summaryrefslogtreecommitdiff
path: root/libjava/classpath/java/awt/image/AffineTransformOp.java
diff options
context:
space:
mode:
authorupstream source tree <ports@midipix.org>2015-03-15 20:14:05 -0400
committerupstream source tree <ports@midipix.org>2015-03-15 20:14:05 -0400
commit554fd8c5195424bdbcabf5de30fdc183aba391bd (patch)
tree976dc5ab7fddf506dadce60ae936f43f58787092 /libjava/classpath/java/awt/image/AffineTransformOp.java
downloadcbb-gcc-4.6.4-554fd8c5195424bdbcabf5de30fdc183aba391bd.tar.bz2
cbb-gcc-4.6.4-554fd8c5195424bdbcabf5de30fdc183aba391bd.tar.xz
obtained gcc-4.6.4.tar.bz2 from upstream website;upstream
verified gcc-4.6.4.tar.bz2.sig; imported gcc-4.6.4 source tree from verified upstream tarball. downloading a git-generated archive based on the 'upstream' tag should provide you with a source tree that is binary identical to the one extracted from the above tarball. if you have obtained the source via the command 'git clone', however, do note that line-endings of files in your working directory might differ from line-endings of the respective files in the upstream repository.
Diffstat (limited to 'libjava/classpath/java/awt/image/AffineTransformOp.java')
-rw-r--r--libjava/classpath/java/awt/image/AffineTransformOp.java608
1 files changed, 608 insertions, 0 deletions
diff --git a/libjava/classpath/java/awt/image/AffineTransformOp.java b/libjava/classpath/java/awt/image/AffineTransformOp.java
new file mode 100644
index 000000000..460804f90
--- /dev/null
+++ b/libjava/classpath/java/awt/image/AffineTransformOp.java
@@ -0,0 +1,608 @@
+/* AffineTransformOp.java -- This class performs affine
+ transformation between two images or rasters in 2 dimensions.
+ Copyright (C) 2004, 2006 Free Software Foundation
+
+This file is part of GNU Classpath.
+
+GNU Classpath is free software; you can redistribute it and/or modify
+it under the terms of the GNU General Public License as published by
+the Free Software Foundation; either version 2, or (at your option)
+any later version.
+
+GNU Classpath is distributed in the hope that it will be useful, but
+WITHOUT ANY WARRANTY; without even the implied warranty of
+MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
+General Public License for more details.
+
+You should have received a copy of the GNU General Public License
+along with GNU Classpath; see the file COPYING. If not, write to the
+Free Software Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA
+02110-1301 USA.
+
+Linking this library statically or dynamically with other modules is
+making a combined work based on this library. Thus, the terms and
+conditions of the GNU General Public License cover the whole
+combination.
+
+As a special exception, the copyright holders of this library give you
+permission to link this library with independent modules to produce an
+executable, regardless of the license terms of these independent
+modules, and to copy and distribute the resulting executable under
+terms of your choice, provided that you also meet, for each linked
+independent module, the terms and conditions of the license of that
+module. An independent module is a module which is not derived from
+or based on this library. If you modify this library, you may extend
+this exception to your version of the library, but you are not
+obligated to do so. If you do not wish to do so, delete this
+exception statement from your version. */
+
+package java.awt.image;
+
+import java.awt.Graphics2D;
+import java.awt.Point;
+import java.awt.Rectangle;
+import java.awt.RenderingHints;
+import java.awt.geom.AffineTransform;
+import java.awt.geom.NoninvertibleTransformException;
+import java.awt.geom.Point2D;
+import java.awt.geom.Rectangle2D;
+import java.util.Arrays;
+
+/**
+ * AffineTransformOp performs matrix-based transformations (translations,
+ * scales, flips, rotations, and shears).
+ *
+ * If interpolation is required, nearest neighbour, bilinear, and bicubic
+ * methods are available.
+ *
+ * @author Olga Rodimina (rodimina@redhat.com)
+ * @author Francis Kung (fkung@redhat.com)
+ */
+public class AffineTransformOp implements BufferedImageOp, RasterOp
+{
+ public static final int TYPE_NEAREST_NEIGHBOR = 1;
+
+ public static final int TYPE_BILINEAR = 2;
+
+ /**
+ * @since 1.5.0
+ */
+ public static final int TYPE_BICUBIC = 3;
+
+ private AffineTransform transform;
+ private RenderingHints hints;
+
+ /**
+ * Construct AffineTransformOp with the given xform and interpolationType.
+ * Interpolation type can be TYPE_BILINEAR, TYPE_BICUBIC or
+ * TYPE_NEAREST_NEIGHBOR.
+ *
+ * @param xform AffineTransform that will applied to the source image
+ * @param interpolationType type of interpolation used
+ * @throws ImagingOpException if the transform matrix is noninvertible
+ */
+ public AffineTransformOp (AffineTransform xform, int interpolationType)
+ {
+ this.transform = xform;
+ if (xform.getDeterminant() == 0)
+ throw new ImagingOpException(null);
+
+ switch (interpolationType)
+ {
+ case TYPE_BILINEAR:
+ hints = new RenderingHints (RenderingHints.KEY_INTERPOLATION,
+ RenderingHints.VALUE_INTERPOLATION_BILINEAR);
+ break;
+ case TYPE_BICUBIC:
+ hints = new RenderingHints (RenderingHints.KEY_INTERPOLATION,
+ RenderingHints.VALUE_INTERPOLATION_BICUBIC);
+ break;
+ default:
+ hints = new RenderingHints (RenderingHints.KEY_INTERPOLATION,
+ RenderingHints.VALUE_INTERPOLATION_NEAREST_NEIGHBOR);
+ }
+ }
+
+ /**
+ * Construct AffineTransformOp with the given xform and rendering hints.
+ *
+ * @param xform AffineTransform that will applied to the source image
+ * @param hints rendering hints that will be used during transformation
+ * @throws ImagingOpException if the transform matrix is noninvertible
+ */
+ public AffineTransformOp (AffineTransform xform, RenderingHints hints)
+ {
+ this.transform = xform;
+ this.hints = hints;
+ if (xform.getDeterminant() == 0)
+ throw new ImagingOpException(null);
+ }
+
+ /**
+ * Creates a new BufferedImage with the size equal to that of the
+ * transformed image and the correct number of bands. The newly created
+ * image is created with the specified ColorModel.
+ * If a ColorModel is not specified, an appropriate ColorModel is used.
+ *
+ * @param src the source image.
+ * @param destCM color model for the destination image (can be null).
+ * @return a new compatible destination image.
+ */
+ public BufferedImage createCompatibleDestImage (BufferedImage src,
+ ColorModel destCM)
+ {
+ if (destCM != null)
+ return new BufferedImage(destCM,
+ createCompatibleDestRaster(src.getRaster()),
+ src.isAlphaPremultiplied(), null);
+
+ // This behaviour was determined by Mauve testcases, and is compatible
+ // with the reference implementation
+ if (src.getType() == BufferedImage.TYPE_INT_ARGB_PRE
+ || src.getType() == BufferedImage.TYPE_4BYTE_ABGR
+ || src.getType() == BufferedImage.TYPE_4BYTE_ABGR_PRE)
+ return new BufferedImage(src.getWidth(), src.getHeight(), src.getType());
+
+ else
+ return new BufferedImage(src.getWidth(), src.getHeight(),
+ BufferedImage.TYPE_INT_ARGB);
+ }
+
+ /**
+ * Creates a new WritableRaster with the size equal to the transformed
+ * source raster and correct number of bands .
+ *
+ * @param src the source raster.
+ * @throws RasterFormatException if resulting width or height of raster is 0.
+ * @return a new compatible raster.
+ */
+ public WritableRaster createCompatibleDestRaster (Raster src)
+ {
+ Rectangle2D rect = getBounds2D(src);
+
+ if (rect.getWidth() == 0 || rect.getHeight() == 0)
+ throw new RasterFormatException("width or height is 0");
+
+ return src.createCompatibleWritableRaster((int) rect.getWidth(),
+ (int) rect.getHeight());
+ }
+
+ /**
+ * Transforms source image using transform specified at the constructor.
+ * The resulting transformed image is stored in the destination image if one
+ * is provided; otherwise a new BufferedImage is created and returned.
+ *
+ * @param src source image
+ * @param dst destination image
+ * @throws IllegalArgumentException if the source and destination image are
+ * the same
+ * @return transformed source image.
+ */
+ public final BufferedImage filter (BufferedImage src, BufferedImage dst)
+ {
+ if (dst == src)
+ throw new IllegalArgumentException("src image cannot be the same as "
+ + "the dst image");
+
+ // If the destination image is null, then use a compatible BufferedImage
+ if (dst == null)
+ dst = createCompatibleDestImage(src, null);
+
+ Graphics2D gr = dst.createGraphics();
+ gr.setRenderingHints(hints);
+ gr.drawImage(src, transform, null);
+ return dst;
+ }
+
+ /**
+ * Transforms source raster using transform specified at the constructor.
+ * The resulting raster is stored in the destination raster if it is not
+ * null, otherwise a new raster is created and returned.
+ *
+ * @param src source raster
+ * @param dst destination raster
+ * @throws IllegalArgumentException if the source and destination are not
+ * compatible
+ * @return transformed raster.
+ */
+ public final WritableRaster filter(Raster src, WritableRaster dst)
+ {
+ // Initial checks
+ if (dst == src)
+ throw new IllegalArgumentException("src image cannot be the same as"
+ + " the dst image");
+
+ if (dst == null)
+ dst = createCompatibleDestRaster(src);
+
+ if (src.getNumBands() != dst.getNumBands())
+ throw new IllegalArgumentException("src and dst must have same number"
+ + " of bands");
+
+ // Optimization for rasters that can be represented in the RGB colormodel:
+ // wrap the rasters in images, and let Cairo do the transformation
+ if (ColorModel.getRGBdefault().isCompatibleSampleModel(src.getSampleModel())
+ && ColorModel.getRGBdefault().isCompatibleSampleModel(dst.getSampleModel()))
+ {
+ WritableRaster src2 = Raster.createWritableRaster(src.getSampleModel(),
+ src.getDataBuffer(),
+ new Point(src.getMinX(),
+ src.getMinY()));
+ BufferedImage iSrc = new BufferedImage(ColorModel.getRGBdefault(),
+ src2, false, null);
+ BufferedImage iDst = new BufferedImage(ColorModel.getRGBdefault(), dst,
+ false, null);
+
+ return filter(iSrc, iDst).getRaster();
+ }
+
+ // Otherwise, we need to do the transformation in java code...
+ // Create arrays to hold all the points
+ double[] dstPts = new double[dst.getHeight() * dst.getWidth() * 2];
+ double[] srcPts = new double[dst.getHeight() * dst.getWidth() * 2];
+
+ // Populate array with all points in the *destination* raster
+ int i = 0;
+ for (int x = 0; x < dst.getWidth(); x++)
+ {
+ for (int y = 0; y < dst.getHeight(); y++)
+ {
+ dstPts[i++] = x;
+ dstPts[i++] = y;
+ }
+ }
+ Rectangle srcbounds = src.getBounds();
+
+ // Use an inverse transform to map each point in the destination to
+ // a point in the source. Note that, while all points in the destination
+ // matrix are integers, this is not necessarily true for points in the
+ // source (hence why interpolation is required)
+ try
+ {
+ AffineTransform inverseTx = transform.createInverse();
+ inverseTx.transform(dstPts, 0, srcPts, 0, dstPts.length / 2);
+ }
+ catch (NoninvertibleTransformException e)
+ {
+ // Shouldn't happen since the constructor traps this
+ throw new ImagingOpException(e.getMessage());
+ }
+
+ // Different interpolation methods...
+ if (hints.containsValue(RenderingHints.VALUE_INTERPOLATION_NEAREST_NEIGHBOR))
+ filterNearest(src, dst, dstPts, srcPts);
+
+ else if (hints.containsValue(RenderingHints.VALUE_INTERPOLATION_BILINEAR))
+ filterBilinear(src, dst, dstPts, srcPts);
+
+ else // bicubic
+ filterBicubic(src, dst, dstPts, srcPts);
+
+ return dst;
+ }
+
+ /**
+ * Transforms source image using transform specified at the constructor and
+ * returns bounds of the transformed image.
+ *
+ * @param src image to be transformed
+ * @return bounds of the transformed image.
+ */
+ public final Rectangle2D getBounds2D (BufferedImage src)
+ {
+ return getBounds2D (src.getRaster());
+ }
+
+ /**
+ * Returns bounds of the transformed raster.
+ *
+ * @param src raster to be transformed
+ * @return bounds of the transformed raster.
+ */
+ public final Rectangle2D getBounds2D (Raster src)
+ {
+ return transform.createTransformedShape(src.getBounds()).getBounds2D();
+ }
+
+ /**
+ * Returns interpolation type used during transformations.
+ *
+ * @return interpolation type
+ */
+ public final int getInterpolationType ()
+ {
+ if (hints.containsValue(RenderingHints.VALUE_INTERPOLATION_BILINEAR))
+ return TYPE_BILINEAR;
+
+ else if (hints.containsValue(RenderingHints.VALUE_INTERPOLATION_BICUBIC))
+ return TYPE_BICUBIC;
+
+ else
+ return TYPE_NEAREST_NEIGHBOR;
+ }
+
+ /**
+ * Returns location of the transformed source point. The resulting point
+ * is stored in the dstPt if one is specified.
+ *
+ * @param srcPt point to be transformed
+ * @param dstPt destination point
+ * @return the location of the transformed source point.
+ */
+ public final Point2D getPoint2D (Point2D srcPt, Point2D dstPt)
+ {
+ return transform.transform (srcPt, dstPt);
+ }
+
+ /**
+ * Returns rendering hints that are used during transformation.
+ *
+ * @return the rendering hints used in this Op.
+ */
+ public final RenderingHints getRenderingHints ()
+ {
+ return hints;
+ }
+
+ /**
+ * Returns transform used in transformation between source and destination
+ * image.
+ *
+ * @return the transform used in this Op.
+ */
+ public final AffineTransform getTransform ()
+ {
+ return transform;
+ }
+
+ /**
+ * Perform nearest-neighbour filtering
+ *
+ * @param src the source raster
+ * @param dst the destination raster
+ * @param dpts array of points on the destination raster
+ * @param pts array of corresponding points on the source raster
+ */
+ private void filterNearest(Raster src, WritableRaster dst, double[] dpts,
+ double[] pts)
+ {
+ Rectangle srcbounds = src.getBounds();
+
+ // For all points on the destination raster, copy the value from the
+ // corrosponding (rounded) source point
+ for (int i = 0; i < dpts.length; i += 2)
+ {
+ int srcX = (int) Math.round(pts[i]) + src.getMinX();
+ int srcY = (int) Math.round(pts[i + 1]) + src.getMinY();
+
+ if (srcbounds.contains(srcX, srcY))
+ dst.setDataElements((int) dpts[i] + dst.getMinX(),
+ (int) dpts[i + 1] + dst.getMinY(),
+ src.getDataElements(srcX, srcY, null));
+ }
+ }
+
+ /**
+ * Perform bilinear filtering
+ *
+ * @param src the source raster
+ * @param dst the destination raster
+ * @param dpts array of points on the destination raster
+ * @param pts array of corresponding points on the source raster
+ */
+ private void filterBilinear(Raster src, WritableRaster dst, double[] dpts,
+ double[] pts)
+ {
+ Rectangle srcbounds = src.getBounds();
+
+ Object xyarr = null;
+ Object xp1arr = null;
+ Object yp1arr = null;
+ Object xyp1arr = null;
+
+ double xy;
+ double xp1;
+ double yp1;
+ double xyp1;
+
+ double[] result = new double[src.getNumBands()];
+
+ // For all points in the destination raster, use bilinear interpolation
+ // to find the value from the corrosponding source points
+ for (int i = 0; i < dpts.length; i += 2)
+ {
+ int srcX = (int) Math.round(pts[i]) + src.getMinX();
+ int srcY = (int) Math.round(pts[i + 1]) + src.getMinY();
+
+ if (srcbounds.contains(srcX, srcY))
+ {
+ // Corner case at the bottom or right edge; use nearest neighbour
+ if (pts[i] >= src.getWidth() - 1
+ || pts[i + 1] >= src.getHeight() - 1)
+ dst.setDataElements((int) dpts[i] + dst.getMinX(),
+ (int) dpts[i + 1] + dst.getMinY(),
+ src.getDataElements(srcX, srcY, null));
+
+ // Standard case, apply the bilinear formula
+ else
+ {
+ int x = (int) Math.floor(pts[i] + src.getMinX());
+ int y = (int) Math.floor(pts[i + 1] + src.getMinY());
+ double xdiff = pts[i] + src.getMinX() - x;
+ double ydiff = pts[i + 1] + src.getMinY() - y;
+
+ // Get surrounding pixels used in interpolation... optimized
+ // to use the smallest datatype possible.
+ if (src.getTransferType() == DataBuffer.TYPE_DOUBLE
+ || src.getTransferType() == DataBuffer.TYPE_FLOAT)
+ {
+ xyarr = src.getPixel(x, y, (double[])xyarr);
+ xp1arr = src.getPixel(x+1, y, (double[])xp1arr);
+ yp1arr = src.getPixel(x, y+1, (double[])yp1arr);
+ xyp1arr = src.getPixel(x+1, y+1, (double[])xyp1arr);
+ }
+ else
+ {
+ xyarr = src.getPixel(x, y, (int[])xyarr);
+ xp1arr = src.getPixel(x+1, y, (int[])xp1arr);
+ yp1arr = src.getPixel(x, y+1, (int[])yp1arr);
+ xyp1arr = src.getPixel(x+1, y+1, (int[])xyp1arr);
+ }
+ // using
+ // array[] pixels = src.getPixels(x, y, 2, 2, pixels);
+ // instead of doing four individual src.getPixel() calls
+ // should be faster, but benchmarking shows that it's not...
+
+ // Run interpolation for each band
+ for (int j = 0; j < src.getNumBands(); j++)
+ {
+ // Pull individual sample values out of array
+ if (src.getTransferType() == DataBuffer.TYPE_DOUBLE
+ || src.getTransferType() == DataBuffer.TYPE_FLOAT)
+ {
+ xy = ((double[])xyarr)[j];
+ xp1 = ((double[])xp1arr)[j];
+ yp1 = ((double[])yp1arr)[j];
+ xyp1 = ((double[])xyp1arr)[j];
+ }
+ else
+ {
+ xy = ((int[])xyarr)[j];
+ xp1 = ((int[])xp1arr)[j];
+ yp1 = ((int[])yp1arr)[j];
+ xyp1 = ((int[])xyp1arr)[j];
+ }
+
+ // If all four samples are identical, there's no need to
+ // calculate anything
+ if (xy == xp1 && xy == yp1 && xy == xyp1)
+ result[j] = xy;
+
+ // Run bilinear interpolation formula
+ else
+ result[j] = (xy * (1-xdiff) + xp1 * xdiff)
+ * (1-ydiff)
+ + (yp1 * (1-xdiff) + xyp1 * xdiff)
+ * ydiff;
+ }
+
+ dst.setPixel((int)dpts[i] + dst.getMinX(),
+ (int)dpts[i+1] + dst.getMinY(),
+ result);
+ }
+ }
+ }
+ }
+
+ /**
+ * Perform bicubic filtering
+ * based on http://local.wasp.uwa.edu.au/~pbourke/colour/bicubic/
+ *
+ * @param src the source raster
+ * @param dst the destination raster
+ * @param dpts array of points on the destination raster
+ * @param pts array of corresponding points on the source raster
+ */
+ private void filterBicubic(Raster src, WritableRaster dst, double[] dpts,
+ double[] pts)
+ {
+ Rectangle srcbounds = src.getBounds();
+ double[] result = new double[src.getNumBands()];
+ Object pixels = null;
+
+ // For all points on the destination raster, perform bicubic interpolation
+ // from corrosponding source points
+ for (int i = 0; i < dpts.length; i += 2)
+ {
+ if (srcbounds.contains((int) Math.round(pts[i]) + src.getMinX(),
+ (int) Math.round(pts[i + 1]) + src.getMinY()))
+ {
+ int x = (int) Math.floor(pts[i] + src.getMinX());
+ int y = (int) Math.floor(pts[i + 1] + src.getMinY());
+ double dx = pts[i] + src.getMinX() - x;
+ double dy = pts[i + 1] + src.getMinY() - y;
+ Arrays.fill(result, 0);
+
+ for (int m = - 1; m < 3; m++)
+ for (int n = - 1; n < 3; n++)
+ {
+ // R(x) = ( P(x+2)^3 - 4 P(x+1)^3 + 6 P(x)^3 - 4 P(x-1)^3 ) / 6
+ double r1 = 0;
+ double r2 = 0;
+
+ // Calculate R(m - dx)
+ double rx = m - dx + 2;
+ r1 += rx * rx * rx;
+
+ rx = m - dx + 1;
+ if (rx > 0)
+ r1 -= 4 * rx * rx * rx;
+
+ rx = m - dx;
+ if (rx > 0)
+ r1 += 6 * rx * rx * rx;
+
+ rx = m - dx - 1;
+ if (rx > 0)
+ r1 -= 4 * rx * rx * rx;
+
+ r1 /= 6;
+
+ // Calculate R(dy - n);
+ rx = dy - n + 2;
+ if (rx > 0)
+ r2 += rx * rx * rx;
+
+ rx = dy - n + 1;
+ if (rx > 0)
+ r2 -= 4 * rx * rx * rx;
+
+ rx = dy - n;
+ if (rx > 0)
+ r2 += 6 * rx * rx * rx;
+
+ rx = dy - n - 1;
+ if (rx > 0)
+ r2 -= 4 * rx * rx * rx;
+
+ r2 /= 6;
+
+ // Calculate F(i+m, j+n) R(m - dx) R(dy - n)
+ // Check corner cases
+ int srcX = x + m;
+ if (srcX >= src.getMinX() + src.getWidth())
+ srcX = src.getMinX() + src.getWidth() - 1;
+ else if (srcX < src.getMinX())
+ srcX = src.getMinX();
+
+ int srcY = y + n;
+ if (srcY >= src.getMinY() + src.getHeight())
+ srcY = src.getMinY() + src.getHeight() - 1;
+ else if (srcY < src.getMinY())
+ srcY = src.getMinY();
+
+ // Calculate once for each band, using the smallest
+ // datatype possible
+ if (src.getTransferType() == DataBuffer.TYPE_DOUBLE
+ || src.getTransferType() == DataBuffer.TYPE_FLOAT)
+ {
+ pixels = src.getPixel(srcX, srcY, (double[])pixels);
+ for (int j = 0; j < result.length; j++)
+ result[j] += ((double[])pixels)[j] * r1 * r2;
+ }
+ else
+ {
+ pixels = src.getPixel(srcX, srcY, (int[])pixels);
+ for (int j = 0; j < result.length; j++)
+ result[j] += ((int[])pixels)[j] * r1 * r2;
+ }
+ }
+
+ // Put it all together
+ dst.setPixel((int)dpts[i] + dst.getMinX(),
+ (int)dpts[i+1] + dst.getMinY(),
+ result);
+ }
+ }
+ }
+}