summaryrefslogtreecommitdiff
path: root/libjava/classpath/java/awt/geom/Line2D.java
diff options
context:
space:
mode:
authorupstream source tree <ports@midipix.org>2015-03-15 20:14:05 -0400
committerupstream source tree <ports@midipix.org>2015-03-15 20:14:05 -0400
commit554fd8c5195424bdbcabf5de30fdc183aba391bd (patch)
tree976dc5ab7fddf506dadce60ae936f43f58787092 /libjava/classpath/java/awt/geom/Line2D.java
downloadcbb-gcc-4.6.4-554fd8c5195424bdbcabf5de30fdc183aba391bd.tar.bz2
cbb-gcc-4.6.4-554fd8c5195424bdbcabf5de30fdc183aba391bd.tar.xz
obtained gcc-4.6.4.tar.bz2 from upstream website;upstream
verified gcc-4.6.4.tar.bz2.sig; imported gcc-4.6.4 source tree from verified upstream tarball. downloading a git-generated archive based on the 'upstream' tag should provide you with a source tree that is binary identical to the one extracted from the above tarball. if you have obtained the source via the command 'git clone', however, do note that line-endings of files in your working directory might differ from line-endings of the respective files in the upstream repository.
Diffstat (limited to 'libjava/classpath/java/awt/geom/Line2D.java')
-rw-r--r--libjava/classpath/java/awt/geom/Line2D.java1182
1 files changed, 1182 insertions, 0 deletions
diff --git a/libjava/classpath/java/awt/geom/Line2D.java b/libjava/classpath/java/awt/geom/Line2D.java
new file mode 100644
index 000000000..c92aab004
--- /dev/null
+++ b/libjava/classpath/java/awt/geom/Line2D.java
@@ -0,0 +1,1182 @@
+/* Line2D.java -- represents a line in 2-D space, plus operations on a line
+ Copyright (C) 2000, 2001, 2002 Free Software Foundation
+
+This file is part of GNU Classpath.
+
+GNU Classpath is free software; you can redistribute it and/or modify
+it under the terms of the GNU General Public License as published by
+the Free Software Foundation; either version 2, or (at your option)
+any later version.
+
+GNU Classpath is distributed in the hope that it will be useful, but
+WITHOUT ANY WARRANTY; without even the implied warranty of
+MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
+General Public License for more details.
+
+You should have received a copy of the GNU General Public License
+along with GNU Classpath; see the file COPYING. If not, write to the
+Free Software Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA
+02110-1301 USA.
+
+Linking this library statically or dynamically with other modules is
+making a combined work based on this library. Thus, the terms and
+conditions of the GNU General Public License cover the whole
+combination.
+
+As a special exception, the copyright holders of this library give you
+permission to link this library with independent modules to produce an
+executable, regardless of the license terms of these independent
+modules, and to copy and distribute the resulting executable under
+terms of your choice, provided that you also meet, for each linked
+independent module, the terms and conditions of the license of that
+module. An independent module is a module which is not derived from
+or based on this library. If you modify this library, you may extend
+this exception to your version of the library, but you are not
+obligated to do so. If you do not wish to do so, delete this
+exception statement from your version. */
+
+package java.awt.geom;
+
+import java.awt.Rectangle;
+import java.awt.Shape;
+import java.util.NoSuchElementException;
+
+/**
+ * Represents a directed line bewteen two points in (x,y) Cartesian space.
+ * Remember, on-screen graphics have increasing x from left-to-right, and
+ * increasing y from top-to-bottom. The storage is left to subclasses.
+ *
+ * @author Tom Tromey (tromey@cygnus.com)
+ * @author Eric Blake (ebb9@email.byu.edu)
+ * @author David Gilbert
+ * @since 1.2
+ * @status updated to 1.4
+ */
+public abstract class Line2D implements Shape, Cloneable
+{
+ /**
+ * The default constructor.
+ */
+ protected Line2D()
+ {
+ }
+
+ /**
+ * Return the x coordinate of the first point.
+ *
+ * @return the starting x coordinate
+ */
+ public abstract double getX1();
+
+ /**
+ * Return the y coordinate of the first point.
+ *
+ * @return the starting y coordinate
+ */
+ public abstract double getY1();
+
+ /**
+ * Return the first point.
+ *
+ * @return the starting point
+ */
+ public abstract Point2D getP1();
+
+ /**
+ * Return the x coordinate of the second point.
+ *
+ * @return the ending x coordinate
+ */
+ public abstract double getX2();
+
+ /**
+ * Return the y coordinate of the second point.
+ *
+ * @return the ending y coordinate
+ */
+ public abstract double getY2();
+
+ /**
+ * Return the second point.
+ *
+ * @return the ending point
+ */
+ public abstract Point2D getP2();
+
+ /**
+ * Set the coordinates of the line to the given coordinates. Loss of
+ * precision may occur due to rounding issues.
+ *
+ * @param x1 the first x coordinate
+ * @param y1 the first y coordinate
+ * @param x2 the second x coordinate
+ * @param y2 the second y coordinate
+ */
+ public abstract void setLine(double x1, double y1, double x2, double y2);
+
+ /**
+ * Set the coordinates to the given points.
+ *
+ * @param p1 the first point
+ * @param p2 the second point
+ * @throws NullPointerException if either point is null
+ */
+ public void setLine(Point2D p1, Point2D p2)
+ {
+ setLine(p1.getX(), p1.getY(), p2.getX(), p2.getY());
+ }
+
+ /**
+ * Set the coordinates to those of the given line.
+ *
+ * @param l the line to copy
+ * @throws NullPointerException if l is null
+ */
+ public void setLine(Line2D l)
+ {
+ setLine(l.getX1(), l.getY1(), l.getX2(), l.getY2());
+ }
+
+ /**
+ * Computes the relative rotation direction needed to pivot the line about
+ * the first point in order to have the second point colinear with point p.
+ * Because of floating point rounding, don't expect this to be a perfect
+ * measure of colinearity. The answer is 1 if the line has a shorter rotation
+ * in the direction of the positive X axis to the negative Y axis
+ * (counter-clockwise in the default Java coordinate system), or -1 if the
+ * shortest rotation is in the opposite direction (clockwise). If p
+ * is already colinear, the return value is -1 if it lies beyond the first
+ * point, 0 if it lies in the segment, or 1 if it lies beyond the second
+ * point. If the first and second point are coincident, this returns 0.
+ *
+ * @param x1 the first x coordinate
+ * @param y1 the first y coordinate
+ * @param x2 the second x coordinate
+ * @param y2 the second y coordinate
+ * @param px the reference x coordinate
+ * @param py the reference y coordinate
+ * @return the relative rotation direction
+ */
+ public static int relativeCCW(double x1, double y1, double x2, double y2,
+ double px, double py)
+ {
+ if ((x1 == x2 && y1 == y2)
+ || (x1 == px && y1 == py))
+ return 0; // Coincident points.
+ // Translate to the origin.
+ x2 -= x1;
+ y2 -= y1;
+ px -= x1;
+ py -= y1;
+ double slope2 = y2 / x2;
+ double slopep = py / px;
+ if (slope2 == slopep || (x2 == 0 && px == 0))
+ return y2 > 0 // Colinear.
+ ? (py < 0 ? -1 : py > y2 ? 1 : 0)
+ : (py > 0 ? -1 : py < y2 ? 1 : 0);
+ if (x2 >= 0 && slope2 >= 0)
+ return px >= 0 // Quadrant 1.
+ ? (slope2 > slopep ? 1 : -1)
+ : (slope2 < slopep ? 1 : -1);
+ if (y2 > 0)
+ return px < 0 // Quadrant 2.
+ ? (slope2 > slopep ? 1 : -1)
+ : (slope2 < slopep ? 1 : -1);
+ if (slope2 >= 0.0)
+ return px >= 0 // Quadrant 3.
+ ? (slope2 < slopep ? 1 : -1)
+ : (slope2 > slopep ? 1 : -1);
+ return px < 0 // Quadrant 4.
+ ? (slope2 < slopep ? 1 : -1)
+ : (slope2 > slopep ? 1 : -1);
+ }
+
+ /**
+ * Computes the relative rotation direction needed to pivot this line about
+ * the first point in order to have the second point colinear with point p.
+ * Because of floating point rounding, don't expect this to be a perfect
+ * measure of colinearity. The answer is 1 if the line has a shorter rotation
+ * in the direction of the positive X axis to the negative Y axis
+ * (counter-clockwise in the default Java coordinate system), or -1 if the
+ * shortest rotation is in the opposite direction (clockwise). If p
+ * is already colinear, the return value is -1 if it lies beyond the first
+ * point, 0 if it lies in the segment, or 1 if it lies beyond the second
+ * point. If the first and second point are coincident, this returns 0.
+ *
+ * @param px the reference x coordinate
+ * @param py the reference y coordinate
+ * @return the relative rotation direction
+ * @see #relativeCCW(double, double, double, double, double, double)
+ */
+ public int relativeCCW(double px, double py)
+ {
+ return relativeCCW(getX1(), getY1(), getX2(), getY2(), px, py);
+ }
+
+ /**
+ * Computes the relative rotation direction needed to pivot this line about
+ * the first point in order to have the second point colinear with point p.
+ * Because of floating point rounding, don't expect this to be a perfect
+ * measure of colinearity. The answer is 1 if the line has a shorter rotation
+ * in the direction of the positive X axis to the negative Y axis
+ * (counter-clockwise in the default Java coordinate system), or -1 if the
+ * shortest rotation is in the opposite direction (clockwise). If p
+ * is already colinear, the return value is -1 if it lies beyond the first
+ * point, 0 if it lies in the segment, or 1 if it lies beyond the second
+ * point. If the first and second point are coincident, this returns 0.
+ *
+ * @param p the reference point
+ * @return the relative rotation direction
+ * @throws NullPointerException if p is null
+ * @see #relativeCCW(double, double, double, double, double, double)
+ */
+ public int relativeCCW(Point2D p)
+ {
+ return relativeCCW(getX1(), getY1(), getX2(), getY2(), p.getX(), p.getY());
+ }
+
+ /**
+ * Computes twice the (signed) area of the triangle defined by the three
+ * points. This method is used for intersection testing.
+ *
+ * @param x1 the x-coordinate of the first point.
+ * @param y1 the y-coordinate of the first point.
+ * @param x2 the x-coordinate of the second point.
+ * @param y2 the y-coordinate of the second point.
+ * @param x3 the x-coordinate of the third point.
+ * @param y3 the y-coordinate of the third point.
+ *
+ * @return Twice the area.
+ */
+ private static double area2(double x1, double y1,
+ double x2, double y2,
+ double x3, double y3)
+ {
+ return (x2 - x1) * (y3 - y1) - (x3 - x1) * (y2 - y1);
+ }
+
+ /**
+ * Returns <code>true</code> if (x3, y3) lies between (x1, y1) and (x2, y2),
+ * and false otherwise, This test assumes that the three points are
+ * collinear, and is used for intersection testing.
+ *
+ * @param x1 the x-coordinate of the first point.
+ * @param y1 the y-coordinate of the first point.
+ * @param x2 the x-coordinate of the second point.
+ * @param y2 the y-coordinate of the second point.
+ * @param x3 the x-coordinate of the third point.
+ * @param y3 the y-coordinate of the third point.
+ *
+ * @return A boolean.
+ */
+ private static boolean between(double x1, double y1,
+ double x2, double y2,
+ double x3, double y3)
+ {
+ if (x1 != x2) {
+ return (x1 <= x3 && x3 <= x2) || (x1 >= x3 && x3 >= x2);
+ }
+ else {
+ return (y1 <= y3 && y3 <= y2) || (y1 >= y3 && y3 >= y2);
+ }
+ }
+
+ /**
+ * Test if the line segment (x1,y1)-&gt;(x2,y2) intersects the line segment
+ * (x3,y3)-&gt;(x4,y4).
+ *
+ * @param x1 the first x coordinate of the first segment
+ * @param y1 the first y coordinate of the first segment
+ * @param x2 the second x coordinate of the first segment
+ * @param y2 the second y coordinate of the first segment
+ * @param x3 the first x coordinate of the second segment
+ * @param y3 the first y coordinate of the second segment
+ * @param x4 the second x coordinate of the second segment
+ * @param y4 the second y coordinate of the second segment
+ * @return true if the segments intersect
+ */
+ public static boolean linesIntersect(double x1, double y1,
+ double x2, double y2,
+ double x3, double y3,
+ double x4, double y4)
+ {
+ double a1, a2, a3, a4;
+
+ // deal with special cases
+ if ((a1 = area2(x1, y1, x2, y2, x3, y3)) == 0.0)
+ {
+ // check if p3 is between p1 and p2 OR
+ // p4 is collinear also AND either between p1 and p2 OR at opposite ends
+ if (between(x1, y1, x2, y2, x3, y3))
+ {
+ return true;
+ }
+ else
+ {
+ if (area2(x1, y1, x2, y2, x4, y4) == 0.0)
+ {
+ return between(x3, y3, x4, y4, x1, y1)
+ || between (x3, y3, x4, y4, x2, y2);
+ }
+ else {
+ return false;
+ }
+ }
+ }
+ else if ((a2 = area2(x1, y1, x2, y2, x4, y4)) == 0.0)
+ {
+ // check if p4 is between p1 and p2 (we already know p3 is not
+ // collinear)
+ return between(x1, y1, x2, y2, x4, y4);
+ }
+
+ if ((a3 = area2(x3, y3, x4, y4, x1, y1)) == 0.0) {
+ // check if p1 is between p3 and p4 OR
+ // p2 is collinear also AND either between p1 and p2 OR at opposite ends
+ if (between(x3, y3, x4, y4, x1, y1)) {
+ return true;
+ }
+ else {
+ if (area2(x3, y3, x4, y4, x2, y2) == 0.0) {
+ return between(x1, y1, x2, y2, x3, y3)
+ || between (x1, y1, x2, y2, x4, y4);
+ }
+ else {
+ return false;
+ }
+ }
+ }
+ else if ((a4 = area2(x3, y3, x4, y4, x2, y2)) == 0.0) {
+ // check if p2 is between p3 and p4 (we already know p1 is not
+ // collinear)
+ return between(x3, y3, x4, y4, x2, y2);
+ }
+ else { // test for regular intersection
+ return ((a1 > 0.0) ^ (a2 > 0.0)) && ((a3 > 0.0) ^ (a4 > 0.0));
+ }
+ }
+
+ /**
+ * Test if this line intersects the line given by (x1,y1)-&gt;(x2,y2).
+ *
+ * @param x1 the first x coordinate of the other segment
+ * @param y1 the first y coordinate of the other segment
+ * @param x2 the second x coordinate of the other segment
+ * @param y2 the second y coordinate of the other segment
+ * @return true if the segments intersect
+ * @see #linesIntersect(double, double, double, double,
+ * double, double, double, double)
+ */
+ public boolean intersectsLine(double x1, double y1, double x2, double y2)
+ {
+ return linesIntersect(getX1(), getY1(), getX2(), getY2(),
+ x1, y1, x2, y2);
+ }
+
+ /**
+ * Test if this line intersects the given line.
+ *
+ * @param l the other segment
+ * @return true if the segments intersect
+ * @throws NullPointerException if l is null
+ * @see #linesIntersect(double, double, double, double,
+ * double, double, double, double)
+ */
+ public boolean intersectsLine(Line2D l)
+ {
+ return linesIntersect(getX1(), getY1(), getX2(), getY2(),
+ l.getX1(), l.getY1(), l.getX2(), l.getY2());
+ }
+
+ /**
+ * Measures the square of the shortest distance from the reference point
+ * to a point on the line segment. If the point is on the segment, the
+ * result will be 0.
+ *
+ * @param x1 the first x coordinate of the segment
+ * @param y1 the first y coordinate of the segment
+ * @param x2 the second x coordinate of the segment
+ * @param y2 the second y coordinate of the segment
+ * @param px the x coordinate of the point
+ * @param py the y coordinate of the point
+ * @return the square of the distance from the point to the segment
+ * @see #ptSegDist(double, double, double, double, double, double)
+ * @see #ptLineDistSq(double, double, double, double, double, double)
+ */
+ public static double ptSegDistSq(double x1, double y1, double x2, double y2,
+ double px, double py)
+ {
+ double pd2 = (x1 - x2) * (x1 - x2) + (y1 - y2) * (y1 - y2);
+
+ double x, y;
+ if (pd2 == 0)
+ {
+ // Points are coincident.
+ x = x1;
+ y = y2;
+ }
+ else
+ {
+ double u = ((px - x1) * (x2 - x1) + (py - y1) * (y2 - y1)) / pd2;
+
+ if (u < 0)
+ {
+ // "Off the end"
+ x = x1;
+ y = y1;
+ }
+ else if (u > 1.0)
+ {
+ x = x2;
+ y = y2;
+ }
+ else
+ {
+ x = x1 + u * (x2 - x1);
+ y = y1 + u * (y2 - y1);
+ }
+ }
+
+ return (x - px) * (x - px) + (y - py) * (y - py);
+ }
+
+ /**
+ * Measures the shortest distance from the reference point to a point on
+ * the line segment. If the point is on the segment, the result will be 0.
+ *
+ * @param x1 the first x coordinate of the segment
+ * @param y1 the first y coordinate of the segment
+ * @param x2 the second x coordinate of the segment
+ * @param y2 the second y coordinate of the segment
+ * @param px the x coordinate of the point
+ * @param py the y coordinate of the point
+ * @return the distance from the point to the segment
+ * @see #ptSegDistSq(double, double, double, double, double, double)
+ * @see #ptLineDist(double, double, double, double, double, double)
+ */
+ public static double ptSegDist(double x1, double y1, double x2, double y2,
+ double px, double py)
+ {
+ return Math.sqrt(ptSegDistSq(x1, y1, x2, y2, px, py));
+ }
+
+ /**
+ * Measures the square of the shortest distance from the reference point
+ * to a point on this line segment. If the point is on the segment, the
+ * result will be 0.
+ *
+ * @param px the x coordinate of the point
+ * @param py the y coordinate of the point
+ * @return the square of the distance from the point to the segment
+ * @see #ptSegDistSq(double, double, double, double, double, double)
+ */
+ public double ptSegDistSq(double px, double py)
+ {
+ return ptSegDistSq(getX1(), getY1(), getX2(), getY2(), px, py);
+ }
+
+ /**
+ * Measures the square of the shortest distance from the reference point
+ * to a point on this line segment. If the point is on the segment, the
+ * result will be 0.
+ *
+ * @param p the point
+ * @return the square of the distance from the point to the segment
+ * @throws NullPointerException if p is null
+ * @see #ptSegDistSq(double, double, double, double, double, double)
+ */
+ public double ptSegDistSq(Point2D p)
+ {
+ return ptSegDistSq(getX1(), getY1(), getX2(), getY2(), p.getX(), p.getY());
+ }
+
+ /**
+ * Measures the shortest distance from the reference point to a point on
+ * this line segment. If the point is on the segment, the result will be 0.
+ *
+ * @param px the x coordinate of the point
+ * @param py the y coordinate of the point
+ * @return the distance from the point to the segment
+ * @see #ptSegDist(double, double, double, double, double, double)
+ */
+ public double ptSegDist(double px, double py)
+ {
+ return ptSegDist(getX1(), getY1(), getX2(), getY2(), px, py);
+ }
+
+ /**
+ * Measures the shortest distance from the reference point to a point on
+ * this line segment. If the point is on the segment, the result will be 0.
+ *
+ * @param p the point
+ * @return the distance from the point to the segment
+ * @throws NullPointerException if p is null
+ * @see #ptSegDist(double, double, double, double, double, double)
+ */
+ public double ptSegDist(Point2D p)
+ {
+ return ptSegDist(getX1(), getY1(), getX2(), getY2(), p.getX(), p.getY());
+ }
+
+ /**
+ * Measures the square of the shortest distance from the reference point
+ * to a point on the infinite line extended from the segment. If the point
+ * is on the segment, the result will be 0. If the segment is length 0,
+ * the distance is to the common endpoint.
+ *
+ * @param x1 the first x coordinate of the segment
+ * @param y1 the first y coordinate of the segment
+ * @param x2 the second x coordinate of the segment
+ * @param y2 the second y coordinate of the segment
+ * @param px the x coordinate of the point
+ * @param py the y coordinate of the point
+ * @return the square of the distance from the point to the extended line
+ * @see #ptLineDist(double, double, double, double, double, double)
+ * @see #ptSegDistSq(double, double, double, double, double, double)
+ */
+ public static double ptLineDistSq(double x1, double y1, double x2, double y2,
+ double px, double py)
+ {
+ double pd2 = (x1 - x2) * (x1 - x2) + (y1 - y2) * (y1 - y2);
+
+ double x, y;
+ if (pd2 == 0)
+ {
+ // Points are coincident.
+ x = x1;
+ y = y2;
+ }
+ else
+ {
+ double u = ((px - x1) * (x2 - x1) + (py - y1) * (y2 - y1)) / pd2;
+ x = x1 + u * (x2 - x1);
+ y = y1 + u * (y2 - y1);
+ }
+
+ return (x - px) * (x - px) + (y - py) * (y - py);
+ }
+
+ /**
+ * Measures the shortest distance from the reference point to a point on
+ * the infinite line extended from the segment. If the point is on the
+ * segment, the result will be 0. If the segment is length 0, the distance
+ * is to the common endpoint.
+ *
+ * @param x1 the first x coordinate of the segment
+ * @param y1 the first y coordinate of the segment
+ * @param x2 the second x coordinate of the segment
+ * @param y2 the second y coordinate of the segment
+ * @param px the x coordinate of the point
+ * @param py the y coordinate of the point
+ * @return the distance from the point to the extended line
+ * @see #ptLineDistSq(double, double, double, double, double, double)
+ * @see #ptSegDist(double, double, double, double, double, double)
+ */
+ public static double ptLineDist(double x1, double y1,
+ double x2, double y2,
+ double px, double py)
+ {
+ return Math.sqrt(ptLineDistSq(x1, y1, x2, y2, px, py));
+ }
+
+ /**
+ * Measures the square of the shortest distance from the reference point
+ * to a point on the infinite line extended from this segment. If the point
+ * is on the segment, the result will be 0. If the segment is length 0,
+ * the distance is to the common endpoint.
+ *
+ * @param px the x coordinate of the point
+ * @param py the y coordinate of the point
+ * @return the square of the distance from the point to the extended line
+ * @see #ptLineDistSq(double, double, double, double, double, double)
+ */
+ public double ptLineDistSq(double px, double py)
+ {
+ return ptLineDistSq(getX1(), getY1(), getX2(), getY2(), px, py);
+ }
+
+ /**
+ * Measures the square of the shortest distance from the reference point
+ * to a point on the infinite line extended from this segment. If the point
+ * is on the segment, the result will be 0. If the segment is length 0,
+ * the distance is to the common endpoint.
+ *
+ * @param p the point
+ * @return the square of the distance from the point to the extended line
+ * @throws NullPointerException if p is null
+ * @see #ptLineDistSq(double, double, double, double, double, double)
+ */
+ public double ptLineDistSq(Point2D p)
+ {
+ return ptLineDistSq(getX1(), getY1(), getX2(), getY2(),
+ p.getX(), p.getY());
+ }
+
+ /**
+ * Measures the shortest distance from the reference point to a point on
+ * the infinite line extended from this segment. If the point is on the
+ * segment, the result will be 0. If the segment is length 0, the distance
+ * is to the common endpoint.
+ *
+ * @param px the x coordinate of the point
+ * @param py the y coordinate of the point
+ * @return the distance from the point to the extended line
+ * @see #ptLineDist(double, double, double, double, double, double)
+ */
+ public double ptLineDist(double px, double py)
+ {
+ return ptLineDist(getX1(), getY1(), getX2(), getY2(), px, py);
+ }
+
+ /**
+ * Measures the shortest distance from the reference point to a point on
+ * the infinite line extended from this segment. If the point is on the
+ * segment, the result will be 0. If the segment is length 0, the distance
+ * is to the common endpoint.
+ *
+ * @param p the point
+ * @return the distance from the point to the extended line
+ * @throws NullPointerException if p is null
+ * @see #ptLineDist(double, double, double, double, double, double)
+ */
+ public double ptLineDist(Point2D p)
+ {
+ return ptLineDist(getX1(), getY1(), getX2(), getY2(), p.getX(), p.getY());
+ }
+
+ /**
+ * Test if a point is contained inside the line. Since a line has no area,
+ * this returns false.
+ *
+ * @param x the x coordinate
+ * @param y the y coordinate
+ * @return false; the line does not contain points
+ */
+ public boolean contains(double x, double y)
+ {
+ return false;
+ }
+
+ /**
+ * Test if a point is contained inside the line. Since a line has no area,
+ * this returns false.
+ *
+ * @param p the point
+ * @return false; the line does not contain points
+ */
+ public boolean contains(Point2D p)
+ {
+ return false;
+ }
+
+ /**
+ * Tests if this line intersects the interior of the specified rectangle.
+ *
+ * @param x the x coordinate of the rectangle
+ * @param y the y coordinate of the rectangle
+ * @param w the width of the rectangle
+ * @param h the height of the rectangle
+ * @return true if the line intersects the rectangle
+ */
+ public boolean intersects(double x, double y, double w, double h)
+ {
+ if (w <= 0 || h <= 0)
+ return false;
+ double x1 = getX1();
+ double y1 = getY1();
+ double x2 = getX2();
+ double y2 = getY2();
+
+ if (x1 >= x && x1 <= x + w && y1 >= y && y1 <= y + h)
+ return true;
+ if (x2 >= x && x2 <= x + w && y2 >= y && y2 <= y + h)
+ return true;
+
+ double x3 = x + w;
+ double y3 = y + h;
+
+ return (linesIntersect(x1, y1, x2, y2, x, y, x, y3)
+ || linesIntersect(x1, y1, x2, y2, x, y3, x3, y3)
+ || linesIntersect(x1, y1, x2, y2, x3, y3, x3, y)
+ || linesIntersect(x1, y1, x2, y2, x3, y, x, y));
+ }
+
+ /**
+ * Tests if this line intersects the interior of the specified rectangle.
+ *
+ * @param r the rectangle
+ * @return true if the line intersects the rectangle
+ * @throws NullPointerException if r is null
+ */
+ public boolean intersects(Rectangle2D r)
+ {
+ return intersects(r.getX(), r.getY(), r.getWidth(), r.getHeight());
+ }
+
+ /**
+ * Tests if the line contains a rectangle. Since lines have no area, this
+ * always returns false.
+ *
+ * @param x the x coordinate of the rectangle
+ * @param y the y coordinate of the rectangle
+ * @param w the width of the rectangle
+ * @param h the height of the rectangle
+ * @return false; the line does not contain points
+ */
+ public boolean contains(double x, double y, double w, double h)
+ {
+ return false;
+ }
+
+ /**
+ * Tests if the line contains a rectangle. Since lines have no area, this
+ * always returns false.
+ *
+ * @param r the rectangle
+ * @return false; the line does not contain points
+ */
+ public boolean contains(Rectangle2D r)
+ {
+ return false;
+ }
+
+ /**
+ * Gets a bounding box (not necessarily minimal) for this line.
+ *
+ * @return the integer bounding box
+ * @see #getBounds2D()
+ */
+ public Rectangle getBounds()
+ {
+ return getBounds2D().getBounds();
+ }
+
+ /**
+ * Return a path iterator, possibly applying a transform on the result. This
+ * iterator is not threadsafe.
+ *
+ * @param at the transform, or null
+ * @return a new path iterator
+ */
+ public PathIterator getPathIterator(final AffineTransform at)
+ {
+ return new PathIterator()
+ {
+ /** Current coordinate. */
+ private int current = 0;
+
+ public int getWindingRule()
+ {
+ return WIND_NON_ZERO;
+ }
+
+ public boolean isDone()
+ {
+ return current >= 2;
+ }
+
+ public void next()
+ {
+ current++;
+ }
+
+ public int currentSegment(float[] coords)
+ {
+ int result;
+ switch (current)
+ {
+ case 0:
+ coords[0] = (float) getX1();
+ coords[1] = (float) getY1();
+ result = SEG_MOVETO;
+ break;
+ case 1:
+ coords[0] = (float) getX2();
+ coords[1] = (float) getY2();
+ result = SEG_LINETO;
+ break;
+ default:
+ throw new NoSuchElementException("line iterator out of bounds");
+ }
+ if (at != null)
+ at.transform(coords, 0, coords, 0, 1);
+ return result;
+ }
+
+ public int currentSegment(double[] coords)
+ {
+ int result;
+ switch (current)
+ {
+ case 0:
+ coords[0] = getX1();
+ coords[1] = getY1();
+ result = SEG_MOVETO;
+ break;
+ case 1:
+ coords[0] = getX2();
+ coords[1] = getY2();
+ result = SEG_LINETO;
+ break;
+ default:
+ throw new NoSuchElementException("line iterator out of bounds");
+ }
+ if (at != null)
+ at.transform(coords, 0, coords, 0, 1);
+ return result;
+ }
+ };
+ }
+
+ /**
+ * Return a flat path iterator, possibly applying a transform on the result.
+ * This iterator is not threadsafe.
+ *
+ * @param at the transform, or null
+ * @param flatness ignored, since lines are already flat
+ * @return a new path iterator
+ * @see #getPathIterator(AffineTransform)
+ */
+ public PathIterator getPathIterator(AffineTransform at, double flatness)
+ {
+ return getPathIterator(at);
+ }
+
+ /**
+ * Create a new line of the same run-time type with the same contents as
+ * this one.
+ *
+ * @return the clone
+ *
+ * @exception OutOfMemoryError If there is not enough memory available.
+ *
+ * @since 1.2
+ */
+ public Object clone()
+ {
+ try
+ {
+ return super.clone();
+ }
+ catch (CloneNotSupportedException e)
+ {
+ throw (Error) new InternalError().initCause(e); // Impossible
+ }
+ }
+
+ /**
+ * This class defines a point in <code>double</code> precision.
+ *
+ * @author Eric Blake (ebb9@email.byu.edu)
+ * @since 1.2
+ * @status updated to 1.4
+ */
+ public static class Double extends Line2D
+ {
+ /** The x coordinate of the first point. */
+ public double x1;
+
+ /** The y coordinate of the first point. */
+ public double y1;
+
+ /** The x coordinate of the second point. */
+ public double x2;
+
+ /** The y coordinate of the second point. */
+ public double y2;
+
+ /**
+ * Construct the line segment (0,0)-&gt;(0,0).
+ */
+ public Double()
+ {
+ }
+
+ /**
+ * Construct the line segment with the specified points.
+ *
+ * @param x1 the x coordinate of the first point
+ * @param y1 the y coordinate of the first point
+ * @param x2 the x coordinate of the second point
+ * @param y2 the y coordinate of the second point
+ */
+ public Double(double x1, double y1, double x2, double y2)
+ {
+ this.x1 = x1;
+ this.y1 = y1;
+ this.x2 = x2;
+ this.y2 = y2;
+ }
+
+ /**
+ * Construct the line segment with the specified points.
+ *
+ * @param p1 the first point
+ * @param p2 the second point
+ * @throws NullPointerException if either point is null
+ */
+ public Double(Point2D p1, Point2D p2)
+ {
+ x1 = p1.getX();
+ y1 = p1.getY();
+ x2 = p2.getX();
+ y2 = p2.getY();
+ }
+
+ /**
+ * Return the x coordinate of the first point.
+ *
+ * @return the value of x1
+ */
+ public double getX1()
+ {
+ return x1;
+ }
+
+ /**
+ * Return the y coordinate of the first point.
+ *
+ * @return the value of y1
+ */
+ public double getY1()
+ {
+ return y1;
+ }
+
+ /**
+ * Return the first point.
+ *
+ * @return the point (x1,y1)
+ */
+ public Point2D getP1()
+ {
+ return new Point2D.Double(x1, y1);
+ }
+
+ /**
+ * Return the x coordinate of the second point.
+ *
+ * @return the value of x2
+ */
+ public double getX2()
+ {
+ return x2;
+ }
+
+ /**
+ * Return the y coordinate of the second point.
+ *
+ * @return the value of y2
+ */
+ public double getY2()
+ {
+ return y2;
+ }
+
+ /**
+ * Return the second point.
+ *
+ * @return the point (x2,y2)
+ */
+ public Point2D getP2()
+ {
+ return new Point2D.Double(x2, y2);
+ }
+
+ /**
+ * Set this line to the given points.
+ *
+ * @param x1 the new x coordinate of the first point
+ * @param y1 the new y coordinate of the first point
+ * @param x2 the new x coordinate of the second point
+ * @param y2 the new y coordinate of the second point
+ */
+ public void setLine(double x1, double y1, double x2, double y2)
+ {
+ this.x1 = x1;
+ this.y1 = y1;
+ this.x2 = x2;
+ this.y2 = y2;
+ }
+
+ /**
+ * Return the exact bounds of this line segment.
+ *
+ * @return the bounding box
+ */
+ public Rectangle2D getBounds2D()
+ {
+ double x = Math.min(x1, x2);
+ double y = Math.min(y1, y2);
+ double w = Math.abs(x1 - x2);
+ double h = Math.abs(y1 - y2);
+ return new Rectangle2D.Double(x, y, w, h);
+ }
+ } // class Double
+
+ /**
+ * This class defines a point in <code>float</code> precision.
+ *
+ * @author Eric Blake (ebb9@email.byu.edu)
+ * @since 1.2
+ * @status updated to 1.4
+ */
+ public static class Float extends Line2D
+ {
+ /** The x coordinate of the first point. */
+ public float x1;
+
+ /** The y coordinate of the first point. */
+ public float y1;
+
+ /** The x coordinate of the second point. */
+ public float x2;
+
+ /** The y coordinate of the second point. */
+ public float y2;
+
+ /**
+ * Construct the line segment (0,0)-&gt;(0,0).
+ */
+ public Float()
+ {
+ }
+
+ /**
+ * Construct the line segment with the specified points.
+ *
+ * @param x1 the x coordinate of the first point
+ * @param y1 the y coordinate of the first point
+ * @param x2 the x coordinate of the second point
+ * @param y2 the y coordinate of the second point
+ */
+ public Float(float x1, float y1, float x2, float y2)
+ {
+ this.x1 = x1;
+ this.y1 = y1;
+ this.x2 = x2;
+ this.y2 = y2;
+ }
+
+ /**
+ * Construct the line segment with the specified points.
+ *
+ * @param p1 the first point
+ * @param p2 the second point
+ * @throws NullPointerException if either point is null
+ */
+ public Float(Point2D p1, Point2D p2)
+ {
+ x1 = (float) p1.getX();
+ y1 = (float) p1.getY();
+ x2 = (float) p2.getX();
+ y2 = (float) p2.getY();
+ }
+
+ /**
+ * Return the x coordinate of the first point.
+ *
+ * @return the value of x1
+ */
+ public double getX1()
+ {
+ return x1;
+ }
+
+ /**
+ * Return the y coordinate of the first point.
+ *
+ * @return the value of y1
+ */
+ public double getY1()
+ {
+ return y1;
+ }
+
+ /**
+ * Return the first point.
+ *
+ * @return the point (x1,y1)
+ */
+ public Point2D getP1()
+ {
+ return new Point2D.Float(x1, y1);
+ }
+
+ /**
+ * Return the x coordinate of the second point.
+ *
+ * @return the value of x2
+ */
+ public double getX2()
+ {
+ return x2;
+ }
+
+ /**
+ * Return the y coordinate of the second point.
+ *
+ * @return the value of y2
+ */
+ public double getY2()
+ {
+ return y2;
+ }
+
+ /**
+ * Return the second point.
+ *
+ * @return the point (x2,y2)
+ */
+ public Point2D getP2()
+ {
+ return new Point2D.Float(x2, y2);
+ }
+
+ /**
+ * Set this line to the given points.
+ *
+ * @param x1 the new x coordinate of the first point
+ * @param y1 the new y coordinate of the first point
+ * @param x2 the new x coordinate of the second point
+ * @param y2 the new y coordinate of the second point
+ */
+ public void setLine(double x1, double y1, double x2, double y2)
+ {
+ this.x1 = (float) x1;
+ this.y1 = (float) y1;
+ this.x2 = (float) x2;
+ this.y2 = (float) y2;
+ }
+
+ /**
+ * Set this line to the given points.
+ *
+ * @param x1 the new x coordinate of the first point
+ * @param y1 the new y coordinate of the first point
+ * @param x2 the new x coordinate of the second point
+ * @param y2 the new y coordinate of the second point
+ */
+ public void setLine(float x1, float y1, float x2, float y2)
+ {
+ this.x1 = x1;
+ this.y1 = y1;
+ this.x2 = x2;
+ this.y2 = y2;
+ }
+
+ /**
+ * Return the exact bounds of this line segment.
+ *
+ * @return the bounding box
+ */
+ public Rectangle2D getBounds2D()
+ {
+ float x = Math.min(x1, x2);
+ float y = Math.min(y1, y2);
+ float w = Math.abs(x1 - x2);
+ float h = Math.abs(y1 - y2);
+ return new Rectangle2D.Float(x, y, w, h);
+ }
+ } // class Float
+} // class Line2D