }
+
+ start %= 360;
+ while (start < 0)
+ start += 360;
+
+ end %= 360;
+ while (end < start)
+ end += 360;
+
+ a %= 360;
+ while (a < start)
+ a += 360;
+
+ return a >= start && a < end; // starting angle included, ending angle not
+ }
+
+ /**
+ * Determines if the arc contains the given point. If the bounding box
+ * is empty, then this will return false.
+ *
+ * The area considered 'inside' an arc of type OPEN is the same as the
+ * area inside an equivalent filled CHORD-type arc. The area considered
+ * 'inside' a CHORD-type arc is the same as the filled area.
+ *
+ * @param x the x coordinate to test
+ * @param y the y coordinate to test
+ * @return true if the point is inside the arc
+ */
+ public boolean contains(double x, double y)
+ {
+ double w = getWidth();
+ double h = getHeight();
+ double extent = getAngleExtent();
+ if (w <= 0 || h <= 0 || extent == 0)
+ return false;
+
+ double mx = getX() + w / 2;
+ double my = getY() + h / 2;
+ double dx = (x - mx) * 2 / w;
+ double dy = (y - my) * 2 / h;
+ if ((dx * dx + dy * dy) >= 1.0)
+ return false;
+
+ double angle = Math.toDegrees(Math.atan2(-dy, dx));
+ if (getArcType() == PIE)
+ return containsAngle(angle);
+
+ double a1 = Math.toRadians(getAngleStart());
+ double a2 = Math.toRadians(getAngleStart() + extent);
+ double x1 = mx + getWidth() * Math.cos(a1) / 2;
+ double y1 = my - getHeight() * Math.sin(a1) / 2;
+ double x2 = mx + getWidth() * Math.cos(a2) / 2;
+ double y2 = my - getHeight() * Math.sin(a2) / 2;
+ double sgn = ((x2 - x1) * (my - y1) - (mx - x1) * (y2 - y1)) * ((x2 - x1) * (y
+ - y1) - (x - x1) * (y2 - y1));
+
+ if (Math.abs(extent) > 180)
+ {
+ if (containsAngle(angle))
+ return true;
+ return sgn > 0;
+ }
+ else
+ {
+ if (! containsAngle(angle))
+ return false;
+ return sgn < 0;
+ }
+ }
+
+ /**
+ * Tests if a given rectangle intersects the area of the arc.
+ *
+ * For a definition of the 'inside' area, see the contains() method.
+ * @see #contains(double, double)
+ *
+ * @param x the x coordinate of the rectangle
+ * @param y the y coordinate of the rectangle
+ * @param w the width of the rectangle
+ * @param h the height of the rectangle
+ * @return true if the two shapes share common points
+ */
+ public boolean intersects(double x, double y, double w, double h)
+ {
+ double extent = getAngleExtent();
+ if (extent == 0)
+ return false;
+
+ if (contains(x, y) || contains(x, y + h) || contains(x + w, y)
+ || contains(x + w, y + h))
+ return true;
+
+ Rectangle2D rect = new Rectangle2D.Double(x, y, w, h);
+
+ double a = getWidth() / 2.0;
+ double b = getHeight() / 2.0;
+
+ double mx = getX() + a;
+ double my = getY() + b;
+ double x1 = mx + a * Math.cos(Math.toRadians(getAngleStart()));
+ double y1 = my - b * Math.sin(Math.toRadians(getAngleStart()));
+ double x2 = mx + a * Math.cos(Math.toRadians(getAngleStart() + extent));
+ double y2 = my - b * Math.sin(Math.toRadians(getAngleStart() + extent));
+
+ if (getArcType() != CHORD)
+ {
+ // check intersections against the pie radii
+ if (rect.intersectsLine(mx, my, x1, y1))
+ return true;
+ if (rect.intersectsLine(mx, my, x2, y2))
+ return true;
+ }
+ else// check the chord
+ if (rect.intersectsLine(x1, y1, x2, y2))
+ return true;
+
+ // Check the Arc segment against the four edges
+ double dx;
+
+ // Check the Arc segment against the four edges
+ double dy;
+ dy = y - my;
+ dx = a * Math.sqrt(1 - ((dy * dy) / (b * b)));
+ if (! java.lang.Double.isNaN(dx))
+ {
+ if (mx + dx >= x && mx + dx <= x + w
+ && containsAngle(Math.toDegrees(Math.atan2(-dy, dx))))
+ return true;
+ if (mx - dx >= x && mx - dx <= x + w
+ && containsAngle(Math.toDegrees(Math.atan2(-dy, -dx))))
+ return true;
+ }
+ dy = (y + h) - my;
+ dx = a * Math.sqrt(1 - ((dy * dy) / (b * b)));
+ if (! java.lang.Double.isNaN(dx))
+ {
+ if (mx + dx >= x && mx + dx <= x + w
+ && containsAngle(Math.toDegrees(Math.atan2(-dy, dx))))
+ return true;
+ if (mx - dx >= x && mx - dx <= x + w
+ && containsAngle(Math.toDegrees(Math.atan2(-dy, -dx))))
+ return true;
+ }
+ dx = x - mx;
+ dy = b * Math.sqrt(1 - ((dx * dx) / (a * a)));
+ if (! java.lang.Double.isNaN(dy))
+ {
+ if (my + dy >= y && my + dy <= y + h
+ && containsAngle(Math.toDegrees(Math.atan2(-dy, dx))))
+ return true;
+ if (my - dy >= y && my - dy <= y + h
+ && containsAngle(Math.toDegrees(Math.atan2(dy, dx))))
+ return true;
+ }
+
+ dx = (x + w) - mx;
+ dy = b * Math.sqrt(1 - ((dx * dx) / (a * a)));
+ if (! java.lang.Double.isNaN(dy))
+ {
+ if (my + dy >= y && my + dy <= y + h
+ && containsAngle(Math.toDegrees(Math.atan2(-dy, dx))))
+ return true;
+ if (my - dy >= y && my - dy <= y + h
+ && containsAngle(Math.toDegrees(Math.atan2(dy, dx))))
+ return true;
+ }
+
+ // Check whether the arc is contained within the box
+ if (rect.contains(mx, my))
+ return true;
+
+ return false;
+ }
+
+ /**
+ * Tests if a given rectangle is contained in the area of the arc.
+ *
+ * @param x the x coordinate of the rectangle
+ * @param y the y coordinate of the rectangle
+ * @param w the width of the rectangle
+ * @param h the height of the rectangle
+ * @return true if the arc contains the rectangle
+ */
+ public boolean contains(double x, double y, double w, double h)
+ {
+ double extent = getAngleExtent();
+ if (extent == 0)
+ return false;
+
+ if (! (contains(x, y) && contains(x, y + h) && contains(x + w, y)
+ && contains(x + w, y + h)))
+ return false;
+
+ Rectangle2D rect = new Rectangle2D.Double(x, y, w, h);
+
+ double a = getWidth() / 2.0;
+ double b = getHeight() / 2.0;
+
+ double mx = getX() + a;
+ double my = getY() + b;
+ double x1 = mx + a * Math.cos(Math.toRadians(getAngleStart()));
+ double y1 = my - b * Math.sin(Math.toRadians(getAngleStart()));
+ double x2 = mx + a * Math.cos(Math.toRadians(getAngleStart() + extent));
+ double y2 = my - b * Math.sin(Math.toRadians(getAngleStart() + extent));
+ if (getArcType() != CHORD)
+ {
+ // check intersections against the pie radii
+ if (rect.intersectsLine(mx, my, x1, y1))
+ return false;
+
+ if (rect.intersectsLine(mx, my, x2, y2))
+ return false;
+ }
+ else if (rect.intersectsLine(x1, y1, x2, y2))
+ return false;
+ return true;
+ }
+
+ /**
+ * Tests if a given rectangle is contained in the area of the arc.
+ *
+ * @param r the rectangle
+ * @return true if the arc contains the rectangle
+ */
+ public boolean contains(Rectangle2D r)
+ {
+ return contains(r.getX(), r.getY(), r.getWidth(), r.getHeight());
+ }
+
+ /**
+ * Returns an iterator over this arc, with an optional transformation.
+ * This iterator is threadsafe, so future modifications to the arc do not
+ * affect the iteration.
+ *
+ * @param at the transformation, or null
+ * @return a path iterator
+ */
+ public PathIterator getPathIterator(AffineTransform at)
+ {
+ return new ArcIterator(this, at);
+ }
+
+ /**
+ * This class is used to iterate over an arc. Since ellipses are a subclass
+ * of arcs, this is used by Ellipse2D as well.
+ *
+ * @author Eric Blake (ebb9@email.byu.edu)
+ */
+ static final class ArcIterator implements PathIterator
+ {
+ /** The current iteration. */
+ private int current;
+
+ /** The last iteration. */
+ private final int limit;
+
+ /** The optional transformation. */
+ private final AffineTransform xform;
+
+ /** The x coordinate of the bounding box. */
+ private final double x;
+
+ /** The y coordinate of the bounding box. */
+ private final double y;
+
+ /** The width of the bounding box. */
+ private final double w;
+
+ /** The height of the bounding box. */
+ private final double h;
+
+ /** The start angle, in radians (not degrees). */
+ private final double start;
+
+ /** The extent angle, in radians (not degrees). */
+ private final double extent;
+
+ /** The arc closure type. */
+ private final int type;
+
+ /**
+ * Construct a new iterator over an arc.
+ *
+ * @param a the arc
+ * @param xform the transform
+ */
+ public ArcIterator(Arc2D a, AffineTransform xform)
+ {
+ this.xform = xform;
+ x = a.getX();
+ y = a.getY();
+ w = a.getWidth();
+ h = a.getHeight();
+ double start = Math.toRadians(a.getAngleStart());
+ double extent = Math.toRadians(a.getAngleExtent());
+
+ this.start = start;
+ this.extent = extent;
+
+ type = a.type;
+ if (w < 0 || h < 0)
+ limit = -1;
+ else if (extent == 0)
+ limit = type;
+ else if (Math.abs(extent) <= Math.PI / 2.0)
+ limit = type + 1;
+ else if (Math.abs(extent) <= Math.PI)
+ limit = type + 2;
+ else if (Math.abs(extent) <= 3.0 * (Math.PI / 2.0))
+ limit = type + 3;
+ else
+ limit = type + 4;
+ }
+
+ /**
+ * Construct a new iterator over an ellipse.
+ *
+ * @param e the ellipse
+ * @param xform the transform
+ */
+ public ArcIterator(Ellipse2D e, AffineTransform xform)
+ {
+ this.xform = xform;
+ x = e.getX();
+ y = e.getY();
+ w = e.getWidth();
+ h = e.getHeight();
+ start = 0;
+ extent = 2 * Math.PI;
+ type = CHORD;
+ limit = (w < 0 || h < 0) ? -1 : 5;
+ }
+
+ /**
+ * Return the winding rule.
+ *
+ * @return {@link PathIterator#WIND_NON_ZERO}
+ */
+ public int getWindingRule()
+ {
+ return WIND_NON_ZERO;
+ }
+
+ /**
+ * Test if the iteration is complete.
+ *
+ * @return true if more segments exist
+ */
+ public boolean isDone()
+ {
+ return current > limit;
+ }
+
+ /**
+ * Advance the iterator.
+ */
+ public void next()
+ {
+ current++;
+ }
+
+ /**
+ * Put the current segment into the array, and return the segment type.
+ *
+ * @param coords an array of 6 elements
+ * @return the segment type
+ * @throws NullPointerException if coords is null
+ * @throws ArrayIndexOutOfBoundsException if coords is too small
+ */
+ public int currentSegment(float[] coords)
+ {
+ double[] double_coords = new double[6];
+ int code = currentSegment(double_coords);
+ for (int i = 0; i < 6; ++i)
+ coords[i] = (float) double_coords[i];
+ return code;
+ }
+
+ /**
+ * Put the current segment into the array, and return the segment type.
+ *
+ * @param coords an array of 6 elements
+ * @return the segment type
+ * @throws NullPointerException if coords is null
+ * @throws ArrayIndexOutOfBoundsException if coords is too small
+ */
+ public int currentSegment(double[] coords)
+ {
+ double rx = w / 2;
+ double ry = h / 2;
+ double xmid = x + rx;
+ double ymid = y + ry;
+
+ if (current > limit)
+ throw new NoSuchElementException("arc iterator out of bounds");
+
+ if (current == 0)
+ {
+ coords[0] = xmid + rx * Math.cos(start);
+ coords[1] = ymid - ry * Math.sin(start);
+ if (xform != null)
+ xform.transform(coords, 0, coords, 0, 1);
+ return SEG_MOVETO;
+ }
+
+ if (type != OPEN && current == limit)
+ return SEG_CLOSE;
+
+ if ((current == limit - 1) && (type == PIE))
+ {
+ coords[0] = xmid;
+ coords[1] = ymid;
+ if (xform != null)
+ xform.transform(coords, 0, coords, 0, 1);
+ return SEG_LINETO;
+ }
+
+ // note that this produces a cubic approximation of the arc segment,
+ // not a true ellipsoid. there's no ellipsoid path segment code,
+ // unfortunately. the cubic approximation looks about right, though.
+ double kappa = (Math.sqrt(2.0) - 1.0) * (4.0 / 3.0);
+ double quad = (Math.PI / 2.0);
+
+ double curr_begin;
+ double curr_extent;
+ if (extent > 0)
+ {
+ curr_begin = start + (current - 1) * quad;
+ curr_extent = Math.min((start + extent) - curr_begin, quad);
+ }
+ else
+ {
+ curr_begin = start - (current - 1) * quad;
+ curr_extent = Math.max((start + extent) - curr_begin, -quad);
+ }
+
+ double portion_of_a_quadrant = Math.abs(curr_extent / quad);
+
+ double x0 = xmid + rx * Math.cos(curr_begin);
+ double y0 = ymid - ry * Math.sin(curr_begin);
+
+ double x1 = xmid + rx * Math.cos(curr_begin + curr_extent);
+ double y1 = ymid - ry * Math.sin(curr_begin + curr_extent);
+
+ AffineTransform trans = new AffineTransform();
+ double[] cvec = new double[2];
+ double len = kappa * portion_of_a_quadrant;
+ double angle = curr_begin;
+
+ // in a hypothetical "first quadrant" setting, our first control
+ // vector would be sticking up, from [1,0] to [1,kappa].
+ //
+ // let us recall however that in java2d, y coords are upside down
+ // from what one would consider "normal" first quadrant rules, so we
+ // will *subtract* the y value of this control vector from our first
+ // point.
+ cvec[0] = 0;
+ if (extent > 0)
+ cvec[1] = len;
+ else
+ cvec[1] = -len;
+
+ trans.scale(rx, ry);
+ trans.rotate(angle);
+ trans.transform(cvec, 0, cvec, 0, 1);
+ coords[0] = x0 + cvec[0];
+ coords[1] = y0 - cvec[1];
+
+ // control vector #2 would, ideally, be sticking out and to the
+ // right, in a first quadrant arc segment. again, subtraction of y.
+ cvec[0] = 0;
+ if (extent > 0)
+ cvec[1] = -len;
+ else
+ cvec[1] = len;
+
+ trans.rotate(curr_extent);
+ trans.transform(cvec, 0, cvec, 0, 1);
+ coords[2] = x1 + cvec[0];
+ coords[3] = y1 - cvec[1];
+
+ // end point
+ coords[4] = x1;
+ coords[5] = y1;
+
+ if (xform != null)
+ xform.transform(coords, 0, coords, 0, 3);
+
+ return SEG_CUBICTO;
+ }
+ } // class ArcIterator
+
+ /**
+ * This class implements an arc in double precision.
+ *
+ * @author Eric Blake (ebb9@email.byu.edu)
+ * @since 1.2
+ */
+ public static class Double extends Arc2D
+ {
+ /** The x coordinate of the box bounding the ellipse of this arc. */
+ public double x;
+
+ /** The y coordinate of the box bounding the ellipse of this arc. */
+ public double y;
+
+ /** The width of the box bounding the ellipse of this arc. */
+ public double width;
+
+ /** The height of the box bounding the ellipse of this arc. */
+ public double height;
+
+ /** The start angle of this arc, in degrees. */
+ public double start;
+
+ /** The extent angle of this arc, in degrees. */
+ public double extent;
+
+ /**
+ * Create a new, open arc at (0,0) with 0 extent.
+ */
+ public Double()
+ {
+ super(OPEN);
+ }
+
+ /**
+ * Create a new arc of the given type at (0,0) with 0 extent.
+ *
+ * @param type the arc type: {@link #OPEN}, {@link #CHORD}, or {@link #PIE}
+ * @throws IllegalArgumentException if type is invalid
+ */
+ public Double(int type)
+ {
+ super(type);
+ }
+
+ /**
+ * Create a new arc with the given dimensions.
+ *
+ * @param x the x coordinate
+ * @param y the y coordinate
+ * @param w the width
+ * @param h the height
+ * @param start the start angle, in degrees
+ * @param extent the extent, in degrees
+ * @param type the arc type: {@link #OPEN}, {@link #CHORD}, or {@link #PIE}
+ * @throws IllegalArgumentException if type is invalid
+ */
+ public Double(double x, double y, double w, double h, double start,
+ double extent, int type)
+ {
+ super(type);
+ this.x = x;
+ this.y = y;
+ width = w;
+ height = h;
+ this.start = start;
+ this.extent = extent;
+ }
+
+ /**
+ * Create a new arc with the given dimensions.
+ *
+ * @param r the bounding box
+ * @param start the start angle, in degrees
+ * @param extent the extent, in degrees
+ * @param type the arc type: {@link #OPEN}, {@link #CHORD}, or {@link #PIE}
+ * @throws IllegalArgumentException if type is invalid
+ * @throws NullPointerException if r is null
+ */
+ public Double(Rectangle2D r, double start, double extent, int type)
+ {
+ super(type);
+ x = r.getX();
+ y = r.getY();
+ width = r.getWidth();
+ height = r.getHeight();
+ this.start = start;
+ this.extent = extent;
+ }
+
+ /**
+ * Return the x coordinate of the bounding box.
+ *
+ * @return the value of x
+ */
+ public double getX()
+ {
+ return x;
+ }
+
+ /**
+ * Return the y coordinate of the bounding box.
+ *
+ * @return the value of y
+ */
+ public double getY()
+ {
+ return y;
+ }
+
+ /**
+ * Return the width of the bounding box.
+ *
+ * @return the value of width
+ */
+ public double getWidth()
+ {
+ return width;
+ }
+
+ /**
+ * Return the height of the bounding box.
+ *
+ * @return the value of height
+ */
+ public double getHeight()
+ {
+ return height;
+ }
+
+ /**
+ * Return the start angle of the arc, in degrees.
+ *
+ * @return the value of start
+ */
+ public double getAngleStart()
+ {
+ return start;
+ }
+
+ /**
+ * Return the extent of the arc, in degrees.
+ *
+ * @return the value of extent
+ */
+ public double getAngleExtent()
+ {
+ return extent;
+ }
+
+ /**
+ * Tests if the arc contains points.
+ *
+ * @return true if the arc has no interior
+ */
+ public boolean isEmpty()
+ {
+ return width <= 0 || height <= 0;
+ }
+
+ /**
+ * Sets the arc to the given dimensions.
+ *
+ * @param x the x coordinate
+ * @param y the y coordinate
+ * @param w the width
+ * @param h the height
+ * @param start the start angle, in degrees
+ * @param extent the extent, in degrees
+ * @param type the arc type: {@link #OPEN}, {@link #CHORD}, or {@link #PIE}
+ * @throws IllegalArgumentException if type is invalid
+ */
+ public void setArc(double x, double y, double w, double h, double start,
+ double extent, int type)
+ {
+ this.x = x;
+ this.y = y;
+ width = w;
+ height = h;
+ this.start = start;
+ this.extent = extent;
+ setArcType(type);
+ }
+
+ /**
+ * Sets the start angle of the arc.
+ *
+ * @param start the new start angle
+ */
+ public void setAngleStart(double start)
+ {
+ this.start = start;
+ }
+
+ /**
+ * Sets the extent angle of the arc.
+ *
+ * @param extent the new extent angle
+ */
+ public void setAngleExtent(double extent)
+ {
+ this.extent = extent;
+ }
+
+ /**
+ * Creates a tight bounding box given dimensions that more precise than
+ * the bounding box of the ellipse.
+ *
+ * @param x the x coordinate
+ * @param y the y coordinate
+ * @param w the width
+ * @param h the height
+ */
+ protected Rectangle2D makeBounds(double x, double y, double w, double h)
+ {
+ return new Rectangle2D.Double(x, y, w, h);
+ }
+ } // class Double
+
+ /**
+ * This class implements an arc in float precision.
+ *
+ * @author Eric Blake (ebb9@email.byu.edu)
+ * @since 1.2
+ */
+ public static class Float extends Arc2D
+ {
+ /** The x coordinate of the box bounding the ellipse of this arc. */
+ public float x;
+
+ /** The y coordinate of the box bounding the ellipse of this arc. */
+ public float y;
+
+ /** The width of the box bounding the ellipse of this arc. */
+ public float width;
+
+ /** The height of the box bounding the ellipse of this arc. */
+ public float height;
+
+ /** The start angle of this arc, in degrees. */
+ public float start;
+
+ /** The extent angle of this arc, in degrees. */
+ public float extent;
+
+ /**
+ * Create a new, open arc at (0,0) with 0 extent.
+ */
+ public Float()
+ {
+ super(OPEN);
+ }
+
+ /**
+ * Create a new arc of the given type at (0,0) with 0 extent.
+ *
+ * @param type the arc type: {@link #OPEN}, {@link #CHORD}, or {@link #PIE}
+ * @throws IllegalArgumentException if type is invalid
+ */
+ public Float(int type)
+ {
+ super(type);
+ }
+
+ /**
+ * Create a new arc with the given dimensions.
+ *
+ * @param x the x coordinate
+ * @param y the y coordinate
+ * @param w the width
+ * @param h the height
+ * @param start the start angle, in degrees
+ * @param extent the extent, in degrees
+ * @param type the arc type: {@link #OPEN}, {@link #CHORD}, or {@link #PIE}
+ * @throws IllegalArgumentException if type is invalid
+ */
+ public Float(float x, float y, float w, float h, float start,
+ float extent, int type)
+ {
+ super(type);
+ this.x = x;
+ this.y = y;
+ width = w;
+ height = h;
+ this.start = start;
+ this.extent = extent;
+ }
+
+ /**
+ * Create a new arc with the given dimensions.
+ *
+ * @param r the bounding box
+ * @param start the start angle, in degrees
+ * @param extent the extent, in degrees
+ * @param type the arc type: {@link #OPEN}, {@link #CHORD}, or {@link #PIE}
+ * @throws IllegalArgumentException if type is invalid
+ * @throws NullPointerException if r is null
+ */
+ public Float(Rectangle2D r, float start, float extent, int type)
+ {
+ super(type);
+ x = (float) r.getX();
+ y = (float) r.getY();
+ width = (float) r.getWidth();
+ height = (float) r.getHeight();
+ this.start = start;
+ this.extent = extent;
+ }
+
+ /**
+ * Return the x coordinate of the bounding box.
+ *
+ * @return the value of x
+ */
+ public double getX()
+ {
+ return x;
+ }
+
+ /**
+ * Return the y coordinate of the bounding box.
+ *
+ * @return the value of y
+ */
+ public double getY()
+ {
+ return y;
+ }
+
+ /**
+ * Return the width of the bounding box.
+ *
+ * @return the value of width
+ */
+ public double getWidth()
+ {
+ return width;
+ }
+
+ /**
+ * Return the height of the bounding box.
+ *
+ * @return the value of height
+ */
+ public double getHeight()
+ {
+ return height;
+ }
+
+ /**
+ * Return the start angle of the arc, in degrees.
+ *
+ * @return the value of start
+ */
+ public double getAngleStart()
+ {
+ return start;
+ }
+
+ /**
+ * Return the extent of the arc, in degrees.
+ *
+ * @return the value of extent
+ */
+ public double getAngleExtent()
+ {
+ return extent;
+ }
+
+ /**
+ * Tests if the arc contains points.
+ *
+ * @return true if the arc has no interior
+ */
+ public boolean isEmpty()
+ {
+ return width <= 0 || height <= 0;
+ }
+
+ /**
+ * Sets the arc to the given dimensions.
+ *
+ * @param x the x coordinate
+ * @param y the y coordinate
+ * @param w the width
+ * @param h the height
+ * @param start the start angle, in degrees
+ * @param extent the extent, in degrees
+ * @param type the arc type: {@link #OPEN}, {@link #CHORD}, or {@link #PIE}
+ * @throws IllegalArgumentException if type is invalid
+ */
+ public void setArc(double x, double y, double w, double h, double start,
+ double extent, int type)
+ {
+ this.x = (float) x;
+ this.y = (float) y;
+ width = (float) w;
+ height = (float) h;
+ this.start = (float) start;
+ this.extent = (float) extent;
+ setArcType(type);
+ }
+
+ /**
+ * Sets the start angle of the arc.
+ *
+ * @param start the new start angle
+ */
+ public void setAngleStart(double start)
+ {
+ this.start = (float) start;
+ }
+
+ /**
+ * Sets the extent angle of the arc.
+ *
+ * @param extent the new extent angle
+ */
+ public void setAngleExtent(double extent)
+ {
+ this.extent = (float) extent;
+ }
+
+ /**
+ * Creates a tight bounding box given dimensions that more precise than
+ * the bounding box of the ellipse.
+ *
+ * @param x the x coordinate
+ * @param y the y coordinate
+ * @param w the width
+ * @param h the height
+ */
+ protected Rectangle2D makeBounds(double x, double y, double w, double h)
+ {
+ return new Rectangle2D.Float((float) x, (float) y, (float) w, (float) h);
+ }
+ } // class Float
+} // class Arc2D